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A COMMON MODELING ERROR

 

Prakrieh kriyamanani
Gunaih karmani sarvasah
Ahamkararavimudhatma
Karta ’ham iti manyate

 

While all kinds of work are done by the modes of nature, he whose soul is bewildered
by the self-sense thinks “I am the doer.” (

 

The Bhagavad Gita: An English Translation

 

,
by S. Radhakrishnan, George Allen and Unwin, 1971, page 143.)

 

A ROBUST AND OPTIMAL CONTROL ALGORITHM

 

Karmay eva ’dhikaras te
Ma phalesu kadacana
Ma karmaphalahetur bhur
Ma te sango ’stv akarmani

 

To action alone hast thou a right and never at all to its fruits; let not the fruits of
action be thy motive; neither let there be in thee any attachment to inaction. (

 

The
Bhagavad Gita: An English Translation

 

, by S. Radhakrishnan, George Allen and
Unwin, 1971, page 119.)
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1

 

1

 

Introduction

 

1.1 OVERVIEW

 

This book contains materials on linear systems, and optimal and robust control, and
is an outgrowth of two graduate level courses I have taught for many years at The
Pennsylvania State University, University Park. The first course is on linear systems
and optimal control, whereas the second course is on robust control. The unique
feature of this book is that it presents the materials in a theoretically rigorous way
while keeping the applications to practical problems in mind. Also, this is the first
book containing 

 

H

 

∞

 

 and sliding mode methods together.
The materials on linear systems include controllability, observability, and matrix

fraction description. First, the concepts of state feedback control and observers are
developed. Next, the optimal control is presented along with stochastic optimal
control. Then, the lack of robustness of LQG control is discussed. This is followed
by the presentation of robust control techniques. The derivation of 

 

H

 

∞

 

 control theory
is developed from the first principle. The sliding mode control of a linear system is
presented. Then, it is shown how a blend of sliding mode control and 

 

H

 

∞

 

 methods
can enhance the robustness of the system.

One of the objectives is to make the book self contained as much as possible.
For example, all the required concepts for stochastic processes are presented so that
a student can understand LQG control without much prior background in stochastic
processes. The book contains the presentation of theory with practical examples to
illustrate the key theoretical concepts and to show their applications to practical
problems. At the end of each chapter, exercise problems are included. The use of
MATLAB software has been highlighted.

For my course on linear systems and optimal control, I have used the textbook
by T. Kailath, 

 

Linear Systems

 

 (Prentice-Hall, 1980). This is a great book, and
contains extensive amount of information on linear systems. For my course on robust
control, I have used the textbook by K. Zhou and J. C. Doyle, 

 

Essentials of Robust
Control

 

 (Prentice-Hall, 1998). This is also an excellent book. However, a typical
engineering graduate student in most universities may find the materials in both
these textbooks to be highly mathematical and, as a result, find them difficult to
follow. Therefore, I have developed mathematical analyses in this book by keeping
in view the background of a typical engineering student with a bachelor’s degree.
For example, the derivation of 

 

H

 

∞

 

 does not require students to learn additional
mathematical tools.

I have learned the linear system theory from the textbook of T. Kailath. Therefore,
even though I have never met him, I would like to recognize T. Kailath as my virtual
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teacher. During my sabbatical at MIT, I was fortunate to interact with M. Athans and
attend his course on multivariable control systems, for which G. Stein presented excellent
lectures on 

 

H

 

∞

 

 control. I would also like to thank E. F. Crawley for arranging my
sabbatical and providing me an opportunity to do research on sliding mode control at
the MIT Space Engineering Research Center, where I was lucky to find David Miller
who helped me implement my controller on the development model of the Middeck
Active Control Experiment (MACE). Lastly, I would like to thank my wife, Hansa, and
daughters, Divya and Swarna, for their support.

 

1.2 CONTENTS OF THE BOOK

 

In Chapter 2, methods to develop a state space realization from a SISO transfer
function are presented, along with the concepts of controllability and observability.
The connection between a minimal order of the SISO state space realization and
simultaneous controllability and observability is presented. This is followed by the
matrix fraction description of the MIMO system, and a method is developed to find
a state space realization with the minimal order. Lastly, poles and zeros of a MIMO
system are defined.

In Chapter 3, the design of a full state feedback control system is presented for
a SISO system along with its impact on poles and zeros of the closed-loop system.
Next, the full state feedback control system is presented for a MIMO system. The
necessary conditions for the optimal control are then derived and used to develop
the linear quadratic (LQ) control theory and the minimum time control.

In Chapter 4, methods to estimate states are developed on the basis of inputs
and outputs of a deterministic and a stochastic system. Then, theories and examples
of optimal state estimation and linear quadratic Gaussian control are presented.

In Chapter 5, the fundamental concepts of robust control are developed. The
robustness of LQ and LQG control techniques developed in Chapter 3 and Chapter
4 are examined. Lastly, theories for 

 

H

 

2

 

, 

 

H

 

∞

 

, and 

 

μ

 

 techniques are presented along
with Bode’s sensitivity integrals and illustrative examples.

In Chapter 6, basic concepts of sliding modes are presented along with the
sliding mode control of a linear system with full state feedback. Then, it is shown
how 

 

H

 

∞

 

 and sliding mode theories can be blended to control an uncertain linear
system with full state feedback. Next, the sliding mode control of a deterministic
linear system is developed with the feedback of estimated states. Lastly, the optimal
sliding Gaussian (OSG) control theory is presented for a stochastic system.
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2

 

State Space Description 
of a Linear System

 

First, methods to develop a state space realization from a SISO transfer function are
presented, as well as the concepts of controllability and observability. The connection
between a minimal order of the SISO state space realization and the simultaneous
controllability and observability is presented. This is followed by the matrix fraction
description (MFD) of the MIMO system, and a method is developed to find a state space
realization with the minimal order. Lastly, poles and zeros of a MIMO system are defined.

 

2.1 TRANSFER FUNCTION OF A SINGLE 
INPUT/SINGLE OUTPUT (SISO) SYSTEM

 

The dynamics of a single input/single output (SISO) linear system can be represented
in general by the following 

 

n

 

th order differential equation:

(2.1.1)

where is the output and  is the input. The coefficients , ,…, and ,
,…,  are system parameters. These parameters are constants for a time-invariant

system.
Taking the Laplace transformation of (2.1.1) and setting all initial conditions to

be zero,

(2.1.2)

where

(2.1.3)

d y
dt

a
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a
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The expression  is described as the transfer function with which the following
facts can be attributed:

1. The transfer function is the ratio of Laplace transforms of the output and
the input.

2. All initial conditions associated with the input and the output are taken
to be zero.

3. The transfer function is only defined for a linear and time-invariant system.

Taking , the unit impulse function, it can be seen that

(2.1.4)

is the unit impulse response function of the system. In other words, the transfer
function of a linear time-invariant system is the Laplace transformation of the unit
impulse response of the system.

To appreciate the usefulness of the transfer function approach, consider the
system shown in Figure 2.1 in which the output of the first subsystem  is the
input to the next subsystem. This is a typical situation found in the study or design
of a control system. The output and the input are related as follows:

(2.1.5)

In time domain, the output  is related to the input 

 

u

 

(

 

t

 

) via the convolution integral
(Kuo, 1995). More specifically,

 (2.1.6a)

and

(2.1.6b)

Therefore,

 

FIGURE 2.1

 

Cascaded linear systems.

)(1 sg )(2 sg
)(sy)(1 sy)(su

g s( )

u t t( ) ( )= δ

g t L g s( ) ( ( ))= −1

y s1( )

y s( ) u s( )

y s

u s
g s g s

( )
( )

( ) ( )= 1 2

y t( )

y t g t y d
t

( ) ( ) ( )= −∫ 2
0

1τ τ τ

y t g t u d
t

1 1
0

( ) ( ) ( )= −∫ τ τ τ
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(2.1.7)

Comparing Equation 2.1.5 and Equation 2.1.7, it is obvious that the input–output
relationship in 

 

s

 

-domain is much simpler than that in time domain.

 

2.2 STATE SPACE REALIZATIONS OF A SISO SYSTEM

M

 

ETHOD

 

 I

 

Define such that

(2.2.1)

Assuming that all initial conditions on are zero and using the principle of
superposition (Kailath, 1980), Equation 2.1.1 leads to

(2.2.2)

Although initial conditions on 

 

y

 

(

 

t

 

) and its higher derivatives have been taken to be
zero, the Equation 2.2.2 is valid for nonzero initial conditions on 

 

y

 

(

 

t

 

) and its higher

derivatives. The treatment of nonzero , ,…, and is related to the

 

observability 

 

issue and will be discussed later.
Define

(2.2.3)

y t g t g u d d
t

( ) ( ) ( ) ( )= − −∫∫ 2 1

0
0

τ τ ν ν ν τ
τ

ξ( )t

d
dt

a
d
dt

a
d
dt

a u t
n

n

n

n

n

n n
ξ ξ ξ ξ+ + + + =

−

−

−

−1

1

1 2

2

2
… ( )

y t( )

y t b
d

dt
b

d

dt
b

d

dt

n

n

n

n

n

n
( ) ...= + + +

−

−

−

−0 1

1

1 2

2

2

ξ ξ ξ
.... + bnξ

y( )0 �y( )0
d y

dt

n

n
( )0

x1 = ξ

x
d

dt2 = ξ

x
d
dt

x
d
dt

n

n

n

3

2

2

1

1

=

=
−

−

ξ

ξ

�
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Using (2.2.1) and (2.2.3), the following  first-order differential equations are
obtained as follows:

(2.2.4)

Using Equation 2.2.2, the output is related to variables defined in (2.2.3) as
follows:

(2.2.5)

Using (2.2.4),

(2.2.6)

The system represented by (2.2.4) and (2.2.6) can be realized using  analog
integrators as shown in Figure 2.2. The variables , , ,…,  turn out to be
outputs of integrators and are described as 

 

state variables

 

. In matrix form, Equation
2.2.4 and Equation 2.2.6 are described as follows:

(2.2.7)

and

(2.2.8)

where

n

dx

dt
x1

2=

dx
dt

x

dx
dt

xn
n

2
3

1

=

=−

�

dx
dt

a x a x a x u tn
n n n= − − − − +−1 1 2 1… ( )

y t( )

y t b
dx
dt

b x b x b xn
n n n( ) = + + + +−0 1 2 1 1…

y t b b a x b b a x bn n n n( ) ( ) ( ) ..... (= − + − + + −− −0 1 1 0 1 2 1 bb a x b u tn0 1 0) ( )+

n
x1 x2 x3 xn

d

dt
A t u tc c

x
x b= +( ) ( )

y t t b u tc( ) ( ) ( )= +c x 0
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(2.2.9)

(2.2.10)

and

(2.2.11)

 

M

 

ETHOD

 

 II

 

Defining , Equation 2.1.1 can be written as

 

FIGURE 2.2

 

Analog computer simulation diagram (Method I).

1a

2a
1na

na

u

y

0b

1b

2b 1nb
nb

1x2xnx
1nxnx

A

a a a

c

n

=

− − −

⎡

⎣

0 1 0 0 0

0 0 1 0

2 1

. . .

. . . .

. . . . . . . .

. . . . .

⎢⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

bc =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

0

0

1

.

.

.

cc n n n nb b a b b a b b a= − − −− −[ ]0 1 0 1 1 0 1…

p
d

dt
=
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(2.2.12)

Dividing (2.2.12) by  (Wiberg, 1971),

(2.2.13)

The analog computer simulation diagram corresponding to Equation 2.2.13 is shown
in Figure 2.3.

Defining the outputs of integrators as state variables , , ,…, , the fol-
lowing relationships are obtained:

and

(2.2.14)

 

FIGURE 2.3

 

Analog computer simulation diagram (Method II).

u

y

nb 1nb 1b 0b

1a1nana

1x 2x nx1nx nx2x1x

p y t b u t p a y t b u t p an n n( ( ) ( )) ( ( ) ( )) (− + − +− −
0

1
1 1

2
2 yy t b u t

a y t b u tn n

( ) ( ))

( ( ) ( ))

− + +

− =

2

0

…

pn

y t b u t
a y t b u t

p

a y t b u t

p
( ) ( )

( ) ( ) ( ) ( )= − − − − −0
1 1 2 2

2
……− −a y t b u t

p
n n

n

( ) ( )

x1 x2 x3 xn

y t x t b u tn( ) ( ) ( )= + 0

dx

dt
a y t b u t a x b b a un n n n n n

1
0= − + = − + −( ) ( ) ( )

dx
dt

a y t x t b u t a x xn n n n
2

1 1 1 1 1= − + + = − + +− − −( ) ( ) ( ) (bb b a un n− −−1 0 1)

�

( ) ( ) ( )
dx
dt

a y t x t b u tn
n= − + + = −−1 1 1 aa x x b b a un n1 1 1 0 1+ + −− ( )
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Equations 2.2.14 can be put in the matrix form as follows:

(2.2.15a)

and

(2.2.15b)

where

(2.2.16)

(2.2.17)

and

(2.2.18)

 

Notation

 

Often, a state space realization is represented by the symbol  by which we
mean the following:

(2.2.19a)

(2.2.19b)

d

dt
A t u to o

x
x b= +( ) ( )

y t x t b u to( ) ( ) ( )= +c 0

A

a

a

ao

n

n

n=

−
−
−

−

−

−

0 0

1 0 0

0 1 0

0 0 1

1

2

. . .

. .

. .

. . . . . .

. . aa1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

bo

n n

n n

o

b b a

b b a

b b a

=

−
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

− −

0

1 0 1

1 1

.

.

.

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

co = ⎡⎣ ⎤⎦0 0 0 1. .

{ , , }A b c

�x x b= +A t u t( ) ( )

y t t( ) ( )= cx
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10 Linear Systems: Optimal and Robust Control

EXAMPLE 2.1

(2.2.20)

Here, . From Method I:

(2.2.21)

From Method II:

(2.2.22)

PROPERTIES OF STATE SPACE MODELS

1. Duality

For any given realization  of a system transfer function, there is a dual
(Kailath, 1980) realization .

It is interesting to note that

, , and (2.2.23)

Hence, the state space realization obtained by Method I is dual to that obtained by
Method II, and vice versa.

2. Nonuniqueness of State Space Realization

Consider the following transformation:

(2.2.24)

where T is any nonsingular matrix. For the realization ,

(2.2.25)

g s
s s

s s s
( ) = + +

+ + +

3

3 2

2 5

2 4 3

b0 1=

Ac =
− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 1 0

0 0 1

3 4 2

bc =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

0

1

cc = ⎡⎣ ⎤⎦2 2 2

Ao =
−
−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0 3

1 0 4

0 1 2

bo =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

2

2

co = ⎡⎣ ⎤⎦0 0 1

A, ,b c{ }
AT T T, ,c b{ }

A Ao c
T= b co c

T= c bo c
T=

x x( ) ( )t T t=

{ , , }A b c

d

dt
A u t

x
x b= + ( )
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(2.2.26)

Substituting (2.2.24) into (2.2.25) and (2.2.26),

(2.2.27)

(2.2.28)

where

, , and (2.2.29)

Hence, a new realization, , has been obtained. As the choice of the nonsin-
gular matrix is arbitrary, there are clearly many realizations or nonunique state
space realizations corresponding to a given transfer function (Kailath, 1980). In
matrix theory, the transformation (2.2.24) is known as similarity transformation,
and and  are called similar matrices.

2.3 SISO TRANSFER FUNCTION FROM A STATE 
SPACE REALIZATION

Taking the Laplace transformation of equations (2.2.19),

(2.3.1)

For the definition of a transfer function, . Therefore,

(2.3.2)

Equation 2.3.2 can be expressed as

(2.3.3)

where

(2.3.4)

y t t( ) ( )= cx

d

dt
A u t

x
x b= + ( )

y t x t( ) ( )= c

A T AT= −1 b b= −T 1 c c= T

{ , , }A b c
T

A A

y s sI A sI A u s( ) ( ) ( ) ( ) ( )= − + −− −c x c b1 10

x( )0 0=

g s
y s

u s
sI A( )

( )
( )

( )= = − −c b1

g s
Adj sI A

sI A
( )

( )
det( )

= −
−

c b

Adj sI A A s a A s a sn n n n( ) ( ) (− = + + + + + + +− − − −1
1

2 1
1

2… … aa In n−1)
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12 Linear Systems: Optimal and Robust Control

and

(2.3.5)

Further, it can be shown that

(2.3.6)

The results (2.3.5) and (2.3.6) are also true for , and . Hence, the transfer
function is unique for all similar state space realizations.

2.4 SOLUTION OF STATE SPACE EQUATIONS

2.4.1 HOMOGENEOUS EQUATION

Consider the solution of Equation 2.2.19 with ; i.e.,

; (2.4.1)

Taking the Laplace transformation of (2.4.1),

(2.4.2)

Now,

(2.4.3)

Taking the inverse Laplace transformation of (2.4.3),

(2.4.4)

The matrix exponential is defined as follows:

(2.4.5)

Lastly, taking the inverse Laplace transformation of (2.4.2),

det( )sI A s a s a s a s an
n n n

n n− = + + + + +− −
−1

1
2

2
1…

c bAdj sI A b s b s b s bn n
n n( )− = + + + +− −

−1
1

2
2

1…

A, b c

u t( ) = 0

d

dt
A

x
x= x x( )0 0=

x x( ) ( )s sI A= − −1
0

( )sI A
s

I
A
s s

I
A
s

A
s

− = −
⎛
⎝
⎜

⎞
⎠
⎟ = + + +

⎛

⎝
⎜

⎞

⎠
⎟−

−
1

1 2

2

1 1 …

L sI A I At A
t

t− −− = + + + ≥1 1 2
2

2
0( ) ;…

e L sI AAt = −− −1 1[( ) ]
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; (2.4.6)

The matrix  is also known as the state transition matrix because it takes the
initial state  to a state  in time t.

Properties of eAt

1. (2.4.7)

2. (2.4.8)

3. If  is nonsingular, (2.4.9)

EXAMPLE 2.2

(2.4.10)

(2.4.11)

(2.4.12)

Then, Equation 2.4.6 yields

; (2.4.13)

2.4.2 INHOMOGENEOUS EQUATION

Taking the Laplace transformation of (2.2.19),

(2.4.14)

Utilizing the definition (2.4.5), the inverse Laplace transformation of (2.4.14) yields

x x( )t eAt= 0 t ≥ 0

eAt

x0 x( )t

d

dt
e Ae e AAt At At( ) = =

e e eA t t At At( )1 2 1 2+ =

eAt ( )e eAt At− −=1

A =
−
−

⎡

⎣
⎢

⎤

⎦
⎥

4 3

1 0
x( )0

0

1
=

⎡

⎣
⎢

⎤

⎦
⎥

( )
( )( ) ( )( )

( )( )

sI A

s

s s s s

s s

− = + + + +

−
+ +

−1 1 3
3

1 3

1
1 3

ss

s s

+
+ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

4
1 3( )( )

L sI A e
e e eAt

t t t
− −

− − −

− = = − − +1 1
3 31 5 0 5 1 5 1

[( ) ]
. . . .55

0 5 0 5 0 5 1 53 3

e

e e e e

t

t t t t

−

− − − −− − +

⎡

⎣
⎢

⎤

⎦
⎥

. . . .

x( )
. .

. .
t

e e

e e

t t

t t
= − +

− +

⎡

⎣
⎢

⎤

⎦
⎥

− −

− −

1 5 1 5

0 5 1 5

3

3
t ≥ 0

x x b( ) ( ) ( ) ( ) ( )s sI A sI A u s= − + −− −1 10
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14 Linear Systems: Optimal and Robust Control

; (2.4.15)

EXAMPLE 2.3

Let

; and u(t) = 1 for (2.4.16)

(2.4.17)

Then

(2.4.18)

Hence, from (2.4.15),

; (2.4.19)

2.5 OBSERVABILITY AND CONTROLLABILITY OF A 
SISO SYSTEM

2.5.1 OBSERVABILITY

The state space model  can be developed on the basis of the governing
differential Equation 2.1.1 or the transfer function (2.1.3). If the initial conditions

x x b( ) ( ) ( )( )t e e u dAt A t

t

= + −∫0
0

τ τ τ t ≥ 0

A =
−
−

⎡

⎣
⎢

⎤

⎦
⎥

4 3

1 0
b =

⎡

⎣
⎢

⎤

⎦
⎥

1

0
x( )0

0

1
=

⎡

⎣
⎢

⎤

⎦
⎥ t ≥ 0

e
e e

e
A t

t t

t

( )
( ) ( )

( )

. .

.
−

− − − −

− −
= −

−
τ

τ τ

τ
b

1 5 0 5

0 5

3

3 00 5. ( )e t− −

⎡

⎣
⎢

⎤

⎦
⎥τ

e u d

e e d e e d
A t

t

t

t

t

( ) ( )

. .
−

− −

∫
∫

=

−
τ

τ τ

τ τ

τ

0

3 3

0

1 5 0 5

b

ττ

τ ττ τ

0

3 3

0 0

0 5 0 5

t

t

t

t

t

e e d e e d

∫

∫ ∫− −−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

. .
⎦⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

− +

− − +

− −

− −

0 5 0 5

1
3

0 5
3

0 5

3

3

. .

.
.

e e

e e

t t

t t

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x( )t
e e

e e

t t

t t
=

− +

− − +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −

− −

2 2

1
3

2
3

2

3

3
t ≥ 0

{ , , }A b c
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on the output and its derivatives are nonzero, how would one get correct values of
initial states? To answer this question, consider the output Equation 2.2.19b,

Differentiating it and using (2.2.19a),

(2.5.1)

Continuing this differentiation process,

(2.5.2)

Representing (2.5.1) and (2.5.2) in matrix form,

(2.5.3)

where

(2.5.4)

(2.5.5)

(2.5.6)

y t t( ) ( )= cx

dy

dt
A t u t= +c x cb( ) ( )

d y
dt

A t A u t
du
dt

2

2
2= + +c x c b cb( ) ( )

�

d y
dt

n

n

−

−

1

1
== + + + +− − −

−

c x c b c b cbA t A u t A
du
dt

d un n n
n

1 2 3
1

( ) ( ) …
ddtn−1

y x u( ) ( ) ( )t t t= +Θ Τ

y( ) . .t y
dy

dt

d y

dt

n

n

T

=
⎡

⎣
⎢

⎤

⎦
⎥

−

−

1

1

Θ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥−

c

c

c

c

A

A

An

2

1

.

.

.

u( ) . .t u
du

dt

d u

dt

n

n

T

=
⎡

⎣
⎢

⎤

⎦
⎥

−

−

1

1
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16 Linear Systems: Optimal and Robust Control

(2.5.7)

From (2.5.3),

(2.5.8)

Therefore,

(2.5.9)

provided the matrix  is nonsingular. Hence, the condition for initial states to
be calculated from the initial values of input, output, and their derivatives is that
the matrix  should be nonsingular. The matrix  is known as the observability
matrix.

The solution (2.4.15) of the state space equation indicates that  can be
calculated for any u(t) if the initial value  is known.

Observability of State Space Realization Using Method I

Using (2.5.5),

(2.5.10)

The determinant and hence the singularity of the observability matrix will depend
on system parameters. Hence, the realization may or may not be observable.

Observability of State Space Realization Using Method II

Using (2.5.5),

Τ =

−

0 0 0 0

0 0 0

0 0

2

. .

. .

. .

. . . . . .

. . . . . .

.

c

c c

c

b

Ab b

A bn .. . cb 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Θ Τx y u( ) ( ) ( )0 0 0= −

x y u( ) ( ) ( )0 0 01 1= −− −Θ Θ Τ

Θ

Θ Θ

x( )t
x( )0

Θ =

− −
− −

b b a b b a

a b b a
n n

n

0 1 0 1

1 0 1

. . . .

( ) . . . . .

. . . . . .

.. . . . . .

. . . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

9217_book.fm  Page 16  Tuesday, December 19, 2006  10:44 AM



State Space Description of a Linear System 17

(2.5.11)

It can be easily seen that

(2.5.12)

Therefore,  is nonsingular irrespective of the system parameter values. Hence,
this state space realization is always observable.

EXAMPLE 2.4

Consider a spring-mass-damper system Figure 2.4, with the following differential
equation:

(2.5.13)

where f(t) is the applied force. Dividing (2.5.13) by m,

(2.5.14)

Defining states as

and (2.5.15a,b)

state equations are

(2.5.16)

where

; ; (2.5.17)

Case I: Position Output

If the position of the mass, x, is measured by a sensor,

Θ =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
0 0 0 1

0 0 1 0

1 0 0 0

. .

. .

. . . . . .

. . . . . .

. .

⎥⎥
⎥
⎥
⎥
⎥

det Θ = − +1 1or

Θ

mx x x f t�� �+ + =α β ( )

�� �x
m

x
m

x
f t

m
u t+ + = =α β ( )

( )

x x1 = x x2 = �

�x x b= +A t u t( ) ( )

x( )
( )

( )
t

x t

x t
=

⎡

⎣
⎢

⎤

⎦
⎥

1

2

A
m m

=
− −

⎡

⎣
⎢

⎤

⎦
⎥

0 1

β α/ /
b =

⎡

⎣
⎢

⎤

⎦
⎥

0

1
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18 Linear Systems: Optimal and Robust Control

(2.5.18)

where

(2.5.19)

Then the observability matrix is

(2.5.20)

Hence, the state space realization is observable for all values of spring stiffness and
damping constant.

Case II: Velocity Output

If the velocity of the mass, , is measured by a sensor,

(2.5.21)

where

(2.5.22)

Then the observability matrix is

(2.5.23)

Therefore,

FIGURE 2.4 A spring-mass-damper system.

m

)(tx

)(tf

y t t( ) ( )= cx

c = [ ]1 0

Θ =
⎡

⎣
⎢

⎤

⎦
⎥

1 0

0 1

�x

y t t( ) ( )= cx

c = [ ]0 1

Θ =
− −

⎡

⎣
⎢

⎤

⎦
⎥

0 1

β α/ /m m
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State Space Description of a Linear System 19

(2.5.24)

Hence, the state space realization is not observable if the spring stiffness is zero,
i.e., if there is no spring in the system. This is an interesting result because the
displacement can be obtained by integrating velocity:

(2.5.25)

However, the initial condition  is needed. In the absence of a spring, the loss
of observability implies that  cannot be obtained, and the position of the system
cannot be observed.

2.5.2 CONTROLLABILITY

The linear differential equation

(2.5.26)

is controllable if and only if it can be transferred from any initial state to any final
state in a finite time.

Therefore, for the linear and time-invariant system (2.5.26), the issue is to find
u(t); , which will take the system from any  to any  in a finite
time .

Using the solution of (2.5.26),

(2.5.27)

This is an integral equation because the unknown function u(.) appears under an
integral sign. Define a matrix  as follows:

(2.5.28)

This matrix  is known as the controllability Gramian.
The solution of (2.5.27) is found (Friedland, 1985) to be

det /Θ = β m

x t x x t dt

t

1 1 2

0

0( ) ( ) ( )= + ∫
x1 0( )

x1 0( )

d

dt
A u t

x
x b= + ( )

t t t f0 ≤ ≤ x( )t0 x( )t f

t tf − 0

x x b( ) ( ) ( )( ) ( )t e t e u df
A t t A t

t

t

f f

f

= +− −∫0

0

0
τ τ τ

P t tf( , )0

P t t e e df
A t

t

t

T A tf

f
T

f( , ) ( ) ( )
0

0

= − −∫ τ τ τbb

P t tf( , )0
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20 Linear Systems: Optimal and Robust Control

(2.5.29)

This result can be verified by substituting (2.5.29) into (2.5.27). Hence, the control
input u(.) can be found if and only if the matrix is nonsingular.
Defining a new variable ,

(2.5.30)

Note that ; i.e., only depends on  for a linear and
time-invariant system.

A  t e s t  f o r  l i nea r  i ndependence  o f  any  func t i ons
 is that their Gramian matrix G (Appendix A) is non-

singular where

and (2.5.31)

Equation 2.5.30 can be written as

(2.5.32)

Comparing (2.5.31) and (2.5.32), nonsingularity of the matrix P implies that
elements of the vector are linearly independent over . Therefore, the
pair is controllable over if and only if the elements of the vec-
tor  are linearly independent.

EXAMPLE 2.5

and (2.5.33)

Find :

(2.5.34)

u e P t t t eT A t
f f

A t tT
f f( ) ( , )[ ( )( ) ( )τ τ= −− − −b x x1

0
0 (( )]t0

P t tf( , )0

ν = −t tf 0

P t t e e df
A

t t

T A

f

T

( , )0

0

0

=
−

∫ ν ν νbb

P t t P t tf f( , ) ( )0 0= − P t tf( , )0 t tf − 0

{ ( );� i τ
, , ,...., }ft t i nτ0 1 20≤ ≤ − =

G d

t t

T
f

=
−

∫
0

0

� �( ) ( )τ τ τ � � �T
n( ) ( ) . . . ( )τ τ τ= ⎡⎣ ⎤⎦1

P t t e e df
A

t t

A T

f

( , ) ( )0

0

0

=
−

∫ ν ν νb b

eAνb ( , )0 0t tf −
{ , }A b ( , )0 0t tf −

eAνb

A =
−

⎡

⎣
⎢

⎤

⎦
⎥

0 1

4 0
b =

⎡

⎣
⎢

⎤

⎦
⎥

0

1

eAt

sI A
s

s
− =

−⎡

⎣
⎢

⎤

⎦
⎥

1

4
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(2.5.35)

(2.5.36)

Find :

= (2.5.37)

From the controllability Gramian,

(2.5.38)

Let

(2.5.39)

Hence,

= (2.5.40)

(2.5.41)

( )sI A

s

s s

s

s

s

− = + +
−
+ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−1
2 2

2 2

4

1

4
4

4 4

e L sI A
t t

t t
At = − =

−
− −1 1 2 0 5 2

2 2 2
[( ) ]

cos . sin

sin cos

⎡⎡

⎣
⎢

⎤

⎦
⎥

eAνb

eAν ν ν

ν ν
b =

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢

cos
sin

sin cos

2
2

2
2 2 2

0

1

⎤⎤

⎦
⎥

sin

cos

2
2
2

ν

ν

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

e eA T ATν ν

ν ν ν

ν ν
bb =

sin sin cos

sin cos
cos

2 2
4

2 2
2

2 2
2

22 2ν

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

t t tf0 − = Δ

P t t e e df
A

t

T AT

( , )0

0

= ∫ ν ν ν
Δ

bb

Δ Δ Δ

Δ Δ

t t t

t

− − +

− +

(sin( )) / cos( )

cos( )

4 4
8

4 1
16

4 1
16

tt t+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(sin( )) /4 4
2

Δ

det( ( ))
( ) . sin ( )

P t
t tΔ Δ Δ= −2 20 25 2

16

9217_book.fm  Page 21  Tuesday, December 19, 2006  10:44 AM



22 Linear Systems: Optimal and Robust Control

Theorem

The system is completely controllable if and only if the controllability matrix

(2.5.42)

is nonsingular.

Proof

Step I: Consider that the matrix P, Equation 2.5.28, is singular. In this case,
elements of the vector are linearly dependent. As a result, there exists
a nonzero vector q such that

 for (2.5.43)

Differentiating (2.5.43),

(2.5.44)

Putting (2.5.43) and (2.5.44) in matrix form,

(2.5.45)

Using the definition (2.5.42),

(2.5.46)

C A A An= −[ . . ]b b b b2 1

eAνb

z t eT A tT

( ) = =b q 0 0 0≤ ≤ −t t tf

�z t A eT T A tT

( ) = =b q 0

��

�

z t A e

d
dt

z t A

T T A t

n

n
T T n

T

( ) ( )

( ) ( )

= =

=
−

−

b q

b

2

1

1

0

−− =1 0eA tT

q

b

b

b

q

T

T T

T T n

A t

A

A

e
T

.

.

( ) −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

1

0

C eT A tT

q = 0
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Let

(2.5.47)

and

(2.5.48)

Hence, from (2.5.46) – (2.5.48),

(2.5.49)

Hence, columns of  are linearly dependent. As , the
matrix  is singular.

Step II: Consider that  is singular. We will show that the matrix P, Equation
2.5.28, is singular in this case.

(2.5.50)

Recall the Cayley–Hamilton theorem:

(2.5.51)

where

(2.5.52)

Using (2.5.50) and (2.5.51),

(2.5.53)

where  are functions of .

C T
n= ⎡⎣ ⎤⎦r r r1 2 . .

e

t

t

t

A t

n

T

q =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

α
α

α

1

2

( )

( )

.

.

( )

α α α1 1 2 2 0( ) ( ) ( )t t tn nr r r+ + + =…

C T rank C rank C T( ) ( )=
C

C

e I A
A A

n
A

n
A

n n n n
ν ν ν ν ν= + + + +

−
+ +

− −2 2 1 1

2 1! ( )! !
… …

A a A a A a In n n
n n= − − − −− −

1
1

2
2 …

det( )sI A s a s a s an n n
n− = + + + +− −

1
1

2
2 …

e If Af A fA n
n

ν ν ν ν= + + + −
1 2

1( ) ( ) ( )…

f fn1( ),. , ( )ν ν… ν
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24 Linear Systems: Optimal and Robust Control

Hence,

(2.5.54)

where 

(2.5.55)

Therefore, from (2.5.30),

(2.5.56)

Note that . Therefore, the rank of
is going to be less than n because it has been assumed that the matrix C is
singular.

Controllability of the State Space Realization Obtained Using 
Method I

Using (2.5.42),

(2.5.57)

It can be shown that

(2.5.58)

Therefore, the state space realization obtained using Method I is always controllable.

e CAν νb f= ( )

f ( )

( )

( )

.

.

( )

ν

ν
ν

ν

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

f

f

fn

1

2

P t t C d Cf

t t

T T

f

( , ) [ ( ) ( ) ]0

0

0

=
−

∫ f fν ν ν

rank AB rank A rank B( ) min{ ( ), ( )}≤ P t tf( , )0

C

a

a a a

=

−
− − +

0 0 0 1

0 0 1 0

1

1
1

1
2

. .

. .

. . . . . .

. . . . . .

. . . .

11 . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

det C = − +1 1or
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Controllability of the State Space Realization Obtained Using 
Method II

Using (2.5.42),

(2.5.59)

The determinant and hence the singularity of the controllability matrix will depend
on system parameters. Hence, the realization may or may not be controllable.

EXAMPLE 2.6

Consider the tank system shown in Figure 2.5, where  and  are input mass flow
rate to tank 1 and tank 2, respectively. Let  and  be the pressure at the left end
of the pipe and the atmospheric pressure, respectively. Then,

(2.5.60)

where  is the fluid density.

FIGURE 2.5 A tank-pipe system.

C

b b a b b a

a b b a
T

n n

n

=

− −
− −

0 1 0 1

1 0 1

. . . .

( ) . . . . .

. . . . . ..

. . . . . .

. . . . . .

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

u1 u2

p1 pa

p p gha1 1− = ρ

ρ

1h

2h

1u

2uq

1p ap

ap
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26 Linear Systems: Optimal and Robust Control

Considering a laminar pipe flow,

(2.5.61)

where q and  are the volumetric flow rate through the pipe and the flow resistance,
respectively. From the law of conservation of mass,

(2.5.62)

(2.5.63)

where  and  are cross-sectional areas of tanks 1 and 2, respectively. Using
(2.5.60) and (2.5.61),

(2.5.64)

where

, , , and (2.5.65)

The controllability matrix with respect to input is

(2.5.66)

Hence, the system (2.5.64) is controllable with respect to the input . It is obvious
that both states  and  are influenced by the input . And, the controllability
matrix with respect to the input  is

(2.5.67)

Hence, the system (2.5.64) is not controllable with respect to the input . It is
obvious that the state  cannot be influenced by the input .

q
p p

R
a

L

= −1

RL

ρ ρA
dh

dt
u q1

1
1= −

ρ ρA
dh

dt
u q2

2
2= +

A1 A2

�
�
h

h

h

h
1

2

1

2

1

2

10

0 0

⎡

⎣
⎢

⎤

⎦
⎥ =

−⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

α
α

β ⎤⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥u u1

2
2

0

β

α ρ
1

1

= g

A RL

α ρ
2

2

= g

A RL

β
ρ1

1

1=
A

β
ρ2

2

1=
A

u1

C =
−⎡

⎣
⎢

⎤

⎦
⎥

β α β
α β

1 1 1

2 10

u1

h1 h2 u1

u2

C =
⎡

⎣
⎢

⎤

⎦
⎥

0 0

02β

u2

h1 u2
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EXAMPLE 2.7: A PERIODIC STRUCTURE

For the system in Figure 2.6, differential equations of motion are

(2.5.68)

(2.5.69)

(2.5.70)

Define

(2.5.71)

and

(2.5.72)

Then state equations are

(2.5.73)

where

FIGURE 2.6 A periodic spring-mass system.

Fixed

m

m
m

c

c
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)(tf 1z
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mz z z z z zc c��3 3 3 2 3 1 0+ + − + − =β β β( ) ( )
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28 Linear Systems: Optimal and Robust Control

, (2.5.74a,b)

and (2.5.75a,b)

The controllability matrix is

(2.5.76)

Therefore,

(2.5.77)

(2.5.78)

In other words, the state space realization is not controllable. Because of symmetry,
the influence of input on states  and  is identical. As a result, the input cannot
take the system from any initial states to any arbitrary final states.

A
p q q

q p q

q q p

=
−

−
−

⎡

⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0

0 0 0

0 0 0

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎡

⎣
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⎢
⎢
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⎦
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⎥
⎥

0

0

0

1

0

0

p
m

c= +β β2
q

m
c= 2β

C

p p q

q q pq

p q pq

p p
=

− +
−
−

−

0 1 0 0 2

0 0 0 0 2

0 0 0 0 2

1 0 0

2 2

2

2

2 ++
−
−

⎡

⎣

⎢
⎢
⎢
⎢
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⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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2

q
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q q pq

⎥⎥
⎥
⎥
⎥
⎥

det detC
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−
−
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0
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−

⎡
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det detC
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1 2
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⎢
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State Space Description of a Linear System 29

2.6 SOME IMPORTANT SIMILARITY 
TRANSFORMATIONS

2.6.1 DIAGONAL FORM

Consider the similarity transformation (2.2.24). Find a nonsingular matrix T such that

(2.6.1)

In other words,

(2.6.2)

or

(2.6.3)

Define

(2.6.4)

where  is the ith column of the matrix T. Hence, from (2.6.3) and (2.6.4),

(2.6.5)

Therefore,  and  must be the eigenvalue and the corresponding eigenvector of
the matrix A, respectively. The matrix will be nonsingular if and only if  has n
independent eigenvectors. In this context, the following two properties are stated:

If  has  distinct eigenvalues, there exists  independent eigenvectors.
If an eigenvalue of  is repeated  times,  independent eigenvectors cor-

responding to this eigenvalue will be found provided:

(2.6.6)

EXAMPLE 2.8

(2.6.7)

A A diagd n= = ( , , , )λ λ λ1 2 …

T AT Ad
− =1

AT TAd=

T n= ⎡⎣ ⎤⎦t t t1 2 . .

ti

A i i it t= λ

λi ti

T A

A n n
A r r

rank A I n ri( )− = −λ

A =
− −

− −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

5 1 1

1 5 1

1 1 5
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30 Linear Systems: Optimal and Robust Control

Eigenvalues of the matrix A are 3, 6, and 6; i.e., the eigenvalue 6 is repeated twice.

(2.6.8)

Therefore, , the condition (2.6.6) is satisfied, and the matrix A can
be digonalized.

2.6.2 CONTROLLABILITY CANONICAL FORM

Given a realization  find the similarity transformation matrix T such that

and (2.6.9a,b,c)

Note that Equation 2.2.29 has been used here.
From (2.6.9a),

(2.6.10)

Let

(2.6.11)

Now,

(2.6.12)

and using (2.2.9),

(2.6.13)

From (2.6.10), (2.6.12), and (2.6.13),

A I− =
− − −
− − −
− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

6

1 1 1

1 1 1

1 1 1

rank A I( )− =6 1

A, , ,b c{ }

A T ATc = −1 , b bc T= −1 , c cc T=

TA ATc =

T n= ⎡⎣ ⎤⎦t t t1 2 . .

AT A A A A n= [ . . ]t t t t1 2 3

TA a a a ac n n n n n n n n= − − − −− − −[ . . ]t t t t t t t1 1 2 2 1 1

A an nt t1 = −

A an nt t t2 1 1= − −

A an nt t t3 2 2= − −

�
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(2.6.14)

As , Equation 2.6.9b yields

(2.6.15)

Solving equations (2.6.14) from the last equation backward,

(2.6.16)

Representing (2.6.16) in the matrix form,

(2.6.17)

where

(2.6.18)

The matrix  is always nonsingular. Therefore, the matrix  is nonsingular if and
only if the controllability matrix  is nonsingular.

In summary, any given realization can be converted to the canonical
form , provided the controllability matrix is nonsingular.

2.7 SIMULTANEOUS CONTROLLABILITY AND 
OBSERVABILITY

The realization  is always controllable. On the other hand, the realization
 is always observable. Under what conditions are and
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32 Linear Systems: Optimal and Robust Control

 observable and controllable, respectively? To answer this question,
consider the following theorems (Kailath, 1980).

Theorem 1

A realization is both observable and controllable if and only if there are no common
factors between the numerator and the denominator of the transfer function.

Theorem 2

Observability and controllability properties are preserved under similarity
transformations.

Therefore, is guaranteed to be observable provided there are no
common factors between the numerator and the denominator of the transfer function.
Similarly,  is guaranteed to be controllable provided there are no common
factors between the numerator and the denominator of the transfer function. Fur-
thermore, if one can find one realization that is both observable and controllable,
all realizations are both observable and controllable. If there are no common factors
between numerator and denominator, any realization can be converted to either

 or .

2.7.1 OBSERVABILITY OF STATE SPACE REALIZATION USING 
METHOD I

Without any loss of generality, assume that . Therefore,

(2.7.1)

Let be the ith row of the identity matrix . Then, it can be easily shown (Kailath,
1980) that

; (2.7.2)

(2.7.3)

Consider

(2.7.4)

Then,

(2.7.5)

Because of (2.7.2),

{ , , }Ao o ob c

{ , , }Ac c cb c

{ , , }Ao o ob c

{ , , }Ac c cb c { , , }Ao o ob c

b0 0=

cc n nb b b= ⎡⎣ ⎤⎦−1 1. .

ei In

e ei c iA = +1 1 1≤ ≤ −i n

en c n nA a a a= − − −⎡⎣ ⎤⎦−1 1. .

b A b A b A b A b Ic c
n

c
n

n c n n( ) = + + + +− −
−1

1
2

2
1…

e e e e e1 1 1
1

2 1
2

1 1 1b A b A b A b A bc c
n

c
n

n c n( ) = + + + +− −
−… IIn

9217_book.fm  Page 32  Tuesday, December 19, 2006  10:44 AM



State Space Description of a Linear System 33

(2.7.6)

From (2.7.5) and (2.7.6),

(2.7.7)

From (2.7.2) and (2.7.7),

(2.7.8)

In a similar manner,

,…, (2.7.9)

Therefore, the observability matrix is

(2.7.10)

Note that  is a polynomial in . Therefore, it can easily be shown that

(2.7.11)

where  and p are the eigenvalue and the associated eigenvector of . In other
words, the eigenvalue and the associated eigenvector of  are and p,
respectively. From (2.7.4),

(2.7.12)
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yields

e e1 2Ac =

e e e

e e

1
2

2 3

1
1

A A

A

c c

c
n

n

= =

=−

�

e e e e e c1 1 2 1 1 2 1b A b b b bc n n n n c( ) = + + + + =− −…

e e e c2 1 1b A A b A b A A Ac c c c c c c( ) ( ) ( )= = =

e c3
2b A Ac c c( ) = e cn c c c

nb A A( ) = −1

Θc

c

c c

c c
n

n

A

A

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

−

c

c

c

e

e

e

.

.

.

.
1

1

2

⎡⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

= =b A I b A b Ac n c c( ) ( ) ( )

b Ac( ) Ac

b A bc( ) ( )p p= λ

λ Ac

b Ac( ) b( )λ

b b b bn n
n( ) ........λ λ λ= + + +− −

1
1

2
2

9217_book.fm  Page 33  Tuesday, December 19, 2006  10:44 AM



34 Linear Systems: Optimal and Robust Control

(2.7.13)

Therefore, the determinant of the observability matrix will be zero if and only if ,
an eigenvalue of , satisfies ; i.e.,  is also a zero of the transfer function.
In other words, the state space realization obtained using Method I is observable if
and only if all poles and zeros of the transfer function are distinct.

EXAMPLE 2.9

The transfer function (2.2.20) can be written as

(2.7.14)

where

(2.7.15)

It can be easily seen that  and , Equation 2.2.21 and Equation
2.2.22, correspond to the transfer function . Poles of  are 1, and

 whereas zeros are 0.618 and 1.618. In other words, there are no
common factors between the numerator and denominator. Therefore, any state space
realization is guaranteed to be both observable and controllable. As a result,

 will be observable, and  will be controllable.

EXAMPLE 2.10

From Figure 2.7,

(2.7.16)

FIGURE 2.7 A feedback system.
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, (2.7.17)

(2.7.18)

For the transfer function (2.7.16), Method I yields

(2.7.19)

(2.7.20)

And, for the transfer function (2.7.17),

(2.7.21)

Combining (2.7.19) and (2.7.21) and using (2.7.18) and (2.7.20), the state space
realization is obtained:

(2.7.22)

(2.7.23)

Controllability:

(2.7.24)

(2.7.25)

The realization is not controllable when  or .
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36 Linear Systems: Optimal and Robust Control

Observability:

(2.7.26)

(2.7.27)

The realization is not observable when .
Note that

(2.7.28)

When  or ,  or is a common factor between the numerator
and denominator of the transfer function (2.7.28), respectively. Therefore, a state
space realization cannot be both observable and controllable when  or .
Here, the realization is not controllable when , and is neither observable nor
controllable when .

2.8 MULTIINPUT/MULTIOUTPUT (MIMO) SYSTEMS

The transfer function matrix of a MIMO system is defined as

(2.8.1)

where  and  are  and  vectors, respectively.

and (2.8.2a,b)

Accordingly, the matrix  is of order . As an example, for a 2-input/2-output
system,
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State Space Description of a Linear System 37

Taking the least common multiple of denominators of elements of the matrix ,

(2.8.4)

where

(2.8.5)

The elements of the matrix  are polynomials in s. Hence, will be called
a polynomial matrix. It can also be expressed as follows:

(2.8.6)

where

; ; ; (2.8.7)

In general, a  transfer function matrix G(s) is represented as

(2.8.8)

where

(2.8.9)

and
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, ,…,  are  matrices.
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38 Linear Systems: Optimal and Robust Control

(2.8.12)

2. A vector of polynomials is called a polynomial vector. The degree of a
polynomial vector equals the highest degree of all the entries of the vector.
For example, the polynomial vector

(2.8.13)

has degree = 4.

Lemma

If G(s) is a strictly proper (proper) transfer function matrix and

(2.8.14)

then every column (Kailath, 1980) of N(s) has degree strictly less than (less than or
equal to) that of the corresponding column of D(s).

Definition: Column-Reduced Matrix

Let

 the degree of ith column of m × m matrix D(s) (2.8.15)

Then, it can be easily seen that

(2.8.16)

Inequality holds when there are cancellations of terms in the expansion of det D(s).
A matrix D(s) for which the equality sign holds is called a column reduced matrix
(Kailath, 1980).
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State Space Description of a Linear System 39

Here,

 and (2.8.18)

and

(2.8.19)

In other words,

(2.8.20)

Therefore, the matrix D(s) is not column reduced.
In general, a polynomial matrix D(s) can be expressed (Kailath, 1980) as

(2.8.21)

where

(2.8.22)

the highest-column-degree coefficient matrix,

or the leading (column) coefficient matrix of D(s) (2.8.23)

remaining terms (2.8.24)

It can be shown that
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When ,
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40 Linear Systems: Optimal and Robust Control

Facts

A nonsingular polynomial matrix is column reduced if and only if its leading
(column) coefficient matrix is nonsingular (Kailath, 1980).

If D(s) is column reduced, then  is strictly proper (proper)
if and only if (Kailath, 1980) each column of N(s) has degree less than
(less than or equal to) the degree of the corresponding column of D(s).

2.9 STATE SPACE REALIZATIONS OF A TRANSFER 
FUNCTION MATRIX

Two methods, similar to those for a SISO system (Section 2.2), will be presented.

METHOD I

Define

(2.9.1)

Using Equation 2.8.9,

(2.9.2)

In time-domain,

(2.9.3)

Define

; ,…, (2.9.4)

Equation 2.9.3 and Equation 2.9.4 can be written as

(2.9.5)
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In matrix form,

(2.9.6)

From (2.8.1), (2.8.8), and (2.9.1),

(2.9.7)

or

(2.9.8)

In time-domain,

(2.9.9)

Using the definition (2.9.4),
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Equation 2.9.6 and Equation 2.9.10 comprise a state space realization:

(2.9.11)
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(2.9.12)

; (2.9.13a,b)

The state vector  is described as

(2.9.14)

As the dimension of each of the block elements  is mx1,

Number of states, n = mr (2.9.15)
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(2.9.18)

This equation can be written as

(2.9.19)

On the basis of Equation 2.9.19, the simulation diagram is constructed as shown in
Figure 2.8. Defining outputs of integrators as p-dimensional state variable vec-
tors , the following state space model is obtained:

(2.9.20)

and

(2.9.21)

Equation 2.9.20 and Equation 2.9.21 comprise the state space model:

FIGURE 2.8 MIMO analog computer simulation diagram (Method II).
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44 Linear Systems: Optimal and Robust Control

(2.9.22)

where

(2.9.23)

; (2.9.24a,b)

The state vector  is described as

(2.9.25)

As the dimension of each of the block elements  is px1,

the number of states, n = pr (2.9.26)
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(2.10.1)

is of full rank.

Definition 2

A multioutput state space realization is observable if and only if the observability
matrix

(2.10.2)

is of full rank.

2.10.1 CONTROLLABILITY AND OBSERVABILITY OF METHODS I AND 
II REALIZATIONS

Method I Realization

(2.10.3)

where n = mr. The dimension of the matrix C is n × mn. Using (2.10.3), (2.9.12),
and (2.9.13a),

(2.10.4)

It is obvious that the mr × mr submatrix shown in (2.10.4) is nonsingular. Hence,
the matrix C is of full rank, i.e.,

Rank (C) = n (2.10.5)
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46 Linear Systems: Optimal and Robust Control

Hence, the realization obtained using Method I is guaranteed to be controllable.
However, it need not be always observable.

Method II Realization

From (2.10.2),

(2.10.6)

where n = pr. The dimension of the matrix  is n × pn. Using (2.10.6), (2.9.23),
and (2.9.24a),

(2.10.7)

It is obvious that the pr × pr submatrix shown in (2.10.7) is nonsingular. Hence, the
matrix is of full rank, i.e.,

Rank(Θ) = n (2.10.8)

Hence, the realization obtained using Method II is guaranteed to be observable.
However, it need not be always controllable.

2.11 MATRIX-FRACTION DESCRIPTION (MFD)

Given a transfer function matrix, two methods for obtaining state space realizations
have been obtained in a manner analogous to what we did for SISO systems. The
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state space realization from Method I is always controllable, whereas the state space
realization from Method II is always observable. Furthermore, the number of states
from the two methods is different when the number of outputs does not equal number
of inputs. As a result, following questions arise:

1. When will a state space realization be both controllable and observable?
2. How do we obtain a state space realization with the minimum number of

states?

To answer these questions in a general way, the MFD of a transfer function is
introduced. Equation 2.8.8 can also be written as

(2.11.1)

where

and (2.11.2)

Alternatively,

(2.11.3)

where

and (2.11.4)

Equation 2.11.1 and Equation 2.11.3 are known as right and left MFD, respectively.
Any transfer function matrix can be represented by either right or left MFD. It should
be noted that  and can be viewed as denominator polynomial matrices.
Similarly,  and can be viewed as numerator polynomial matrices.

2.11.1 DEGREE OF A SQUARE POLYNOMIAL MATRIX AND GREATEST 
COMMON RIGHT DIVISOR (GCRD)

The degree of a square polynomial matrix is equal to the degree of the determinant
of the polynomial matrix (Kailath, 1980).
Therefore,

deg  = deg det = mr (2.11.5)

and

G s N s D sR R( ) ( ) ( )= −1

N s N sR ( ) ( )= D s d s IR m( ) ( )=

G s D s N sL L( ) ( ) ( )= −1

N s N sL ( ) ( )= D s d s IL p( ) ( )=

D sR ( ) D sL ( )
N sR ( ) N sL ( )

D sR ( ) D sR ( )

9217_book.fm  Page 47  Tuesday, December 19, 2006  10:44 AM



48 Linear Systems: Optimal and Robust Control

deg  = deg det = pr (2.11.6)

It is interesting to note that the number of states in Method I realization equals
deg , whereas the number of states in Method II realization equals deg .
In fact, Method I and Method II are connected to the right and left MFD, respectively.
Furthermore, having expressed the transfer function matrix as a right MFD, a state
space realization can be developed to have the number of states equal deg .
The same result also holds for left MFD.

For the transfer function matrix in Equation 2.8.3, a right MFD is constructed
using (2.11.2):

(2.11.7)

where

deg  = 8

Another right MFD can also be constructed:

(2.11.8)

where

deg  = 4

The diagonal elements of  are obtained by taking the least common multiple
of each column separately. It can be easily verified that

and (2.11.9)
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(2.11.10)

Here, W(s) is a nonsingular polynomial matrix, but  is not a polynomial
matrix. When  is postmultiplied with , another polynomial matrix

 is obtained. Therefore, the polynomial matrix W(s) is called a right divisor
of . Using this definition, the polynomial matrix W(s) is also a right divisor
of . In other words, W(s) is a common right divisor (crd) of both
and  From (2.11.9),

(2.11.11)

From the procedure of matrix multiplication and the definition of the determinant,

deg = deg  = deg D2(s) + deg W(s) (2.11.12)

Thus, finding a crd of numerator and denominator polynomial matrices, the degree
of the denominator polynomial matrix (hence, the number of states) can be decreased
by the degree of the crd. Therefore, the minimal order of state space realization will
be obtained (Kailath, 1980) by finding the greatest common right divisor (gcrd).
If the degree of a gcrd is zero, the number of states cannot be reduced any further.
A polynomial square matrix is said to be unimodular if its degree equals zero. A
polynomial matrix is unimodular if and only if its inverse is also a polynomial matrix.

Nonuniqueness of a gcrd

Let be a gcrd of N(s) and D(s). Then,

(2.11.13)

(2.11.14)

where  and  are polynomial matrices. It can be verified that is
also a gcrd where is any unimodular matrix.

Definitions

1. Two polynomial matrices N(s) and D(s) with the same number of columns
will be said to be relatively right prime (or right coprime) if they only
have unimodular crd.

2. An MFD will be said to be irreducible if N(s) and D(s)
are right coprime.
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50 Linear Systems: Optimal and Robust Control

2.11.2 ELEMENTARY ROW AND COLUMN OPERATIONS

A general procedure for obtaining a gcrd is based on elementary operations on
polynomial matrices defined as follows (Kailath, 1980; Rugh, 1993):

1. Interchange of any two rows or columns
2. Addition to any row (column) by a polynomial multiple of any other

column (row)
3. Multiplying any row or column by any nonzero real or complex number

These elementary operations are represented by elementary matrices. Postmultipli-
cation of a polynomial matrix by an elementary matrix results in elementary row
operation, whereas premultiplication results in elementary column operation. As an
example, consider the following polynomial matrix:

(2.11.15)

Then, various elementary operations are described as follows:

Interchange of first and second rows:

(2.11.16)

Interchange of first and second columns:

(2.11.17)

Addition of s times first row to the third row:

(2.11.18)
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Addition of s times first column to the third column:

(2.11.19)

Scaling of first row by 2:

(2.11.20)

Scaling of first column by 2:

(2.11.21)

All the matrices by which P(s) is pre- or postmultiplied are elementary matrices that
have the following properties:

1. The inverse of an elementary matrix is also an elementary matrix.
2. Determinants of elementary matrices are nonzero constants and hence

independent of s. In other words, elementary matrices are unimodular
(see Section 2.11.1).

2.11.3 DETERMINATION OF A gcrd

Given m × m and p × m polynomial matrices D(s) and N(s), find elementary row
operations or equivalently a unimodular matrix U(s) such that at least the last p rows
on the right-hand side of following equation are zero, i.e.,

(2.11.22)

Then the square matrix R(s) is a gcrd (Kailath, 1980).
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(2.11.23)

and

(2.11.24)

Solution

(2.11.25)

Step I: Subtract fourth row from the first row.

(2.11.26)

(2.11.27)

Step II: Divide the fourth row by –1/2.
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(2.11.28)

(2.11.29)

Step III: Subtract (s + 4) times the fourth row from the second row.

(2.11.30)

(2.11.31)

Step IV: Subtract 0.5 times the first row from 0.5 times the third row.

(2.11.32)
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(2.11.33)

Step V: Subtract (s + 3) times the third row from the first row.

(2.11.34)

(2.11.35)

Step VI: Replace fifth row by adding (s + 3)/3 times the third row and –1/3 times
the fifth row.

(2.11.36)

(2.11.37)
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Step VII: Add (s + 4)/3 times the fourth row and to the fifth row.

(2.11.38)

(2.11.39)

Step VIII: Subtract the third row from the fifth row.

(2.11.40)

(2.11.41)

Step IX: Replace fifth row by the fourth row — 3/4 times the fifth row.

(2.11.42)
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(2.11.43)

Step X: Subtract 2(s + 5)/3 times the fifth row from the third row.

(2.11.44)

(2.11.45)

Step XI: Add 2/3 times the fourth row to the third row.

(2.11.46)

(2.11.47)

Step XII: Interchanging rows,
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(2.11.48)

(2.11.49)

In summary, with reference to Equation 2.11.22,

(2.11.50)

and

(2.11.51)

The square matrix R(s) is a gcrd of N(s) and D(s).

2.12 MFD OF A TRANSFER FUNCTION MATRIX 
FOR THE MINIMAL ORDER OF A STATE 
SPACE REALIZATION

Let a transfer function be expressed as

(2.12.1)

First, find , a gcrd of  and . Then, obtain the following matrices:

(2.12.2)

and

(2.12.3)

U s

s
12

0 0

0 0

0 0

0 5

3 2 1

3 2 1

( )

( )

/

/

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
00 5

0 0

0 0

0 0

( )s +
⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

U s12

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

( ) =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥
⎥
⎥
⎥

U s U s U s U s U s( ) ( ) ( ) ( ) ( )= 12 11 2 1…

R s
s

( )
/

( )
=

+
⎡

⎣
⎢

⎤

⎦
⎥

3 2 1

0 5

G s N s D s( ) ( ) ( )= −1

W sg ( ) N s( ) D s( )

N s N s W sg( ) ( ) ( )= −1

D s D s W sg( ) ( ) ( )= −1

9217_book.fm  Page 57  Tuesday, December 19, 2006  10:44 AM



58 Linear Systems: Optimal and Robust Control

The transfer function matrix can also be written as

(2.12.4)

where

deg = deg D(s) deg (2.12.5)

Now, a state space realization based on Equation 2.12.4 will have a minimum number
of states (Kailath, 1980) equal to deg .

EXAMPLE 2.13

Let the transfer function matrix be defined as

(2.12.6)

With respect to (2.12.1), N(s) and D(s) are given by (2.11.23) and (2.11.24). From
(2.11.51), a gcrd of N(s) and D(s) is
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Therefore,
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(2.12.9)

Because deg = 3, the minimal number of states equals 3.

2.13 CONTROLLER FORM REALIZATION FROM A 
RIGHT MFD

2.13.1 STATE SPACE REALIZATION

Consider a strictly proper right MFD (Kailath, 1980)
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(2.13.5)

From (2.8.21) and (2.13.2a),

(2.13.6)

Assuming that the matrix D(s) is column reduced,
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(2.13.12)

In this case,

(2.13.13)

Define the state vector  as

(2.13.14)

Then, Equations 2.13.13 can be written as
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Utilizing (2.13.9) and (2.13.12), it can be easily seen that

(2.13.18)

Therefore, from (2.13.7) and (2.13.10),

(2.13.19)

Substituting (2.13.19) into (2.3.15), the state equations are obtained:

(2.13.20)
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From (2.13.5), (2.13.14), and (2.13.18), output equations are given as
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where
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EXAMPLE 2.14

Find the minimal state space realization of transfer function matrix G(s),
Equation 2.12.6.

(2.13.25)
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(2.13.26)

Note that H(s) is a strictly proper MFD and can be expressed as

(2.13.27)

where

(2.13.28)

and

(2.13.29)

A gcrd of  and is again found as

(2.13.30)

Then,

(2.13.31)

and
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(2.13.32)

For  in Equation 2.13.32,  and . And,

and (2.13.32)

, (2.13.33)

For  in Equation 2.13.31,

(2.13.34)

From (2.13.21), (2.13.22), and (2.13.24),

and (2.13.35)

2.13.2 SIMILARITY TRANSFORMATION TO CONVERT ANY 
STATE SPACE REALIZATION {A,B,C} TO THE CONTROLLER 
FORM REALIZATION

Given any state space realization {A,B,C}, the objective is to find the nonsingular
matrix T such that

and (2.13.36)

where the structures of  and  match those of  and  given by Equation
2.13.21 and Equation 2.3.22, respectively.
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First, consider the controllability matrix

(2.13.37)

The order of the matrix is n × nm. Out of these nm column vectors of the matrix,
only n column vectors are independent. To find these n independent column vectors,
Table 2.1 is created for the state equations with three inputs and six states as an
example. The search for independent columns is conducted (Kailath, 1980) row-
wise from left to right, and a sign “X” is introduced to indicate that it is independent
of all the previous vectors that have been found to be independent. The sign “0” is
introduced to indicate that the associated vector is not independent of previously
found independent columns. There is no need to consider vectors in the table column
below the vector with the “0” sign because they are guaranteed to be dependent on
previously found independent vectors due to the Cayley–Hamilton theorem. Next,
each vector with the sign “0” is expanded in terms of independent vectors, i.e.,

; i = 1, 2, and 3 (2.13.38)

where  and  are coefficients to be determined. Using the matrix notation,
Equation 2.13.38 can be written as

(2.13.39)

where

(2.13.40)

Solving (2.13.39),

TABLE 2.1
Search for Independent Vectors

b1 X b2 X b3 X

Ab1 X Ab2 X Ab3 X

A2b1 0 A2b2 0 A2b3 0

A3b1 A3b2 A3b3

A4b1 A4b2 A4b3

A5b1 A5b2 A5b3

C B AB A B A Bn= −[ . . ]2 1

A Ai ji

j

j ji

j

j
2

1

3

1

3

b b b= +
= =

∑ ∑α β

α j β j

C AI i i i i i i
T

i[ ]α α α β β β1 2 3 1 2 3
2= b

C A A AI = ⎡⎣ ⎤⎦b b b b b b1 2 3 1 2 3
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(2.13.41)

Then, for each vector with the sign “0”, terms having A are collected on the left
side and the matrix A is factored out as follows:

(2.13.42)

where

(2.13.43)

Again, for , terms having A are collected on the left side and the matrix A is
factored out as follows:

(2.13.44)

where

(2.13.45)

Lastly, the transformation matrix T is defined as

(2.13.46)

2.14 POLES AND ZEROS OF A MIMO TRANSFER 
FUNCTION MATRIX

2.14.1 SMITH FORM

For any  polynomial matrix P(s), unimodular matrices U(s) and V(s) can be
found (Kailath, 1980) such that

(2.14.1)

where

[ ]α α α β β β1 2 3 1 2 3
1 2

i i i i i
T

I ii C A= − b

A i ji

j

jt b2

1

3

=
=

∑α

t b bi i ji

j

jA2

1

3

= −
=

∑[ ]β

ti2

A i i ji

j

jt t b1 2

1

3

= +
=

∑β

t bi i1 =

T = [ ]t t t t t t11 12 21 22 31 32

pxm

U s P s V s s( ) ( ) ( ) ( )= Λ
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(2.14.2)

r is the normal rank of P(s), and ;  are unique monic polynomials
obeying the division property

; (2.14.3)

The  polynomial matrix  is known as the Smith form of P(s). The notation
(2.14.3) indicates that the polynomial  is divisible by the polynomial .

2.14.2 SMITH–MCMILLAN FORM

A transfer function matrix can be written (Kailath, 1980) as

(2.14.4)

where is the monic least common multiple of the denominators of elements
of . From (2.14.4),

(2.14.5)

Expressing in the Smith form (2.14.1),

(2.14.6)

where  and  are unimodular matrices. From (2.14.5) and (2.14.6),

(2.14.7)

As the inverse of a unimodular matrix is also a unimodular matrix, any transfer
function matrix can be converted to the form on the right-hand side of (2.14.7) via
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λ λi is s( ) ( )+1 i r= −1 2 1, , ,…
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elementary row and column operations. Now, from (2.14.2), nonzero diagonal ele-
ments of the matrix on the right-hand side of (2.14.7) will be

; (2.14.8)

where r is the normal rank of .
Eliminating common factors between  and ,

(2.14.9)

There are no common factors between and . Define

(2.14.10)

Then, from (2.14.7) and (2.14.10),

(2.14.11)

In other words, a transfer function matrix  can be converted to have the structure
of the matrix via elementary row and column operations. Polynomials in
satisfy the following properties:

; (2.14.12)

; (2.14.13)

(2.14.14)
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Notations (2.14.12) and (2.14.13) indicate that polynomials and  are
divisible by polynomials  and , respectively.

2.14.3 POLES AND ZEROS VIA SMITH–MCMILLAN FORM

Poles of a multivariable transfer function are roots of denominator polynomi-
als  in the Smith–McMillan form , Equation 2.4.10. Similarly, zeros of
a multivariable transfer function are roots of numerator polynomials  in
the Smith–McMillan form .

EXAMPLE 2.15

Find poles and zeros of the following transfer function matrix:

(2.14.15)

where

(2.14.16)

Using elementary operations, P(s) will be first converted to Smith form.

Step I: Divide the first row of P(s) by 1/2:

(2.14.17)

where

(2.14.18)

Step II: Subtract  times the first row from the second row:

(2.14.19)

where
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(2.14.20)

Step III: Subtract  times the first column from the second column:

(2.14.21)

where

(2.14.22)

Step IV: Multiplying the second column by –2,

(2.14.23)

where

(2.14.24)

Now, it can be verified that Equation 2.14.23 has the Smith form (2.14.1), i.e.,

(2.14.25)

(2.14.26)

and

(2.14.27)

Therefore, from (2.14.15) and (2.14.25),

U s
s

2 2

1 0

1 1
( )

( )
=

− +
⎡

⎣
⎢

⎤

⎦
⎥

0 5 1 2. ( )s +

U s U s P s V s
s

2 1 3 4

1 0

0 2 0 5 1
( ) ( ) ( ) ( )

. ( )
=

− − +
⎡

⎣
⎢

⎤

⎦
⎥

V s
s

3

21 0 5 1

0 1
( )

. ( )= − +⎡

⎣
⎢

⎤

⎦
⎥

U s U s P s V s V s
s

2 1 3 4 4

1 0

0 4 1
( ) ( ) ( ) ( ) ( )

( )
=

+ +
⎡

⎣
⎢

⎤

⎦
⎥

V s4

1 0

0 2
( ) =

−
⎡

⎣
⎢

⎤

⎦
⎥

U s P s V s
s

( ) ( ) ( )
( )

=
+ +

⎡

⎣
⎢

⎤

⎦
⎥

1 0

0 4 1 4

U s U s U s
s

( ) ( ) ( )
.

. ( )
= =

− +
⎡

⎣
⎢

⎤

⎦
⎥2 1 2

0 5 0

0 5 1 1

V s V s V s
s

( ) ( ) ( )
( )= = +

−

⎡

⎣
⎢

⎤

⎦
⎥3 4

21 1

0 2

9217_book.fm  Page 70  Tuesday, December 19, 2006  10:44 AM



State Space Description of a Linear System 71

(2.14.28)

As ,

(2.14.29)

Equation 2.14.29 has the Smith–McMillan form. Therefore, poles are , which
are the roots of . Further, zeros are , which are the roots
of .

2.14.4 POLES AND ZEROS VIA AN IRREDUCIBLE MFD

Consider the following irreducible MFD of the multivariable transfer function :

(2.14.30)

Poles of are roots of . Zeros of  are values of s for
which  is not of full rank.

EXAMPLE 2.16

For the transfer function matrix (2.12.6), the irreducible MFD is represented by

(2.14.31)

where  and  are represented by (2.12.8) and (2.12.9), respectively. Now,

(2.14.32)

Therefore, poles are located at –3, –4, and –5. There is no s for which the rank
of  is less than 2. Therefore, there is no zero.

2.15 STABILITY ANALYSIS

The stability of a linear and time-invariant system is not influenced by external inputs
u(t). Therefore, u(t) will be set to zero, and the following initial-value problem is
considered:
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; (2.15.1)

The system (2.15.1) is described to be stable when

 as (2.15.2)

This property is also referred to as asymptotic stability. The condition (2.15.2) is
satisfied when all the eigenvalues of A have negative (nonzero) real parts, i.e., they
are located in the left half (excluding the imaginary axis) of the complex plane.

Define a positive definite (Appendix B) function V(t) as

where (2.15.3)

Differentiating (2.15.3) with respect to time,

(2.15.4)

Substituting (2.15.1) into (2.15.4),

(2.15.5)

For a stable system,  is a negative definite function. Therefore,

(2.15.6)

where .

Equation 2.15.6 is known as the Lyapunov equation, often written as

(2.15.7)

An Important Property of the Lyapunov Equation

When , and all the eigenvalues of A have negative (nonzero) real parts,
the Lyapunov equation 2.15.7 has a unique solution for P, satisfying  as
follows (Kailath, 1980):

(2.15.8)

�x x= A t( ) x( )0 0≠

x( )t → 0 t → ∞

V t t P tT( ) ( ) ( )= x x P PT= > 0

� � �V t t P t t P tT T( ) ( ) ( ) ( ) ( )= +x x x x

�V t t A P PA tT T( ) ( )[ ] ( )= +x x

�V t( )

A P PA QT + = −

Q QT= > 0

A P PA QT + + = 0

Q QT= > 0
P PT= > 0

P e Qe dtA t AtT

=
∞

∫
0
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EXERCISE PROBLEMS

P2.1 Consider the following transfer function:

Develop state space realizations using Methods I and II. Write state space
equations and draw the block diagram for each method.

P2.2 Using the properties of the determinant, find the characteristic polynomial
of the following matrix:

P2.3
a. If , show that .
b. If there are n independent eigenvectors for the n × n matrix A, develop

an algorithm to compute using the result in part (a).
P2.4 Matlab Exercise

Consider the system shown in the Figure P.2.4 where

a. Develop state space models for both open-loop and closed-loop systems.

FIGURE P.2.4 A Feedback System.
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b. Examine controllability and observability of these state space models.
c. Determine the stability of open- and closed-loop systems.

P2.5 Consider a single input/single output system with the following transfer
function:

a. Construct a state space realization {A, b, c} that is controllable for all
values of . You should also show the corresponding simulation diagram.

b. Find the values of  for which the state space realization developed
in part (a) is not observable.

P2.6 Consider a linear system described by the following state space equation:

Given y(0) = 0, , and u(0) = 0.

a. Determine  and .
b. Determine the response  and  via the matrix exponential

when u(t) =1 for t > 0.
P2.7 Consider a single input/single output system with the following transfer

function:

a. Construct a state space realization {A, b, c} that is controllable. You
should also show the corresponding simulation diagram.

b. Answer the following questions:
i. Will it be possible to construct a realization that is both controllable

and observable?
ii. Will it be possible to construct a realization that is neither control-

lable nor observable?

s

s s s

+
( + 1)( + 2)( + 3)

α

α
α

dx

dt
x1

2=

dx
dt

x u2
1= − +

y t x t x t( ) ( ) ( )= +1 2

dy

dt
( )0 1=

x1 0( ) x2 0( )
x t1( ) x t2 ( )

s

s s s

+
+ + +

2
1 2 3( )( )( )
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P2.8 Consider the following system:

where

, b = , and 

Find u(t), , such that .
P2.9 Consider the state space realization using Method II. Show that this

realization is controllable, provided there is no common factor between
numerator and denominator of the transfer function.

P2.10 Consider the following state space realization:

i. Find the transfer function of the system.
ii. Determine the observability and controllability of the state space real-

ization.

iii.Let y(0) = 1, , and u(0) =0. Find x(0).

iv. Find .
v. Solve the state equations when x(0) = 0 and u(t) = 1 for .

P2.11 Consider the following transfer function matrix:

H(s) =

a. Develop the state space realization using Method I. Determine its
controllability and observability.

b. Develop the state space realization using Method II. Determine its
controllability and observability.
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P2.12 Consider the problem of the control of a tire-tread extrusion line:

a. Find the controller-form state space realization using a suitable MFD.
b. Determine controllability and observability of your state space realiza-

tion and discuss your results.
c. Find poles and zeros of the system.

P2.13 Consider a system with the following transfer function matrix:

G(s) =

i. Find an irreducible right MFD.
ii. What is the order of a minimal realization?
iii.Find the poles and transmission zeros.

P2.14 Consider the linearized dynamics of a spark ignition engine (Abate et al.,
1994):

where  = engine speed,  = relative air pressure of mani-
fold,  = duty cycle of the throttle valve, and  = spark advance
position. The polynomial d(s) is defined as follows:

Parameters J (mass-moment of inertia) and  are provided in Table
2.P.1 for three different operating conditions I, II, and III.
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a. Develop a minimum-order state space realization.
b. Find poles and zeros of the transfer function matrix for each operating

condition.

TABLE 2.P1
Parameters of a Spark Engine

J α1 α2 α3 α4 α5 α6 α7

I 1 2.1608 0.1027 0.0357 0.5607 2.0183 4.4962 2.0283
II 1 3.4329 0.1627 0.1139 0.2539 1.7993 2.0247 1.8201
III 10 2.1608 0.1027 0.0357 0.5607 1.7993 4.4962 1.8201
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79

 

3

 

State Feedback Control 
and Optimization

 

First, the design of a full state feedback control system is presented for a single
input/single output (SISO) system along with its impact on poles and zeros of the
closed-loop system. Next, the full state feedback control system is presented for a
multiinput/multioutput (MIMO) system. The necessary conditions for the optimal
control are then derived and used to develop the linear quadratic (LQ) control theory
and the minimum time control.

 

3.1 STATE VARIABLE FEEDBACK FOR A SINGLE 
INPUT SYSTEM

 

Consider the state space realization ; i.e.,

(3.1.1)

(3.1.2)

The open-loop transfer function is given as

(3.1.3)

The state variable feedback system is shown in Figure 3.1, in which

(3.1.4)

where  is the external input and  is the state feedback vector. Using (3.1.1)
and (3.1.4),

(3.1.5)
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Equation 3.1.5 represents the state dynamics of the closed-loop system. The
transfer function of the closed-loop system is

(3.1.6)

It is desirable to study the effects of state feedback on poles and zeros of the
closed-loop transfer function.
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It will be shown here that poles of the closed-loop transfer function can be located
anywhere in the 

 

s

 

-plane by the full state feedback, provided the state space realization
is controllable. In other words, it is always possible to find the state feedback
vector  corresponding to any desired locations of closed-loop poles, provided the
state space realization is controllable.

Let

(3.1.7)

Hence, the characteristic polynomial of the open-loop system is

(3.1.8)

Let the desired characteristic polynomial of the closed-loop system be

(3.1.9)

where , , …,  are arbitrary real numbers.

 

FIGURE 3.1

 

A state feedback control system.
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Now,

(3.1.10)

Using the identity , where  and  are
and  matrices, respectively, Equation 3.1.10 can be written (Kailath, 1980) as

(3.1.11)

or

(3.1.12)

Using Equation 2.3.4 and equating coefficients of , , …,  on both
sides, we obtain

(3.1.13)

Representing the system of equations in matrix form,

(3.1.14)

where 

 

C

 

 is the controllability matrix, 

(3.1.15)

(3.1.16)

and  is the upper triangular Toeplitz matrix defined as 
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(3.1.17)

It can be seen that  is always nonsingular. Hence, for any choice of ,  can
be found, provided is nonsingular (or the system is controllable). The result is

(3.1.18)

This is also known as the Bass–Gura formula for computing .
The fact that the eigenvalues can be arbitrarily relocated by state feedback is

known as 

 

modal controllability

 

. This can be understood by realizing that states of
a system possess all the information about system dynamics. Hence, feeding back
all the states is equivalent to using all the information in deciding the control input. 

Another important point to note is that the order of the closed-loop system is
the same as that of the open-loop system, which is not always true for the output
feedback via a compensator.

 

E

 

XAMPLE

 

 3.1: B

 

ALANCING

 

 

 

A

 

 P

 

OINTER

 

Consider the balancing of a pointer (Kailath, 1980) on your fingertip (Figure 3.2).
If you try to do it yourself, you will find that the pointer will fall down when the
fingertip does not move. Furthermore, the fingertip must move to balance the
pointer. In fact, the acceleration of the fingertip serves as the control input. To
develop a mathematical model, the following assumptions are made (Kailath,
1980):

1. The mass of the pointer is concentrated at the top end.
2. The angle 

 

φ

 

 is small.
3. The force 

 

F 

 

from the fingertip is applied only along the direction of the
pointer.

 

FIGURE 3.2

 

A pointer on the fingertip.
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Applying Newton’s second law of motion,

(3.1.19)

where  is the 

 

x

 

-coordinate of the center of mass. For a small 

 

φ

 

, the acceleration
of the center of mass along the 

 

y

 

-direction can be neglected. Therefore,

(3.1.20)

From (3.1.19) and (3.1.20),

(3.1.21)

Now,

(3.1.22)

where  is the 

 

x

 

-coordinate of the fingertip. Substituting (3.1.22) into (3.1.21),

(3.1.23)

where

(3.1.24)

The variable , which is proportional to the fingertip acceleration , will be
treated as the control input. The state variable equations are described as

(3.1.25)

where

and (3.1.26)

Furthermore,
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and (3.1.27)

Open-Loop Stability

(3.1.28)

Open-loop eigenvalues are  and . Hence, the open-loop system is unstable

which is exhibited by the fact that the pointer falls down if the fingertip does not
have any acceleration, i.e., u(t) = 0. Furthermore, if L is smaller, the magnitude of

the unstable eigenvalue  is larger. This matches with the fact that it is harder

to balance a small pointer. Try it.

Controllability

The controllability matrix is

(3.1.29)

The matrix C is nonsingular. Hence, the state space realization is controllable.

State Feedback Control

(3.1.30)

(3.1.31)

(3.1.32)
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Let the desired closed-loop poles be –1 and –2. In this case, the desired closed-
loop characteristic equation will be

(3.1.33)

Matching the coefficients of polynomials,

(3.1.34)

(3.1.35)

Comments

1. To determine state feedback vector, the Bass–Gura formula (3.1.18) can
also be used. But for a low-order problem, it is more straightforward to
directly match the coefficients of polynomials. The Bass–Gura formula
is extremely useful to solve higher order problems via a computer software
such as MATLAB®.

2. The control input is . Its implementation requires mea-
surements of  and , and real-time computation of . When a
human being tries to balance a pointer, one can say that the eyes are
estimating the values of φ and , and the brain is deciding on a suitable
control input and instructing the motor to move the fingertip with proper
acceleration.

3.1.2 EFFECTS OF STATE FEEDBACK ON ZEROS OF THE CLOSED-LOOP 
TRANSFER FUNCTION

If the state space realization is controllable, it can be converted to the controller
canonical form  described in Chapter 2, Section 2.2. Under the state
feedback, the system matrix of the closed-loop system is given as

(3.1.36)

Hence, the realization  remains in the controller canonical
form. Therefore, the transfer function of the closed-loop system is given as
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(3.1.37)

This expression clearly indicates that the numerator polynomial of the transfer
function remains unchanged. In other words, the state feedback has no influence on
the zeros of the transfer function (Kailath, 1980).

EXAMPLE 3.2: BICYCLE DYNAMICS

Consider a simple model of a bicycle (Lowell and McKell, 1982; Astrom et al., 2005),
in which the rider, wheels, front-fork assembly, and the rear frame are treated as a
single rigid body as shown by the plane in Figure 3.3. The total mass is m and the
location of the center of gravity (cg) is shown in the figure. Assume that the forward
velocity v of the bicycle is a constant. The small angle θ is the perturbation from the
bicycle’s upright position. As the weight mg will further try to increase this angle, the
rider turns the handlebar by a small angle α, so that the bicycle begins to travel in a
circle with the instant radius r and the instant center of rotation O. This circular travel
is represented by the angle φ about the vertical axis passing through the rear-wheel
contact point. Therefore, the acceleration of the cg in the direction normal to the plane is 

(3.1.38)

where  is the centripetal acceleration, and b is the distance of cg from the vertical
axis passing through the rear-wheel contact point. Applying Newton’s second law,

(3.1.39)

where  is the component of the weight along the direction normal to the frame
for small θ.

FIGURE 3.3 Fundamentals of bicycle dynamics.
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From the definition of the instantaneous center for rotation:

and (3.1.40a,b)

Substituting (3.1.40) into (3.1.39), the input/output equation is obtained:

(3.1.41)

where angles  and are the output and the input, respectively. Taking the
Laplace transform of (3.1.41) with zero initial conditions:

(3.1.42)

where

; ; ; (3.1.43)

Now, a state space model can be constructed via either Method I or Method II
in Chapter 2, Section 2.2.

There are two poles of the system: 

and (3.1.44)

And there is one zero:

(3.1.45)

The open-loop system is unstable, and has a zero in the left half plane. The system
can be stabilized by a simple feedback law:

(3.1.46)

Substituting (3.1.46) into (3.1.39), the closed-loop system is
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(3.1.47)

For stability,

(3.1.48)

Note that the control law (3.1.46) has to be implemented by the rider using his
or her eye, brain, or hand. Equation 3.1.48 indicates that the lower bound of  is
smaller at a higher velocity. In fact, the damping is also higher at a higher velocity,
Equation 3.1.47. Therefore, the rider finds it easier to stabilize the bicycle at a
higher velocity.

State Feedback Control

Using Method I (Chapter 2, Section 2.2):

(3.1.49)

(3.1.50)

where

; and (3.1.51)

and

(3.1.52)

Let the desired characteristic polynomial be

(3.1.53)

Matching coefficients of polynomials in (3.1.52) and (3.1.53),

(3.1.54)
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and

(3.1.55)

And, the closed-loop transfer function is

(3.1.56)

Note that the zero of the transfer function remains unchanged, whereas the poles
have been located arbitrarily via state feedback control:

(3.1.57)

where  is the reference input, which will be zero in this case. Compared to the
state feedback law (3.1.57), the proportional controller (3.1.46) is simpler and hence
easier to be implemented by a rider. This may explain why a person can ride a
bicycle for hours, whereas he or she can balance a pointer on a finger only for a
few minutes as full state feedback (Equation 3.1.30) is necessary for stability. 

3.1.3 STATE FEEDBACK CONTROL FOR A NONZERO AND 
CONSTANT OUTPUT

Let the external input v(t) be a constant . From Equation 3.1.5, the steady state
value of the state vector  is given by 

(3.1.58)

or

(3.1.59)

Hence, the steady state output is given as

(3.1.60)

If the desired value of the output is , the corresponding command input  is
obtained by setting  and solving (3.1.60). The result is

 provided (3.1.61) 
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Now, let us examine the conditions under which . Substituting
s = 0 in Equation 3.1.6, it is clear that  if there is no zero of the
closed-loop transfer function at s = 0. As locations of zeros remain unchanged under
state feedback, the command input for the nonzero set point can be found, provided
the open-loop transfer function does not have any zero located at s = 0 (Kailath, 1980).

EXAMPLE 3.3: SPRING-MASS SYSTEM

For the spring-mass-damper system (Chapter 2, Figure 2.4), state equations are
defined by (2.5.16) and (2.5.17).

Case I: Position Output

If the position of the mass, x, is measured by a sensor,

(3.1.62)

where

(3.1.63)

Let the state feedback control law be

(3.1.64)

It can be shown that

(3.1.65)

From Equation 3.1.61, to achieve the desired set point  for the output,

(3.1.66)

If  is the force corresponding to ,

(3.1.67)

From (3.1.66) and (3.1.67),

c bk b( )A − ≠−1 0
c bk b( )A − ≠−1 0

y t t( ) ( )= cx

c = [ ]1 0

u t v t( ) ( )= −0 kx

c bk b( )A k
m

− = − +
⎛
⎝
⎜

⎞
⎠
⎟−

−
1

1

1β

yd

v
y

A
y k

m
d

d0 1 1= −
−

= +
⎛
⎝
⎜

⎞
⎠
⎟−c bk b( )

β

f0 v0

v
f

m0
0=
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(3.1.68)

From (3.1.64),

(3.1.69)

Substituting (3.1.69) into the differential Equation 2.5.14,

(3.1.70)

Therefore, position and velocity feedback coefficients  and  add to the
stiffness and damping coefficient, respectively. Furthermore, conditions (3.1.66) and
(3.1.68) represent the static equilibrium condition.

Case II: Velocity Output

If the velocity of the mass, , is measured by a sensor,

(3.1.71)

where

(3.1.72)

In this case,

(3.1.73)

And a nonzero set point  cannot be achieved. Mathematically, this is due to the
presence of a zero at s = 0 as the transfer function is

(3.1.74)

Physically, nonzero constant velocity is not possible when the applied force is a constant.

3.1.4 STATE FEEDBACK CONTROL UNDER CONSTANT INPUT 
DISTURBANCES: INTEGRAL ACTION

Consider the following system:

f y mkd0 1= +( )β

f t f mk x mk x( ) = − −0 1 2 �

mx mk x mk x f�� �+ + + + =( ) ( )α β2 1 0

k1 k2

�x

y t t( ) ( )= cx

c = [ ]0 1

c bk b( )A − =−1 0

yd

y s

u s

ms

ms s

( )
( )

=
+ +2 α β
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(3.1.75)

(3.1.76)

where w is a constant disturbance vector of unknown magnitudes. The objective is

to develop a state feedback control algorithm such that  The reader can

verify that the algorithm (3.1.4) will not be able to achieve this goal. The required
algorithm is developed by defining a new variable q(t) as follows:

(3.1.77)

Defining a new state vector,

(3.1.78)

Using (3.1.75) to (3.1.77),

(3.1.79)

where

; (3.1.80)

Lemma

The augmented system is controllable provided that the original system
 is controllable and

(3.1.81)

Proof

The controllability matrix (Gopal, 1984) for the system  is

d

dt
A u t

x
x b w= + +( )

y t t( ) ( )= cx

lim ( ) .
t

y t
→∞

= 0

dq

dt
y t t= =( ) ( );cx q( )0 0=

p
x

( )
( )

( )
t

t

q t
=

⎡

⎣
⎢

⎤

⎦
⎥

d

dt
A t u ta a

p
p b

w
= + +

⎡

⎣
⎢

⎤

⎦
⎥( ) ( )

0

A
A

a =
⎡

⎣
⎢

⎤

⎦
⎥

0

0c
b

b
a =

⎡

⎣
⎢

⎤

⎦
⎥

0

{ , }Aa ab
{ , }A b

rank
A

n
b

c 0
1

⎡

⎣
⎢

⎤

⎦
⎥ = +

{ , }Aa ab
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(3.1.82)

= (3.1.83)

The matrix

 (3.1.84)

is nonsingular if the original system  is controllable; i.e., the matrix C is
nonsingular. Therefore, Ca is nonsingular if the condition (3.1.81) is satisfied.
Now, the state feedback control for the augmented system is

(3.1.85)

Substituting (3.1.85) into (3.1.79),

= + (3.1.86)

Assuming that Ca is nonsingular, it is always possible to find k and kq such that
eigenvalues of system (3.1.86) are in the left half of the s-plane. Because w is a constant
vector, steady state values of x(t) and q(t) will be constants for a stable closed-loop

system. Hence, in steady state, = 0. From Equation 3.1.77,  Finally,

the control law (3.1.85) can be represented as

(3.1.87)

Hence, by feeding back the integral of the output in addition to states, we can
have the output go to zero in the presence of a constant disturbance vector with
unknown magnitudes (Kailath, 1980). 

C
A A A

A A
a

n

n
=

⎡

⎣
⎢

⎤

⎦
⎥−

b b b b

cb c b c b

2

10

. .

. .

A Cb

c 0

0

1 0

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

0

1 0

C⎡

⎣
⎢

⎤

⎦
⎥

{ , }A b

u t t k q tq( ) ( ) ( )= − −kx

d

dt
dq

dt

x⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

A k t

q t
q− −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

bk b

c

x

0

( )

( )

w

0

⎡

⎣
⎢

⎤

⎦
⎥

dq

dt
lim ( ) .
t

y t
→∞

= 0

u t t k y t dtq

t

( ) ( ) ( )= − − ∫kx
0
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EXAMPLE 3.4: INTEGRAL OUTPUT FEEDBACK

For the spring-mass-damper system (Chapter 2, Figure 2.4), state equations are
defined by (2.5.16) and (2.5.17). In addition, consider a constant but unknown
disturbance force acting on the mass.

Case I: Position Output

If the position of the mass, x, is measured by a sensor,

(3.1.88)

where

(3.1.89)

In this case,

(3.1.90)

Therefore, the condition (3.1.81) is satisfied and the augmented system is controllable. 
For the control law (3.1.52), define

(3.1.91)

Then, the closed-loop characteristic polynomial is

(3.1.92)

Let the desired characteristic polynomial be

(3.1.93)

Matching the coefficients of polynomials,

; ; and (3.1.94)

y t t( ) ( )= cx

c = [ ]1 0

rank
A

rank m ma b

c 0

0 1 0

1

1 0 0

⎡

⎣
⎢

⎤

⎦
⎥ = − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥α β/ / ⎥⎥
⎥

= 3

k ka q qk k k k= =[ ] [ ]1 2

det( ( ))sI A s
m

k s
m

ka a a− − = + +
⎛
⎝
⎜

⎞
⎠
⎟ + +

⎛
⎝
⎜b k 3

2
2

1
α β ⎞⎞

⎠
⎟ +s kq

det( ( ))sI A s s sa a a− − = + + +b k 3
1

2
2 3α α α

k
m1 2= −α β

k
m2 1= −α α

kq = α3
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Case II: Velocity Output

If the velocity of the mass, , is measured by a sensor,

(3.1.95)

where

(3.1.96)

In this case,

(3.1.97)

Therefore, the condition (3.1.48) is not satisfied, and the augmented system is not
controllable.

3.2 COMPUTATION OF STATE FEEDBACK GAIN 
MATRIX FOR A MULTIINPUT SYSTEM

The state feedback control law is

(3.2.1)

where r(s) and K are reference input vector and state feedback gain matrix, respectively.
Using (2.13.8) and (2.13.18),

(3.2.2)

Substituting (3.2.2) into (2.13.6),

(3.2.3)

Equation 3.2.3 yields

(3.2.4)

where

�x

y t t( ) ( )= cx

c = [ ]0 1

rank
A

rank m ma b

c 0

0 1 0

1

0 1 0

⎡

⎣
⎢

⎤

⎦
⎥ = − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥α β/ / ⎥⎥
⎥

= 2

u r x( ) ( ) ( )s s K s= −

u r( ) ( ) ( ) ( )s s K s s= − Ψ ξξ

D S s D K s s shc lc( ) ( ) ( ) ( ) ( )+ +[ ] =Ψ ξξ r

ξξ( ) ( ) ( )s D s sk= −1 r
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(3.2.5)

Substituting (3.2.4) into (2.13.5),

(3.2.6)

where

(3.2.7)

 is the closed-loop transfer function with full state feedback. Examining the
structures of (3.2.5) and (3.2.7), the following points (Kailath, 1980) should be noted:

• State feedback does not alter the numerator polynomial N(s).
• State feedback does not alter . Therefore, the state feedback control

cannot change the column degrees of D(s).

Let the characteristic polynomial of the closed-loop system be described by the
following monic polynomial:

(3.2.8)

Assume that the column degrees (Chapter 2, Section 2.8) of D(s) are arranged as

; (3.2.9)

Rewrite the characteristic polynomial (3.2.8) as follows:

(3.2.10)

where  is a polynomial of degree less than . Then, it can be verified that

(3.2.11)

D s D S s D K s D s K sk hc lc( ) ( ) ( ) ( ) ( ) ( )= + + = +Ψ Ψ

y r( ) ( ) ( )s G s sK=

G s N s D sK K( ) ( ) ( )= −1

G sK ( )

Dhc

α α α α( )s s s sn n
n n= + + + +−

−1
1

1…

k k km1 2≤ ≤ ≤… k ni

i

m

=
∑ =

1

α α α α( ) ( ) ( ) ( )s s s s s s sn n k n k k
m= + + + +− − −

1 2
1 1 2 …

αi s( ) ki

det

( ) ( ) . ( )

.

. . . . .

.

s s s s

s

s

k
m

k

km

1

2

1 2 0

1 0 0

0 0

+
−
α α α

−−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
1 0

0 0 1.

( )

s

s

km

α
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From (3.2.7), the closed-loop characteristic polynomial is given by .
Because is a monic polynomial,

(3.2.12)

From (3.2.5),

(3.2.13)

Comparing (3.2.11) and (3.2.13),

(3.2.14)

Using the definition of , Equation 3.2.14 yields

(3.2.15)

Factoring out on the right-hand side yields the state feedback gain matrix
K. Equation 3.2.11 is not a unique way to express the desired characteristic poly-
nomial . As shown in Example 3.5, there are other matrices with their determi-
nants equal to . Therefore, the state feedback gain matrix K is not unique to
obtain the desired closed-loop characteristic polynomial for a multiinput system
(Kailath, 1980).

EXAMPLE 3.5

For  in Equation 2.13.32,  and . And,

and (3.2.16)

Let the desired characteristic polynomial be

det( ( ))D sK

α( )s

det( ) det( ) ( )sI A B K D D sc c hc K− + = =−1 α

det( ( ) ( ) ( )) ( )S s D D K s shc lc+ + =−1 Ψ α

s s s s

s

s

k
m

k

km

1

2

1

1 2 0

1 0 0

0 0 0

+
−

−

α α α( ) ( ) . ( )

.

. . . . .

.

00 0 1

1

.

( ) ( )

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

= + +−

s

S s D D K

k

hc lc

m

ΨΨ( )s

S s( )

K s D

s s s

hc

m

Ψ( )

( ) ( ) . ( )

.

. . . . .

.

=
−

α α α1 2 0

1 0 0 0

0 0 0 0

0 00 1 0.

( )

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

− D slcΨ

Ψ( )s

α( )s
α( )s

α( )s

D sH ( ) k1 2= k2 1=

Dhc =
−⎡

⎣
⎢

⎤

⎦
⎥

2 3 2 3

0 1

/ /
Dlc =

−⎡

⎣
⎢

⎤

⎦
⎥

16 3 10 2

0 0 4

/
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(3.2.17)

Because  and , this polynomial can be rearranged to be

(3.2.18)

where

and (3.2.19)

From (3.2.15),

(3.2.20)

where

(3.2.21)

From (3.2.20),

(3.2.22)

Equating coefficients of on both sides,

(3.2.23)

Therefore,

(3.2.24)

Alternatively,

α( )s s s s= + + +3 230 300 1000

k1 2= k2 3=

α α α( ) ( ) ( )s s s s s= + +3
1 2

α1 30 300( )s s= + α2 1000( )s =

( ) ( )
( ) ( )

K D s D
s s

c lc hc+ =
−

⎡

⎣
⎢

⎤

⎦
⎥Ψ

α α1 2

1 0

Ψ( )s

s

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

1 0

0 1

( ) ( ) ( )K D s D sc lc hc+ =
−

⎡

⎣
⎢

⎤

⎦
⎥Ψ Ψ

30 300 1000

0 1 0

Ψ( )s

K D Dc lc hc+ =
−

⎡

⎣
⎢

⎤

⎦
⎥

30 300 1000

0 1 0

Kc =
− −

⎡

⎣
⎢

⎤

⎦
⎥

44 3 572 3 2006 3

0 1 4

/ / /
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(3.2.25)

Using (3.2.19),

(3.2.26)

Equating coefficients of Ψ(s) on both sides,

(3.2.27)

Therefore,

(3.2.28)

There exists another  matrix to achieve the desired characteristic polynomial
(3.2.18).

3.3 STATE FEEDBACK GAIN MATRIX FOR A 
MULTIINPUT SYSTEM FOR DESIRED EIGENVALUES 
AND EIGENVECTORS

The closed-loop system is described by

(3.3.1)

where

(3.3.2)

and

(3.3.3)

Let the desired eigenvalues of the closed-loop system be . In this case,

( ) ( )
( ) ( ) /

K D s D
s s

c lc hc+ =
−

⎡

⎣
⎢

⎤

⎦
⎥Ψ

α α1 2 10

10 0

( ) ( ) ( )K D s D sc lc hc+ =
−

⎡

⎣
⎢

⎤

⎦
⎥Ψ Ψ

30 300 100

0 10 0

K D Dc lc hc+ =
−

⎡

⎣
⎢

⎤

⎦
⎥

30 300 100

0 10 0

Kc =
− −

⎡

⎣
⎢

⎤

⎦
⎥

44 3 50 3 206 3

0 10 4

/ / /

Kc

G s N s D sK K( ) ( ) ( )= −1

D s D S s D K s D s K sk hc lc( ) ( ) ( ) ( ) ( ) ( )= + + = +Ψ Ψ

D s D S s D shc lc( ) ( ) ( )= + Ψ

μi i n; , ,...,=1 2
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(3.3.4)

It can be shown that eigenvectors  associated with the system matrix of the
controller form realization (Chapter 2, Section 2.13) of the transfer matrix can
be expressed as

(3.3.5)

where the vector  satisfies

(3.3.6)

Using (3.3.2) and (3.3.6),

(3.3.7)

Substituting (3.3.5) into (3.3.7),

; i = 1, 2, …, n (3.3.8)

where

(3.3.9)

Equation 3.3.8 can be put in the following form (Kailath, 1980):

(3.3.10)

Assuming that eigenvectors  are linearly independent,

(3.3.11)

Linear independence of eigenvectors  is guaranteed when eigenvalues  are dis-
tinct. Although it is possible to get a unique solution for K, even when some of the
eigenvalues are repeated, it will be assumed that eigenvalues  are distinct for the
following discussion.

To use Equation 3.3.11,  and  are obtained (Kailath, 1980) as follows:

det ( ) ; , ,....,D i nk iμ = =0 1 2

fi

G sK ( )

f pi i i= Ψ( )μ

pi

DK i i( )μ p = 0

D Ki i i i( ) ( )μ μp p+ =Ψ 0

K i if g= −

g pi i iD= ( )μ

K n nf f f g g g1 2 1 2. . . .⎡⎣ ⎤⎦ = − ⎡⎣ ⎤⎦

{ }fi

K n n= − ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
−

g g g f f f1 2 1 2

1
. . . .

fi μi

μi

g i fi
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1. Choose unrepeated closed-loop eigenvalues .
2. Choose the desired closed-loop eigenvectors  to satisfy the following

constraints:
a. With reference to Equation 3.3.5,  must belong to the range space

of .
b. All the eigenvectors  are linearly independent.
c. If corresponds to a complex eigenvalue , the complex conjugate

of  must correspond to the eigenvalue which is the complex conjugate
of .

3. Use Equation 3.3.5 to solve for . Premultiply both sides of Equation
3.3.5 by :

(3.3.12)

Because the matrix  is of full rank, the square matrix  is
nonsingular. Therefore,

(3.3.13)

4. From Equation 3.3.9,  is computed.

EXAMPLE 3.6: ELECTRONICS NAVIGATION OR GYRO BOX (SCHULTZ AND INMAN, 1994)

An electronics navigation or gyro box is mounted on passive spring-damper isolators
located at the bottom four corners (Figure 3.4). There are isolators along x and z
directions at each bottom four corner. There are also three actuators providing active
control forces , , and  as shown in Figure 3.4. Free body diagram of the system
is shown in Figure 3.5.

Applying Newton’s law, the system of differential equations of motion is
written as

(3.3.14)

(3.3.15)

where the mass matrix M, the damping matrix E, the stiffness matrix , and the
input force matrix  are expressed as:

(3.3.16a,b)

μi

fi

fi

Ψ( )μi

fi

fi μi

fi

μi

pi

ΨT
i( )μ

Ψ Ψ ΨT
i i i

T
i i( ) ( ) ( )μ μ μp f=

Ψ( )μi Ψ ΨT
i i( ) ( )μ μ

p fi
T

i i
T

i i= −( ( ) ( )) ( )Ψ Ψ Ψμ μ μ1

g i

u1 u2 u3

M E K t ts�� �q q q v+ + =( ) ( )

v u( ) ( )t B tf=

Ks

Bf

M

m

m

Iyy

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0

0 0

0 0

E

c

c c

c c c

z

x z x

z x z x x z

= −
− +

⎡

⎣

⎢
⎢
⎢

4 0 0

0 4 4

0 4 4 2 2

�
� � �( )

⎤⎤

⎦

⎥
⎥
⎥
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FIGURE 3.4 Electronics navigation or gyro box.

FIGURE 3.5 Free body diagram of gyro box.
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(3.3.17a,b)

For a mechanical system, it is usual to define states as

and (3.3.18a,b)

Then,

(3.3.19)

and from (3.3.14),

(3.3.20)

Putting (3.3.19) and (3.3.20) in the matrix form,

(3.3.21)

where

; ; (3.3.22a,b,c)

Expressing (3.3.14) in the matrix fraction description (MFD) form,

(3.3.23)

where

and (3.3.24a,b)

Here,

(3.3.25)

K

k

k k

k k k
s

z

x z x

z x z x x z

= −
− +

⎡

⎣

⎢
⎢

4 0 0

0 4 4

0 4 4 2 2

�
� � �( )⎢⎢

⎤

⎦

⎥
⎥
⎥

Bf

x z x
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−
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⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 1

0 1 0

� � �

p q1 = p q2 = �

�p p1 2=

�p p p v2
1

1
1

2
1= − − +− − −M K M E M ts ( )

�p p v= +A t B tp p( ) ( )

p
p

p
=

⎡

⎣
⎢

⎤

⎦
⎥

1

2

A
I

M K M E
p

s

=
− −

⎡

⎣
⎢

⎤

⎦
⎥− −

0
1 1

B
M

p =
⎡

⎣
⎢

⎤

⎦
⎥−

0
1

q v( ) ( ) ( ) ( )s N s D s s= −1

N s I( ) = D s Ms Es Ks( ) ( )= + +2

D s D

s

s

s

D shc c( ) ( )=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+

2

2

2

0 0

0 0

0 0
� Ψ

9217_C003.fm  Page 103  Thursday, December 21, 2006  7:44 AM



104 Linear Systems: Optimal and Robust Control

where

(3.3.26)

(3.3.27)

and

(3.3.28)

Let the desired characteristic polynomial for the closed-loop system be

(3.3.29)

Here, . Therefore, Equation 3.3.29 should be expressed as

(3.3.30)

where

, , and (3.3.31)

It can be easily verified that
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where  and  are any arbitrary real numbers. Factoring out  on both sides
of Equation 3.2.15,

(3.3.33)

This result clearly indicates the gain matrix K is not unique because  and
can be chosen arbitrarily. Furthermore, this gain matrix is associated with the
controller form state space realization (Chapter 2, Section 2.13), which is devel-
oped below.

Following definitions (2.13.16) and (2.13.17),

, (3.3.34)

Therefore,

(3.3.35)
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(3.3.36)

The state equations are

(3.3.37)

with the control law 

(3.3.38)

where K is given by Equation 3.3.33. The control law is not directly implementable
because sensors provide the states p(t), not x(t). Therefore, to implement this con-
troller, it is necessary to find the similarity transformation that will convert the state
space realization (3.3.21) to the state space realization (3.3.37). This is where the
similarity transformation (2.13.46) can be used for parameter values as follows.

m, N/m, 

m, N/m, (3.3.39)
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Define

(3.3.40)

where the similarity transformation matrix T is defined by Equation 2.13.46.
Substituting (3.3.40) into (3.3.21),

(3.3.41)

where

(3.3.42)

and

(3.3.43)

It is seen that structures of  and  are similar to those of  and ,
respectively. Using (2.13.21) and (2.3.22), new  and new  are
obtained as follows:

(3.3.44)

and

(3.3.45)

Now, formulae (3.2.15) and (3.3.11) should be used with these new
and new . A Matlab code 3.1 is attached to do the following:
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108 Linear Systems: Optimal and Robust Control

1. Locate the eigenvalues of the closed-loop system, , such that the damping
factor of each vibratory mode is five times the corresponding value of the
open-loop system, and undamped natural frequencies remain unchanged.

2. Locate the eigenvalues of the closed-loop system as described in part (1),
and eigenvectors as:

; ; ;

; ; (3.3.46)

It should be noted the choice of eigenvectors (3.3.46) satisfies the required
constraints.

MATLAB PROGRAM 3.1: FULL STATE FEEDBACK CONTROL OF ELECTRONICS

NAVIGATION OR GYRO BOX

%

clear all

close all

%

lz=0.11;

m=10;

kz=17500;

Iyy=0.0487;

lx=0.08;

kx=8750;

%
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⎢
⎢
⎢
⎢
⎢
⎢
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⎥
⎥
⎥
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⎢
⎢
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⎥
⎥
⎥
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M=diag([m m Iyy]);

Ks=[4*kz 0 0;0 4*kx -4*lz*kx;0, -4*lz*kx 
4*((kx*lz*lz)+(kz*lx*lx))];

E=0.002*Ks;

Bf=[1 0 1;0 -1 0;lx lz -lz];

%

Ac0=zeros(6,6);

Ac0(2,1)=1.;

Ac0(4,3)=1;

Ac0(6,5)=1;

%

Bc0=zeros(6,3);

Bc0(1,1)=1;

Bc0(3,2)=1;

Bc0(5,3)=1;

%

Dhc=M;

Dlc=[E(1,1) Ks(1,1) 0 0 0 0;0 0 E(2,2) Ks(2,2) E(2,3) 
Ks(2,3);0 0 E(3,2) Ks(3,2) E(3,3) Ks(3,3)];

Ac=Ac0-Bc0*inv(Dhc)*Dlc;

Bc=Bc0*inv(Dhc);

%

Ap=[0*eye(3) eye(3);-inv(M)*Ks -inv(M)*E];

eigop=eig(Ap);

Bp=[0*eye(3);inv(M)];

CI=[Bp Ap*Bp];

%Soloution of Eq. (2.13.39)

Coeff=inv(CI)*Ap*Ap*Bp;

Beta=Coeff(4:6,:);

%

%Similarity Transformation Matrix T, Eq. (2.13.46)
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110 Linear Systems: Optimal and Robust Control

for i=1:3

 T(:,2*i-1)=Bp(:,i);

 T(:,2*i)=Ap*Bp(:,i)-Bp*Beta(:,i);

end

%

Acc=inv(T)*Ap*T;

Bcc=inv(T)*Bp;

%

%New Dhc=Dhcc and New Dlc=Dlcc

%

Accd=Acc-Ac0;

Dhcc=eye(3);

Dlcc=-[Accd(1,:);Accd(3,:);Accd(5,:)];

%

%Find Closed-Loop Eigenvalues

%

im=sqrt(-1);

for i=1:6

 rp=real(eigop(i));

 if (imag(eigop(i))<0.)imm=-im;

 end

 if (imag(eigop(i))>0.)imm=im;

 end

%Open Loop Frequencies and Damping Factors

 ogg(i)=abs(eigop(i));

 zeta(i)=-rp/ogg(i);

%Closed Loop Damping Factor=5* Open Loop Damping 
Factor

 zetacl(i)=5*zeta(i);
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%Desired Closed Loop Eigenvalues

 mu(i)=-zetacl(i)*ogg(i)+imm*ogg(i)*sqrt(1.-
zetacl(i)^2);

end

%

% Desired Closed-Loop Characteristic Polynomial

%

chcl=poly(mu);

%

%Non-unique State Feedback Gain Matrix KU for 
%Specified Eigenvalues

%gamma and lambda can be chosen arbitrarily.

%

gamma=10;

lambda=1000;

%

ve1=[chcl(2) chcl(3)];

ve2=[chcl(4) chcl(5)]/gamma;

ve3=[chcl(6) chcl(7)]/(gamma*lambda);

%

mave=[ve1 ve2 ve3;0 -gamma 0 0 0 0;0 0 0 -lambda 0 0];

%

KU=Dhcc*mave-Dlcc;

%

% Unique State Feedback Gain Matrix KK for Specified 
%Eigenvalues and Eigenvectors

%Choose eigenvectors appropriately

ff(:,1)=[mu(1) 1 0 0 0 0].';

ff(:,2)=[mu(2) 1 0 0 0 0].';

ff(:,3)=[0 0 mu(3) 1 0 0].';
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ff(:,4)=[0 0 mu(4) 1 0 0].';

ff(:,5)=[0 0 0 0 mu(5) 1].';

ff(:,6)=[0 0 0 0 mu(6) 1].';

%

for i=1:6

 psi=[mu(i) 1 0 0 0 0;0 0 mu(i) 1 0 0;0 0 0 0 mu(i) 
1].';

 DD=Dhcc*(mu(i)^2)+Dlcc*psi;

 pp=inv(psi.'*psi)*psi.'*ff(:,i);

%Equation (3.3.9)

 gg(:,i)=DD*pp;

end

%

%Solution of Eq. (3.3.11)

%

KK=-gg*inv(ff);

3.4 FUNDAMENTALS OF OPTIMAL CONTROL 
THEORY

Consider a general dynamic system of order n,

(3.4.1)

where  and are n-dimensional state and m-dimensional input vectors,
respectively. The objective is to determine ; 0 ≤ t ≤ tf , such that the following
objective function (Ray, 1981) is minimized or maximized:

(3.4.2)

Note that state equations serve as constraints for the optimization of I. In
addition, constraints on the input of the following types will be considered:

d

dt
t t

x
f x u= ( ( ), ( )); x x( )0 0=

x( )t u( )t
u( )t

I t G t F dtf

t f

( ( )) ( ( )) ( , )u x x u= + ∫
0
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(3.4.3)

3.4.1 NECESSARY CONDITIONS FOR OPTIMALITY

Let  be a candidate for the optimal input vector, and let the corresponding state
vector be , i.e.,

(3.4.4)

In order to see whether  is indeed an optimal solution, this candidate
optimal input is perturbed (Ray, 1981) by a small amount ; i.e.,

(3.4.5)

The change in the value of the objective function can be written as

(3.4.6)

If the solution of (3.4.1) with  given by (3.4.5) is ,

(3.4.7)

Linearizing (3.4.7),

(3.4.8)

Multiplying Equation 3.4.8 by and integrating from 0 to ,

(3.4.9)

where  is an n-dimensional vector. Adding (3.4.9) to (3.4.6) and evaluating the
first integral in (3.4.9) by parts (Ray, 1981),
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(3.4.10)

where the function H is known as Hamiltonian, defined as follows:

(3.4.11)

Because is arbitrary, it is chosen to satisfy

(3.4.12)

Terms outside the integral in (3.4.10) are known as boundary conditions terms,
which are removed for the specified problem. For example, if and are
specified,  and , and the third outside term in (3.4.10) vanishes
under the following condition:

(3.4.13)

Hence, the Equation 3.4.10 can be written as
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Case II: With Constraints (3.4.3) on Inputs
In view of the condition (3.4.15),

If , (3.4.17)

If , (3.4.18)

Maximization of I

If is an optimal solution, 

for any perturbation (3.4.19)

Case I: No Constraint on Input 
For condition (3.4.19) to be true,

 for every t (3.4.20)

This is the necessary condition for optimality and is identical to Equation 3.4.16.

Case II: With Constraints (3.4.3) on Inputs
In view of the condition (3.4.19),

If , (3.4.21)

If , (3.4.22)

3.4.2 PROPERTIES OF HAMILTONIAN FOR AN AUTONOMOUS SYSTEM

For an autonomous system, the function f is not an explicit function of time.
Therefore, from Equation 3.4.11,

(3.4.23)

But

u uio i= * ∂
∂
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⎟ ≤H

ui

0

u uio i= *
∂
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⎠
⎟ ≥H
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0

uo t( )

δI ≤ 0 δu( )t

∂
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⎜

⎞
⎠
⎟ =H

u
0

u uio i= * ∂
∂

⎛
⎝
⎜

⎞
⎠
⎟ ≥H

ui

0

u uio i= *
∂
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⎛
⎝
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⎟ ≤H
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dH
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H d
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H d
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H d
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x
u

u
λλ

λλ

9217_C003.fm  Page 115  Thursday, December 21, 2006  7:44 AM



116 Linear Systems: Optimal and Robust Control

(3.4.24)

Substituting (3.4.1) and (3.4.12) into (3.4.23),

(3.4.25)

Without any constraints on inputs, . When there are constraints, inputs

can be either maximum or minimum constant values according to Equation 3.14.17
and Equation 3.4.18 or Equation 3.14.21 and Equation 3.4.22, respectively. In this

case, . Therefore, for optimal inputs,

(3.4.26)

In other words, Hamiltonian H is a constant along an optimal trajectory for an
autonomous system.

Special Case

Final time  not specified; i.e., . In this case, to remove the corresponding
boundary condition term in Equation 3.4.10,

(3.4.27)

When final conditions on states are not specified, the condition (3.4.13) holds,
and Equation 3.4.27 reduces to

(3.4.28)

The condition (3.4.28) is valid even when some or all states are specified at the
final time. For example, consider that all states are specified at the final time. In this
case, with the first-order term in the Taylor series expansion (Ray, 1981),

(3.4.29)

or

∂
∂

=H T

λλ
f

dH

dt

H d

dt
= ∂

∂u
u

∂
∂

=H

u
0

d

dt

u = 0

dH

dt
= 0

t f δt f ≠ 0

F t
G

tf f( ) ( )+ ∂
∂

⎛
⎝
⎜

⎞
⎠
⎟ =

x
f 0

H t F t t tf f
T

f f( ) ( ) ( ) ( )= + =λλ f 0

x x x xo f f f f f ft t t t t t( ) ( ) ( ) ( )= + = +δ δ�
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(3.4.30)

It is interesting to note that . Substituting Equation 3.4.30 into (3.4.10)
and using (3.4.12),

(3.4.31)

Therefore, the condition (3.4.28) is again needed to remove boundary condition
terms.

In summary,  when  is not specified. Because H is a constant, it is
concluded that H(t) = 0 along an optimal trajectory for an autonomous system
when  is not specified.

EXAMPLE 3.7: TRAVEL OVER MAXIMUM DISTANCE IN SPECIFIED TIME WITHOUT

CONSTRAINT ON FINAL VELOCITY

Consider the simple mass m, which is subjected to force . The differential
equation of motion is

(3.4.32)

where

(3.4.33)

Find the optimal control input , such that the vehicle covers the maximum
distance (Biegler, 1982) in a fixed time , subject to the following constraints:

(3.4.34)

Without any loss of generality take . Assume that the vehicle starts from
rest; i.e.,

(3.4.35)

Solution

Define the following state variables:

and (3.4.36)

δ δx x x f( ) ( ) ( ) ( )t t t t tf f o f f f= − = −

δx( )t f ≠ 0

δ δ δI F t t t t
H

f
T

f f f
T= + + ++ ∂

∂
⎛

[ ( ) ( ) ( )] ( ) ( )λλ λλf x
u

0 0
⎝⎝
⎜

⎞
⎠
⎟∫

0

t f

t dtδu( )

H t f( ) = 0 t f

t f

f t( )

��x u=

u t
f t

m
( )

( )=

u t( )
t f

a u t b≤ ≤( )

x( )0 0=

�x( )0 0=

x x1 = x x2 = �
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Hence, state equations are

= (3.4.37)

The objective in this problem is to maximize

(3.4.38)

Therefore,

and (3.4.39)

The Hamiltonian H for this problem is

(3.4.40)

Adjoint equations are

(3.4.41)

(3.4.42)

Then, conditions on state variables are as follows:

(3.4.43a)

(3.4.43b)

(3.4.43c)

(3.4.44d)

Also, because the final time  is fixed,

�
�
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u
2⎡
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⎥ f

I x t f= 1( )

G x t= 1( ) F = 0

H F
x

u
x uT= + = [ ]
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⎥ = +λλ f λ λ λ λ1 2

2
1 2 2

d
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x
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1
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=

d
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H

x

λ λ2

2
1= − ∂

∂
= −

x x1 10 0 0 0( ) ( )= ⇒ =δ

x x2 20 0 0 0( ) ( )= ⇒ =δ

x t unspecified x tf f1 1 0( ) ( )⇒ ≠δ

x t unspecified x tf f2 2 0( ) ( )⇒ ≠δ

t f
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(3.4.45)

For the boundary condition terms to be zero,

(3.4.46)

Therefore,

(3.4.47a)

(3.4.47b)

Solutions of adjoint equations are

and (3.4.48a,b)

where c and d are constants. To satisfy the final conditions,

and (3.4.49a,b)

In other words,

and (3.4.50a,b)

Optimality condition:

(3.4.51)

 is plotted in Figure 3.6. is not equal to zero for a finite time interval.

This implies that the optimal u cannot take any intermediate value between a and

b. Furthermore,  for 0 ≤ t < tf . Equation 3.4.21 implies that the optimal

control input is

δt f = 0

λλT
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t
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for (3.4.52)

The optimal strategy is the maximum acceleration, which is employed by a rider
out of common sense, when the objective is to cover the maximum distance in a
fixed time, without any constraint on the vehicle velocity at the final time. Now, the
optimal state trajectory can be easily obtained by solving the state equations with
given initial conditions:

and (3.4.53)

Therefore, the maximum value of the objective function I is . Along the
optimal trajectory,

(3.4.54)

As expected, the Hamiltonian H is a constant along the optimal trajectory.

EXAMPLE 3.8: TRAVEL OVER MAXIMUM DISTANCE IN SPECIFIED TIME WITH

CONSTRAINT THAT FINAL VELOCITY IS EQUAL TO ZERO.

Consider the system, which is same as that in Example 3.7. Find the optimal control
input such that the vehicle covers the maximum distance in a fixed time  and
ends at rest (Biegler, 1982) subject to the following constraints:

(3.4.55)

Here, it is also given that a < 0 and b > 0.

Solution

Define the following state variables: 

and (3.4.56)

FIGURE 3.6  vs. time t.
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Hence, state equations are

= (3.4.57)

The objective in this problem is to maximize

(3.4.58)

Therefore,

and (3.4.59a,b)

The Hamiltonian H for this problem is

(3.4.60)

Adjoint equations are

(3.4.61)

(3.4.62)

Then, conditions on state variables are as follows:

(3.4.63a)

(3.4.63b)

(3.4.63c)

(3.4.63d)

Also, because the final time  is fixed,
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(3.4.64)

Now, consider the following boundary condition term:

(3.4.65)

Because ,

(3.4.66)

Hence, for all boundary condition terms to be zero,

(3.4.67)

Solutions of adjoint equations are

and (3.4.68)

where c and d are constants. To satisfy the final condition,

(3.4.69)

In other words,

and (3.4.70a,b)
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The value of d is not known. Any of these three possibilities exists: d < 0, d = 0, or

d > 0.  is plotted in Figure 3.7 for all these possibilities. The first thing to

note is that is not equal to zero for a finite time interval. This implies that the

optimal u(t) cannot take any intermediate value between a and b. Secondly, d < 0
and d = 0 are ruled out because they will lead to u(t) = a < 0 (Equation 3.4.22).
Hence, d > 0 and the optimal control input is

(3.4.72)

where  is the switching instant, which is, when  changes sign in Figure
3.7, . 

Solving the second state equation,

and (3.4.73)

For ,

(3.4.74)

3.5 LINEAR QUADRATIC REGULATOR 
(LQR) PROBLEM

Consider the linear system

(3.5.1)

FIGURE 3.7  vs. time t.
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The objective is to drive the state vector  to the origin of the state space
(zero state vector) from any nonzero initial values of states. If a state feedback
control law is used,  will quickly die out provided closed-loop poles are located
far inside the left half of the s-plane. However, elements of the feedback gain vector
can be large in magnitudes and the control cost can be high. On the other hand, if
closed-loop poles are located close to the open-loop poles, there will not be much
increase in the rate of decay of  and a relatively small amount of control action
will be required. Hence, the location of closed-loop poles is a trade-off between the
rate of decay of and the magnitude of control input. To make this trade-off,
the following objective function is chosen:

(3.5.2)

where the final time  is fixed. Without any loss of generality, matrices , ,
and  are chosen to be symmetric (Appendix B). In addition,  and  are chosen
to be positive semidefinite, and  to be positive definite. Symbolically, these are
expressed as

, , and

Problem

Find ; , such that the objective function (3.5.2) is minimized.

3.5.1 SOLUTION (OPEN-LOOP OPTIMAL CONTROL)

For this optimal control problem, the Hamiltonian (3.4.11) is

(3.5.3)

The necessary condition (3.4.16) for optimality yields

or

(3.5.4) 

x( )t
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The dynamics of  is given by Equation 3.4.12 with final conditions (3.4.13).
Hence,

(3.5.5)

Equation 3.5.1 and Equation 3.5.5 represent a two-point boundary value problem
(TPBVP) which can be solved to find  and . Putting (3.5.1) and (3.5.5) in
the matrix form,

(3.5.6)

where

(3.5.7)

Solving (3.5.6),

(3.5.8)

To determine , the matrix  is partitioned as follows:

(3.5.9)

From (3.5.8) and (3.5.9),

(3.5.10)

(3.5.11)
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From (3.5.12),

(3.5.13)

Substituting this into (3.5.8),  is obtained. Then, the optimal  is
found from (3.5.4). However, this TPBVP must be solved again if initial conditions
change. Furthermore, the control inputs are implementable in an open-loop fashion
only, as they are not in the forms of functions of states.

3.5.2 SOLUTION (CLOSED-LOOP OPTIMAL CONTROL)

Use the following transformation (Ray, 1981):

(3.5.14)

where  is a symmetric n × n matrix. Substituting (3.5.14) into (3.5.5),

(3.5.15)

Using (3.5.1),

(3.5.16)

Because Equation 3.5.16 is true for all ,

(3.5.17)

Equation 3.4.13 and Equation 3.5.14 yield 

(3.5.17b)

Equation 3.5.17 is known as the Riccati equation. This nonlinear differential
equation can be numerically solved backward in time to determine . From (3.5.4)
and (3.5.14),

(3.5.18)

where
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(3.5.19)

The structure of (3.5.18) indicates that the  is the optimal state feedback
gain matrix. Because the solution of does not depend on system states, this
gain is optimal for all initial conditions on states. 

3.5.3 CROSS TERM IN THE OBJECTIVE FUNCTION

Consider a more general form of the quadratic objective function (Anderson and
Moore, 1990):

(3.5.20)

It can be seen that

(3.5.21)

where

(3.5.22)

and

(3.5.23)

Equation 3.5.21 can be proved by simply multiplying out the terms on the right-
hand side. Hence, Equation 3.5.20 can be rewritten as

(3.5.24)

and the plant equation (3.5.1) is modified with Equation 3.5.23:

(3.5.25)

where
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(3.5.26)

Assuming that , Equation 3.5.24 and Equation 3.5.25 constitute a stan-
dard LQ problem for which the optimal state feedback control law is

(3.5.27)

where

; (3.5.28)

From (3.5.23) and (3.5.27),

(3.5.29)

where the optimal state feedback gain matrix is given by

(3.5.30)

EXAMPLE 3.9: MINIMUM ENERGY CONTROL OF A DC MOTOR

Consider the position controller shown in Figure 3.8. The actuator is an armature-
controlled DC motor (Kuo, 1995). The torque produced by the motor is
proportional to the armature current ; i.e.,

(3.5.31)

Let the back emf developed across the armature be , i.e.,

(3.5.32)

where  is the back emf constant and is the angular position of the rotor.
Applying Kirchoff’s law to the armature,

(3.5.33)

where is the input voltage and is the armature resistance. The inductance
of the armature windings has been neglected.

A A BR Nm
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m m= − − + −−1 S t Sm f f( ) =

u x( ) ( ) ( )t K t tm= −

K t R B S t Nm
T

m
T( ) ( ( ) )= +−1

T tm ( )
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kb θm t( )

u t R i t e ta a b( ) ( ) ( )= +
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Applying Newton’s second law,

(3.5.34)

where  and  are mass moment of inertia and equivalent viscous damping,
respectively. From (3.5.31) to (3.5.33),

(3.5.35)

From (3.5.34) and (3.5.35),

(3.5.36)

where

(3.5.37)

and

(3.5.38)

From (3.5.36), state equations are

(3.5.39)

where

FIGURE 3.8 An armature-controlled DC motor.
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; ; (3.5.40)

Let us define an optimal control problem: Find the input u(t), , such
that the energy consumed by the DC motor is minimized over a fixed final time ,
with the following initial and final conditions on the states:

and (3.5.41)

The energy consumed by the DC motor over a fixed final time  is given by
the following integral:

(3.5.42)

Using (3.5.35), (3.5.40), and (3.5.42)

(3.5.43)

To satisfy the requirements for the existence of solution to the LQ control, the
objective function (3.5.43) is modified to be

; and (3.5.44)

Hence, with respect to the definition (3.5.20),

(3.5.45)

; ; (3.5.46)
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and

(3.5.47)

For ,  and must be chosen to satisfy

(3.5.48)

In order to have final conditions on states to be zero, the following transformation
of the state vector is introduced:

(3.5.49)

Then,

and (3.5.50a,b)

Substituting (3.5.49) into (3.5.39), and noting that ,

(3.5.51)

Because the objective function does not contain  and , Equation 3.5.45
can be rewritten as

(3.5.52)

In the LQ control, there is no constraint on the final conditions. Therefore, the
objective function is modified to contain the final state vector:

(3.5.53)

where
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; a > 0 and b > 0 (3.5.54)

Relaxing constraints on final states, the LQ problem can be solved to minimize
(3.5.53) for the linear system (3.5.51) with nonzero . By choosing a and b to
be large numbers,  can be forced to be close to zero.

3.5.4 IMPORTANT CASE: INFINITE FINAL TIME 

When the final time , the optimal gain or turns out to be a
constant (Kwakernaak and Sivan, 1972). The system of differential equations
(3.5.28) reduces to a system of algebraic equations:

 (3.5.55)

This is known as the algebraic Riccati equation (ARE) and is probably one of
the most commonly used equations in modern control theory. Since the matrix
is a constant, the feedback gain matrix also turns out to be a constant as follows:

(3.5.56)

Hence from (3.5.1) and (3.5.56), the closed-loop system dynamics is represented by

(3.5.57)

The eigenvalues of the matrix  are the optimal closed-loop poles. In
the next section, a method is described to determine these optimal closed-loop poles
first via root locus plots. Then, the optimal feedback gain can be obtained via pole
placement techniques.

Because , there exists a matrix H known as the square root of , such
that

(3.5.58)

If  is observable,  is positive definite and is the only solution of ARE,
Equation 3.5.55, with this property. Furthermore, the optimal closed-loop system
(3.5.57) is asymptotically stable (Anderson and Moore, 1990; Kailath, 1980).

EXAMPLE 3.10: A FIRST-ORDER SYSTEM

Consider a first-order system
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(3.5.59)

and the objective function

(3.5.60)

Here,

A = 1, b = 1, Q = 2, R = 3, (3.5.61)

Therefore, the Riccati equation becomes

; (3.5.62)

Nonlinear differential equation (3.5.62) has to be numerically solved backward
in time to determine S(t) for . Matlab routine ODE23 or ODE45 can be
used for this purpose. Then, the optimal control law will be

; (3.5.63)

If , ARE becomes

(3.5.64)

Solving (3.5.64),

(3.5.65)

In order to have a stable closed-loop system, a “+” sign must be chosen. The
optimal state feedback law is

(3.5.66)

where
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(3.5.67)

Substituting (3.5.66) into (3.5.59), the closed-loop system dynamics is

(3.5.68)

which is stable.

EXAMPLE 3.11: ACTIVE SUSPENSION WITH OPTIMAL LINEAR STATE FEEDBACK

(THOMSON, 1976)

Differential equations of motion for the linear vehicle model shown in Figure 3.9 are

(3.5.69)

(3.5.70)

Defining  and ,

(3.5.71)

(3.5.72)

FIGURE 3.9 A quarter car model.
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(3.5.73)

(3.5.74)

Assume that the road profile is a step function. In this case,  is a constant,
and a new set of state variables is defined as

(3.5.75)

(3.5.76)

(3.5.77)

(3.5.75)

and the new set of state equations can be written as

(3.5.76)

The performance index is chosen as

(3.5.77)

Note the following:

: tire dynamic deflection (3.5.78)

: relative wheel travel (3.5.79)
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Moreover, the actuator force u(t), which is proportional to the vertical acceler-
ation of the body, is also a measure of the ride discomfort. Hence, the minimization
of the objective function I will result in a trade-off between the minimization of
the actuator input or ride discomfort and minimization of the weighted sum of tire
dynamic deflection and relative wheel travel. Weighting parameters are , ,
and . Because 

(3.5.80)

the objective function I can be expressed as

(3.5.81)

where

and (3.5.82a,b)

The optimal control law is

(3.5.83)

where

(3.5.84)

and

(3.5.85)

Physical realization of the control law:
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(3.5.86)

where

(3.5.87)

and

(3.5.88)

The part of the control input  has been applied by a spring and a damper
that provide passive feedback of  and  (Figure 3.10). The remain-
ing part f(t) is applied by active feedback via sensors to measure  and ,
and an actuator to apply the force f(t). In the study by Thompson (1976), the relative
distance  is measured by an ultrasonic transmitter/receiver, and the veloc-
ity  is obtained by integrating the signal from an accelerometer. The actuator is
shown to be an electrohydraulic system.

3.6 SOLUTION OF LQR PROBLEM VIA ROOT LOCUS 
PLOT: SISO CASE

Let the quadratic objective function be

FIGURE 3.10 Active or passive vehicle suspension system.
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(3.6.1)

where  and  are input and output of a SISO linear system.
Note that

(3.6.2)

Referring to (3.5.2),

and (3.6.3)

Hence, from Equation 3.5.1, Equation 3.5.4, and Equation 3.5.5,

(3.6.4)

where

(3.6.5)

The matrix M is known as the Hamiltonian matrix. It can be shown (Kwakernaak
and Sivan, 1972) that

(3.6.6)

where

(3.6.7)

and  and are denominator and numerator polynomials of the open-loop
transfer function, i.e.,

(3.6.8)
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It will be assumed that there are no common factors between  and .
Equation 3.6.6 establishes the fact that if is a root of ,  would also
be the root. Hence, eigenvalues of M are symmetric with respect to the imaginary
axis of the s-plane. Recall that eigenvalues of any real matrix are always symmetric
with respect to the real axis. Hence, eigenvalues of M are symmetric with respect
to both real and imaginary axes. Furthermore,

(3.6.9)

Note that ,  and 2, will be zero only when  is a root
of . Because it has been assumed that there are no common factors between
a1(s) and a2(s), |a1(jω)| and |a2(jω)| cannot simultaneously be zero. As a result,

; i.e., none of the eigenvalues is on the imaginary axis of the s-plane.

Fact

The optimal poles are the stable eigenvalues of M (Kailath, 1980). 

THE SYMMETRIC ROOT LOCUS

From (3.6.6),

(3.6.10)

Hence,

(3.6.11)

Let
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(3.6.13)
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(3.6.14)

Equation 3.6.14 is in the standard root locus form (Kuo, 1995). When n − m is
even, the 180° root locus plot will be constructed. If n − m is odd, the 0° root locus
will be constructed.

Case I: High Cost of Control (r → ∞)

When the cost of control action is high, it is desired to use a small value of input
u(t). This can be achieved by selecting a very large value of r. When , Equation
3.6.6 yields

(3.6.15)

Because the optimal poles are the stable roots of , we have the following
two situations:

1. Stable open-loop system: If all the eigenvalues of the matrix  are in the
left half of the s-plane, optimal closed-loop poles are the same as open-
loop poles.

2. Unstable open-loop system: Optimal closed-loop poles are: (a) stable
open-loop poles and (b) reflections of unstable open-loop poles about the
imaginary axis.

Case II: Low Cost of Control (r → 0)

When , Equation 3.6.10 yields

 (3.6.16)

Hence, m optimal closed-loop poles are the stable roots of . They
are either open-loop left-half zeros or the reflections of open-loop right-half zeros
about the imaginary axis. The remaining (n − m) optimal closed-loop poles are
located near infinity. To find their locations, Equation 3.6.10 is written as follows
for large s by ignoring lower powers of s:

(3.6.17)

where
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(3.6.18)

From (3.6.17),

(3.6.19)

or

(3.6.20)

n −−−− m + 1 odd

(3.6.21)

Recall that

, where is an integer

Hence

; (3.6.22)

Substitution of (3.6.22) into (3.6.21) yields 2(n – m) roots of Equation 3.6.19.

n −−−− m + 1 even

(3.6.23)

Recall that

, where is an integer (3.6.24)

Hence

; (3.6.25)
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Substitution of (3.6.25) into (3.6.23) yields  roots of Equation 3.6.19.
To summarize, the 2(n – m) roots of equation (3.6.19) lie on a circle of radius

in a pattern described by (3.6.21) and (3.6.25). This pattern is

known as Butterworth configuration (Kailath, 1980).

EXAMPLE 3.12: NONCOLOCATED SENSOR AND ACTUATOR (BRYSON, 1979)

Consider the two-degree-of-freedom spring-mass system shown in Figure 3.11,
where the force  is applied on the left mass and the position of the right
mass  is the output. This model has been extensively used to simulate noncolo-
cated sensor and actuator in the structural vibration control.

The governing differential equations of motion are

(3.6.26)

(3.6.27)

Nondimensional time  is defined as

(3.6.28)

Therefore,

and (3.6.29a,b)

Hence, Equation 3.6.26 and Equation 3.6.27 can be written as

where (3.6.30)

(3.6.31)

FIGURE 3.11 A two-degree-of-freedom system.
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Taking the Laplace transform of (3.6.30) and (3.6.31) with zero initial conditions,

(3.6.32)

(3.6.33)

Some simple algebra yields the SISO transfer function:

(3.6.34)

Hence, the root locus equation is

(3.6.35)

or

(3.6.36)

The 180° root locus is shown in Figure 3.12. There are eight branches and all
of them end at infinity. Angles of asymptotes are

; (3.6.37)

All these asymptotes intersect the real axis at the origin of complex plane.

3.7 LINEAR QUADRATIC TRAJECTORY CONTROL

It is desired to find an optimal control law in such a way as to cause the output
to track or follow a desired trajectory . Hence, the objective function (3.5.2) is
modified (Sage and White, 1977) to be

(3.7.1)

where  is the trajectory error defined as
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(3.7.2)

The state space equation (3.5.1) is modified (Sage and White, 1977) to include
a deterministic external input or the plant noise vector :

(3.7.3)

From Equation 3.4.11, the Hamiltonian H is defined as

(3.7.4)

The optimality condition (3.4.16) yields

(3.7.5)

Equation 3.4.12 yields

(3.7.6)

FIGURE 3.12 A symmetric root locus plot.
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with the terminal condition

(3.7.7)

In order to determine the closed-loop control law, the transformation (3.5.14) is
modified (Sage and White, 1977) to be

(3.7.8)

where  is to be determined. Differentiating (3.7.8),

(3.7.9)

Using (3.7.3), (3.7.5), and (3.7.6),

(3.7.10)

Using (3.7.8), the terminal condition (3.7.7) can be written as

(3.7.11) 

The solution of (3.7.10) can be obtained by solving it as two separate problems:

with

(3.7.12)

and

with

λλ ηη( ) ( )[ ( ) ( )]t C S t C t tf
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(3.7.13)

Lastly, from (3.7.5) and (3.7.8), the control law is

(3.7.14)

The state feedback gain matrix  is the same as that given by (3.5.19). Hence,
the solution of the linear quadratic trajectory control problem is composed of two
parts: (1) a linear regulator part and (2) a correction term containing . The
computation of  requires the solution of (3.7.13) backward in time. Hence, it is
required that and are exactly known a priori for all time t. From the
disturbance rejection point of view, the control law can be described to be noncausal.

EXAMPLE 3.13: OPTIMAL CONTROL OF SUN TRACKING SOLAR CONCENTRATORS

(HUGHES, 1979)

A solar collector consists of a concentrator and a receiver. As a concentrator, point
focusing parabolic dishes have been used. It reflects the sun’s energy towards its
focal point and the receiver accepts the concentrated energy for further conversions.
The axis of the paraboloid must be pointed at the sun in order to produce the required
flux densities at the receiver aperture. Whenever there is a pointing error, energy is
lost; hence, this energy loss is minimized by an appropriate control technique.

A linear model of a single axis of the concentrator, which is driven by an electric
motor, is shown in Figure 3.13, where

: Collector’s line of sight (LOS)
 Sun’s position
 Command input to the motor

Damping ratio
System gain
Natural frequency

The state space model of the system can be written as

(3.7.15)

(3.7.16)

where

ξξ ηη( ) ( ) ( )t C S t tf
T

f f=

u x x( ) [ ( ) ( ) ( )] ( ) ( )t R B S t t t K t t R BT T= − − = − +− −1 1ξξ ξξ(( )t

K t( )

ξξ( )t
ξξ( )t

w( )t ηη( )t

θ0 ( )t
θi t( ) :
u t( ) :
ξ:
Ks:
ωn:

d

dt
A u t

x
x b= + ( )

y x( ) ( )t C t=
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; ;

; and (3.7.17)

Let be a vector of the sun’s position, velocity, and acceleration, i.e.,

FIGURE 3.13 A model for sun tracking solar concentrator.

FIGURE 3.14 State space trajectories (___ u = 1, ---- u = 1). 
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(3.7.18)

To minimize the energy loss, the output vector  should follow the sun’s
trajectory  as closely as possible. Hence, a linear servomechanism or LQ track-
ing problem is solved. The objective function is

(3.7.19)

where

(3.7.20)

 is the time of sunrise, and  is the time of sunset. Using (3.7.14), the control
law is given as 

(3.7.21)

The variable  is obtained by solving Equation 3.7.13 with . Because
the desired trajectory  changes every day, the variable  has to be computed
every day. 

3.8 FREQUENCY-SHAPED LQ CONTROL

Let the quadratic objective function be

(3.8.1)

Using Parseval’s Theorem (Appendix B),

(3.8.2)

Modify the objective function by making  and functions of the frequency ω
(Gupta, 1980):

ηη( )t
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��

y( )t
ηη( )t

J Q ru dtT

t tf

= +
−
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2

2
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0

z z

z y( ) ( ) ( )t t t= −ηη

t0 t f

u t K t t r b tT( ) ( ) ( ) ( )= − + −x 1 ξξ

ξξ( )t w( )t = 0
ηη( )t ξξ( )t

I t Q t t R t dtT T= +
∞

∫ x x u u( ) ( ) ( ) ( )
0
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2π

ω ω ω ω ωx x u u( ) ( ) ( ) ( )

Q R
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(3.8.3)

Assume that and are rational functions of .  Factoring these matrices,

(3.8.4)

(3.8.5)

Let the rank of the matrix be p. Then, will be an p × n matrix. For
the existence of the solution of an LQ problem, the matrix has to be of full
rank. Therefore, will be an m × m matrix

Define

(3.8.6)

where

(3.8.7)

Similarly,

(3.8.8)

where

(3.8.9)

The objective function (3.8.3) can be expressed as

(3.8.10)

Using Parseval’s Theorem (Appendix B),

(3.8.11)

I j Q j j R j dT T= − + −
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From (3.8.7),  is the output of the linear system with the transfer function matrix
and input ; i.e.,

(3.8.12)

Similarly, from (3.8.9),  is the output of the linear system with the transfer
function matrix and input ; i.e.,

(3.8.13)

Let the state space model of the MIMO system (3.8.12) be

(3.8.14)

(3.8.15)

Similarly, let the state space model of the MIMO system (3.8.13) be

(3.8.16)

(3.8.17)

Define the augmented state vector :

(3.8.18)

Let the augmented state space model be

(3.8.19)

where

and (3.8.20)

Now, it can be shown that
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(3.8.21)

where

, , and (3.8.22)

Therefore, the objective function (3.8.11) is

(3.8.23)

Using (3.5.29), the optimal control law will be

(3.8.24)

where

(3.8.25)

and

(3.8.26)

Representing  as

(3.8.27)

(3.8.28)

EXAMPLE 3.14: A SIMPLE HARMONIC OSCILLATOR

Consider a second-order system:

(3.8.29)

for which the state equations are
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(3.8.30)

(3.8.31)

where

(3.8.32)

and (3.8.33a,b)

Standard LQ Control

Let the objective function be

(3.8.34)

The optimal state feedback control law is

(3.8.35)

where k is the state feedback gain vector.
For  rad/sec, 

(3.8.36)

and the eigenvalues of the optimal closed-loop system are . Therefore,
if the disturbance to the system is a sinusoidal function with the frequency equal to
10 rad/sec, its effects will be extremely large.

Frequency-Shaped LQ Control

Let the objective function be

(3.8.37)

where
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(3.8.38)

For a small value of the damping ratio ,  will be extremely large, and
as a result the response of the optimal closed-loop system is expected to be insensitive
to external disturbance at the frequency . Now, let

(3.8.39)

The state space realization of the system (3.8.39) can be written as

(3.8.40)

and

(3.8.41)

Combining (3.8.30) and (3.8.40),

(3.8.42)

From (3.8.39), the objective function (3.8.37) can be written as

(3.8.43)

Equation 3.8.42 and Equation 3.8.43 constitute a standard LQ control problem. The
optimal state feedback control law is

(3.8.44)

where  is the optimal state feedback gain vector. For  rad/sec and , 

(3.8.45)
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And the eigenvalues of the optimal closed-loop system are
and . Therefore, if the disturbance to the system is a sinusoidal
function with frequency 10 rad/sec, its effect will be small.

3.9 MINIMUM-TIME CONTROL OF A LINEAR 
TIME-INVARIANT SYSTEM

Consider the linear system

(3.9.1)

It is desired to apply a control , such that the system reaches the origin of
the state space, in a minimum time when inputs must satisfy the following constraints:

; (3.9.2)

If the final time is denoted by , the objective is to minimize the following
objective function:

(3.9.3)

Therefore, the Hamiltonian H is

(3.9.4)

The adjoint equations are

(3.9.5)

The solution of (3.9.5) is

(3.9.6)

Substituting (3.9.6) into (3.9.4),

(3.9.7)

− ±1 217 10 9791. . j
− ±1 2272 8 96921. . j
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Therefore,

(3.9.8)

where

(3.9.9)

(3.9.10)

(3.9.11)

Using (3.4.17) and (3.4.18), the optimal control inputs are

(3.9.12)

NORMALITY OF LINEAR SYSTEMS

When  over a finite interval , it is called a singular control case.
This also implies that higher derivatives of , with respect to time, are zero over
this finite interval. Therefore, for ,

(3.9.13)

Equation 3.9.13 can be expressed as

(3.9.14)
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(3.9.15)

is the controllability matrix with respect to .
It should be noted that  because  otherwise; i.e.,  and the

solution will not be optimal (Section 3.4.2). Therefore, for Equation 3.9.14 to be true,

(3.9.16)

This analysis implies that there are no finite intervals on which , pro-
vided  is not singular for any i, i = 1, 2, … m. A system for which  is not
singular for any i is called normal (Gopal, 1984).

EXISTENCE AND UNIQUENESS THEOREMS ON MINIMUM-TIME 
CONTROL (GOPAL, 1984)

1. If the linear time-invariant system is controllable, and if all the eigenvalues
of A have nonpositive real parts, a time-optimal control exists that transfers
any initial state to the origin of the state space in a minimum time.

2. If the linear time-invariant system is normal, and if the time-optimal
control exists, it is unique.

3. If eigenvalues of the matrix A are real and a unique time-optimal exists,
each control component can switch at the most (n–1) times, where n is
the dimension of the state space.

EXAMPLE 3.15: TIME-OPTIMAL CONTROL OF A RIGID BODY OR A DOUBLE

INTEGRATOR SYSTEM

Consider the system

(3.9.17)

where

(3.9.18)

and

(3.9.19)
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and

u ≤ 1
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The objective is to find the optimal control u(t), such that the system reaches the
origin of the state space in a minimum time from an initial state .

First, note that eigenvalues of A are 0 and 0, which are real and nonpositive.
Furthermore,

(3.9.20)

Therefore, the system is controllable and normal as well. Application of the existence
and uniqueness theorem indicates that a unique optimal control exists with at the
most one switching.

Hamiltonian (3.9.21)

(3.9.22)

Hence, the optimal control input is given by

(3.9.23)

Equation 3.9.23 can be expressed as

(3.9.24)

Adjoint equations are

(3.9.25)

(3.9.26)

The solution of (3.9.25) is

(3.9.27)

Substituting (3.9.27) into (3.9.26),

x( )0

C =
⎡

⎣
⎢

⎤

⎦
⎥

0 1

1 0

H x u= + +1 1 2 2λ λ

∂
∂

=H

u
λ2

u t
if

if
( ) =

− >
+ <

⎧
⎨
⎩⎪

1 0

1 0
2

2

λ
λ

u t t( ) sgn( ( ))= − λ2

d

dt

H

x

λ1

1

0= − ∂
∂

=

d

dt

H

x

λ λ2

2
1= − ∂

∂
= −

λ λ1 1 0( ) ( )t =
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158 Linear Systems: Optimal and Robust Control

(3.9.28)

Because states are specified at initial and final time, there are no constraints on
adjoint variables. Hence, state equations must be used to determine adjoint variables. 

If , the solution to (3.9.17) is

(3.9.29)

(3.9.30)

Eliminating t between (3.9.29) and (3.9.30),

(3.9.31)

Equation 3.9.31 describes state space trajectories (which are parabolas) when .
These trajectories are shown as solid curves in Figure 3.14.

If , solution to (3.9.17) is

(3.9.32)

(3.9.33)

Eliminating t between (3.9.32) and (3.9.33),

(3.9.34)

Equation 3.9.34 describes state space trajectories (which are parabolas) when .
These trajectories are shown as dashed curves in Figure 3.14.

Because it is known that the optimal control input can only have one switching
at the most, only four cases exist:

Case I:

, (3.9.35)

λ λ λ2 1 0 0
2

( ) ( ) ( )t t= − +

u = 1

x t t x2 2 0( ) ( )= +

x t
t

x t x1

2

2 12
0 0( ) ( ) ( )= + +

x
x

x
x

1
2
2

1
2

2

2
0

0
2

= + −( )
( ( ))

u = 1

u = −1

x t t x2 2 0( ) ( )= − +

x t
t

x t x1

2

2 12
0 0( ) ( ) ( )= − + +

x
x

x
x

1
2
2

1
2

2

2
0

0
2

= − + +( )
( ( ))

u = −1

u = 1 0 ≤ ≤t t f
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Initial states must be such that the system is on segment BO in Figure 3.14.

Case II:

, (3.9.36)

Initial states must be such that the system is on segment AO in Figure 3.14. 

Case III:

(3.9.37)

Initial states must be such that the system will follow one of solid parabolas,
which intersect the segment AO. At the switching instant , the system will
reach the segment AO and go to the origin of the state space along the
segment AO.

Case IV:

(3.9.38)

Initial states must be such that the system will follow one of dashed parabolas,
which intersect the segment BO. At the switching instant , the system will
reach the segment BO and go to the origin of the state space along the
segment BO.

The switching curve is composed of segments AO and BO (Figure 3.14). For
segment AO,

(3.9.39)

Equation 3.9.39 implies the following equation for the curve AO:

(3.9.40)

For segment BO,

u = −1 0 ≤ ≤t t f

u
t t

t t t
s

s f

=
+ ≤ ≤
− < ≤

⎧
⎨
⎪

⎩⎪

1 0

1

ts

u
t t

t t t
s

s f

=
− ≤ ≤
+ < ≤

⎧
⎨
⎪

⎩⎪

1 0

1

ts

x
x

1
2

2

0
0

2
0( )

( ( ))+ =

x t x t1 2
21

2
( ) ( ( ))= −
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(3.9.41)

Equation 3.9.41 implies the following equation for the curve BO:

(3.9.42)

Combining (3.9.40) and (3.9.42), the equation of the switching curve AOB can be
expressed as

 (3.9.43)

On the basis of (3.9.43), a switching function (Gopal, 1984) is defined as follows:

(3.9.44)

If , x(t) lies above the curve AOB. In this case,  because dotted
parabolas are directed toward the switching curve.

If , x(t) lies below the curve AOB. In this case,  because solid
parabolas are directed toward the switching curve.

If  and , x (t) lies on the curve AO. In this case, . 
If  and , x (t) lies on the curve BO. In this case, .

In summary, the time-optimal control in feedback form is

(3.9.45)

The structure of the optimal feedback control system is shown in Figure 3.15.

FIGURE 3.15 Implementation of bang-bang control via state feedback.
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EXAMPLE 3.16: MINIMUM-TIME CONTROL OF A SYSTEM WITH RIGID AND

FLEXIBLE MODES

The differential equations of motion of the mechanical system shown in Figure
3.16 are

(3.9.46)

Natural frequencies are found to be

(3.9.47)

and

(3.9.48)

Modal vectors are as follows:

 corresponding to  (Rigid mode) (3.9.49)

and

 corresponding to  (Flexible mode) (3.9.50)

Now, the displacement vector can be represented as a linear combination of these
modal vectors:

(3.9.51)

FIGURE 3.16 A system with rigid and flexible modes.
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where

(3.9.52)

Substituting (3.9.51) into (3.9.46), and premultiplying both sides by ,

(3.9.53)

and

(3.9.54)

where . Defining state variables as

, , , and (3.9.55)

State equations are

(3.9.56)

where

and (3.9.57)

Let the initial and final states be

and (3.9.58a and b)

and

Φ =
−

⎡

⎣
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1 1

1 1
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��r
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1
2
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�� �r r r
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22
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+ + =ςω ω
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x L
T
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(3.9.59)

The minimum time control will be bang-bang and unique. However, because all
eigenvalues are not real, the maximum number of switching is not necessarily (n–1).
Let switching instants be , i = 1, 2, …, k, and initially  as the position of
the system has to be increased. Solving state equations with this input and initial
condition (3.9.58a), and then imposing the final condition (3.9.58b), the following
nonlinear equations (Pao and Singhose,1998; Singhose and Pao, 1997) are obtained:

(3.9.60)

(3.9.61)

(3.9.62)

(3.9.63)

where . There are many solutions of , i = 1, 2, …, k, that satisfy
(3.9.60) to (3.9.63). However, only one of them will satisfy Equation 3.9.12.

EXAMPLE 3.17: INPUT SHAPING

Consider the prototype second-order system (Kuo, 1995):

(3.9.64)

where , , and u(t) are the damping ratio, undamped natural frequency, and the
reference input, respectively. The reference input is often a unit step function for
which the response of an underdamped system is

; (3.9.65)

u t( ) ≤ α

ti u t( ) = α

( ) ( )− + − −

=
∑1 2 1 1

1

k
f

i

i

k

it t

( ) ( ) ( )− + − =+

=
∑1 2 1

41 2

1

2k
f

i

i

k

it t
mL

α

1 1 2 11 1 1+ − + −+( ) cos( ) ( ) cos(k t
d f

i t
de t ef iςω ςωω ω tti

i

k

)
=

∑ =
1

0

( ) sin( ) ( ) sin(− + −+1 2 11 1 1k t
d f

i t
d ie t e tf iςω ςωω ω ))

i

k

=
∑ =

1

0

ω ω ςd n= −1 2 ti

�� �y y y u tn n n+ + =2 2 2ξω ω ω ( )

ξ ωn

y t e t e tn nt
d

t
d( ) cos sin= − −− −1 ξω ξωω χ ω t ≥ 0

9217_C003.fm  Page 163  Thursday, December 21, 2006  7:44 AM



164 Linear Systems: Optimal and Robust Control

where

and (3.9.66a,b)

The value of the steady state error is guaranteed to be zero. However, there is a large
amount of oscillation, and the settling time can be large for a small damping level.

The concept of input shaping is to modify the command input so that that the
system reaches the final position with zero oscillation. For the staircase input shown
in Figure 3.17, the response can be written as

(3.9.67)

where  is a unit step function applied at .
For , 

(3.9.68)

where

FIGURE 3.17 A staircase input.
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(3.9.69)

(3.9.70)

(3.9.71)

The conditions for g(t) to be zero for  are

(3.9.72)

(3.9.73)

Equation 3.9.72 and Equation 3.9.73 are equivalent to the following well-known
conditions (Singer and Seering, 1990):

(3.9.74)

(3.9.75)

Consider the case of . Without any loss of generality, assume that

and (3.9.76a and b)

In this case, Equation 3.9.74 and Equation 3.9.75 can be solved for two unknowns.
The results are
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, , and (3.9.77a, b, and c)

Therefore, from (3.9.68),

for (3.9.78)

In other words, the system reaches the desired value without any oscillation
for , when the input u(t) is as follows:

(3.9.79)

Time Optimality of the Shaped Input

Define

, , (3.9.80)

The state equations are

(3.9.81)

where

(3.9.82)

and (3.9.83a,b)

Now, initial and final states are

and (3.9.84a,b)

where  is the final time. Another constraint for a positive shaper is that the input
u(t) should be between 0 and 1. This implies the following constraint on v(t):

(3.9.85)

t
d

2 = π
ω

A
K1

1
1

=
+

K e=
−

−

ξπ

ξ1 2

y t( ) = 1 t t> 2

t t> 2

u t
K t

t
d

d

( )
( ) ; /

; /
= + < ≤

>

⎧
⎨
⎪

⎩⎪

−1 0

1

1 π ω
π ω

x y1 1= − x y2 = � v u= − 1

�x x b= +A v t( )

x = ⎡⎣ ⎤⎦x x
T

1 2

A
n n

=
− −

⎡

⎣
⎢

⎤

⎦
⎥

0 1

22ω ξω
b =

⎡

⎣
⎢

⎤

⎦
⎥

0
2ωn

x( )0 1 0= −⎡⎣ ⎤⎦
T

x( )t f

T
= ⎡⎣ ⎤⎦0 0

t f

− ≤ ≤1 0v t( )

9217_C003.fm  Page 166  Thursday, December 21, 2006  7:44 AM



State Feedback Control and Optimization 167

For minimum-time control, the Hamiltonian H is defined as follows:

(3.9.86)

where adjoint variables  and  satisfy the following equations:

(3.9.87)

(3.9.88)

and

(3.9.89)

Therefore, the minimum-time control will depend on the sign of . Differenti-
ating (3.9.88) and using (3.9.87),

(3.9.90)

Solving (3.9.90),

(3.9.91)

From (3.9.88),

(3.9.92)

Substituting (3.9.92) into (3.9.91),

(3.9.93)
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168 Linear Systems: Optimal and Robust Control

and final conditions of states. To achieve the control input (3.9.79) that leads to
satisfaction of initial and final conditions of states,

and (3.9.94)

Then, from (3.9.93),

for (3.9.95)

and

for (3.9.96)

The control input (3.9.79) is minimum-time and bang-bang if the constraint (3.9.85)
is modified as follows:

(3.9.97)

EXERCISE PROBLEMS

P3.1 Consider a linear system described by the following transfer function:

Design a state feedback controller such that the eigenvalues of the closed-
loop system are at –2 and –3.

P3.2 Consider a linear system described by the following state space equation:

i. Find the open-loop eigenvalues.

λ2 0 0( ) = λ1 0 0( ) <

λ λ ωξω
2 1 0 0( ) ( ) sint e tnt

d= − > 0 < <t
d

π
ω

λ λ ωξω
2 1 0 0( ) ( ) sint e tnt
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ωd d
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− + + ≤ ≤−1 1 01( ) ( )K v t

y s

u s s s
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+

10
1

dx

dt
x1

2=

dx

dt
x u t2

2= − + ( )

y t x t x t( ) ( ) ( )= +1 2
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ii. Find the state feedback gain vector such that both eigenvalues for the
closed-loop system are located at –2.

iii.Let , and and  be as calculated in 

part ii. Furthermore, y(0) = 0 and .

a. Determine  and 
b. Determine the response  and  via the matrix exponential.

P3.3 Consider a linear system described by the transfer function

a. Develop a state space realization and construct the block diagram.
b. Find the state feedback gain vector such that eigenvalues of the closed-

loop system are located at –2, –3, and –4.
c. Examine the controllability and observability of the closed-loop system.

P3.4 Consider the single-link flexible robot manipulator (Figure P3.4) which
is driven at one end by a DC motor. The input torque is represented
by . Assume that the response of the system can be adequately rep-
resented by considering only two modes of vibration. Parameters for the
manipulator are given as follows:

, L = 1.05 m

m = 0.4252 kg, Iα = 0.15628 kg-m2

where  Young’s modulus of elasticity,  area moment of inertia
of the beam cross-section,  length of the beam,  mass of the
beam per unit length,  mass of the beam, and  mass moment
of inertia of the beam about the torque axis = mL2/3.

FIGURE P3.4 A single-link flexible manipulator.
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The governing partial differential equation (PDE) of motion is

where 

with the following boundary conditions:

The solution of this PDE can be expressed as

where  corresponds to the rigid body mode with

and

with  are mode shapes of a pinned-free beam, which are
expressed as

where  is the solution of the following transcendental equation:
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Natural frequencies  of the pinned-free beam are related to  as follows:

Finally, it can be shown that

;

Design a full state feedback controller such that all the closed-loop poles
are located at , , , and . Choose such that the
damping ratio in each vibratory mode is higher than 0.1.

P3.5 Consider a linear system for which the transfer function is given as

i. Construct a suitable state space realization and find the state feedback
gain vector such that the closed-loop poles are located at –2 and –3.

ii. Consider the control law , where
and  are states. Can a nonzero value of the steady state output be
obtained? Explain your answer. 

iii.Let . Determine the zeros of the closed-
loop transfer function.

P3.6 Consider the following system:

where w is a scalar constant disturbance of unknown magnitude and u(t)
is the control input.
a. Let u(t) = –k x(t). Find an expression for the steady state value of x

and show that the steady state value of x cannot be zero for a finite
value of k.

b. Develop a suitable state feedback control law such that
as for finite values of state feedback gains. Justify your answer. 

P3.7 Consider a system with the following transfer function matrix:

ω i αi

ω α
ρi

iEI2
4

=

d q

dt

u t

I

2
0

2
= ( )

α

d q

dt
q

a
u ti

i i
i

i

2

2
2 0+ =ω ψ

ρ

/ ( )
( ) i = ∞1 2, , ,…

−σ −σ − ±σ ωj 1 − ±σ ωj 2 σ

y s

u s
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s s

( )
( ) ( )( )

=
− +1 1

u t v t k x t k x t( ) ( ) ( ) ( )= − −1 1 2 2 x t1( )
x t2 ( )

u t v t k x t k x t( ) ( ) ( ) ( )= − −1 1 2 2
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dt
x t u t w= − + +( ) ( )

x t xd( ) → ≠ 0
t → ∞
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172 Linear Systems: Optimal and Robust Control

 G(s) = [0 1] 

i. Find a state space realization in controller form.
ii. Determine the state feedback gain matrix corresponding to the con-

troller form state space realization such that the closed-loop eigenval-
ues are located at –1 and –2 and the closed-loop eigenvectors are
[1 0]T and [0 1]T

 .

P3.8 Consider the flexible tetrahedral truss structure (Appendix F) with collo-
cated sensors and actuators. The controller is to be designed on the basis
of the first four modes of vibration.

Design a full state feedback controller such that all the closed-loop
poles are located at ; i = 1, 2, 3, and 4. Find at least two state
feedback gain matrices.

P3.9 Find the open-loop optimal control inputs (and ) for the system

which minimizes

Given:  and .
P3.10 The system 

is to be transferred from x(0) = 5 to x(4) = 0 such that

− −⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−
s s

s

2
2 2

0

1

− ±0 1. ω ωi ij

u t1( ) u t2 ( )

dx

dt
x u1

2 1= +

dx

dt
u t2

2= ( )

I u t u t dt= +∫1
2 1

2

0

2

2
2[ ( ) ( )]

x x1 20 0 1( ) ( )= = x1 2 0( ) =

dx

dt
x t u t= − +( ) ( )

I u t dt= ∫1
2

2

0

4

( )
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is minimized. Find the optimal control input u(t).
P3.11 Consider the Example 3.9. It is desired to move the load shaft with inertia

1 kg-m2 by 30° in 2 sec and minimize the work done by the DC motor.
Furthermore, this load shaft must start from rest and end at rest. The
parameters for the DC motor are as follows: = 0.04297 V-sec/rad,
= 1.025 Ω, and = 0.04297 N-m/A.
i. Set up a suitable objective function such that the optimal controller

can be implemented in a closed-loop fashion. Find the optimal feed-
back gain vector. 

ii. Find the open-loop optimal input voltage for the DC motor such that
the constraints on final states are exactly satisfied. Compare the optimal
control input to that for item i.

P3.12 Consider the following system:

It is desired to develop an optimal state feedback law such that the
following objective function is minimized:

a. For a finite time , determine the equation for finding the optimal state
feedback gain.

b. If , what is the optimal state feedback gain?
P3.13 Consider the second-order system

and the performance index

a. Set up the Riccati differential equations with proper boundary conditions. 

kb Ra

ki

dx

dt
x t u t= +( ) ( )

I x t u t dt

t f

= +∫1
2

2

0

2[ ( ) ( )]

t f

t f → ∞

dx

dt
x1

2=

dx

dt
x x u t2

1 22= − − + ( )

I x x t x t x t x t u= + + + +∫20 5 21
2

1
2

2
2

0

5

1 2
2( ) ( ) ( ) ( ) ( ) (tt dt)
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174 Linear Systems: Optimal and Robust Control

b. Solve the Riccati differential equation using the Matlab routine ode23
or ode45, and find the time-varying state feedback gain vector and the
closed-loop response. Also, find the optimal value of I. 

P3.14 Consider a plant consisting of a DC motor, the shaft of which has the
angular velocity . The DC motor is driven by the input voltage u(t).
The dynamics of the deviation in the angular speed from its constant
nominal value  is given by

where  is the voltage corresponding to . A feedback control system
is to be designed such that the following objective function is minimized:

; r > 0

i. Find the optimal state feedback gain by solving the algebraic Riccati
equation.

ii. Using the gain found in item i, find the response of the closed-loop
system for a specified .

iii.Assuming that = 1 unit, determine the value of r such that
the magnitude of optimal  never exceeds 1 unit.

P3.15 An unstable spring-mass-damper is described by the following differential
equation:

where u(t) is the control input. It is desired to design a state feedback
control system such that

is minimized. Assuming , find the optimal location of poles and
the corresponding state feedback gain vector.

P3.16 A simple spring-mass-damper system is shown in Figure P3.16a. Because
of some external disturbances, the initial displacement x(0) and veloc-

ity  are not equal to zero. It is desired to introduce additional spring

ω( )t

ω

d

dt
t u t u

ω ω ω= − − + −0 5. ( ( ) ) ( ( ) )

u ω

I t r u t u dt= − + −
∞

∫ [( ( ) ) ( ( ) ) ]ω ω
0

2 2

ω ω( )0 −
ω ω( )0 −

u t u( ) −

d x

dt

dx

dt
x u t

2

2
− + = ( )

I x ru dt= +
∞

∫ 2 2

0

r → ∞

dx

dt
( )0
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(stiffness = k1) and viscous damper (damping coefficient = c1) such that
the following objective function is minimized:

;

where u(t) is the force acting on the unit mass because of additional spring
and viscous damper (Figure P3.16b). Calculate the optimal values of k1

and c1.

P3.17 Consider a plant with the following transfer function:

It is desired to develop a state feedback law such that the following
objective function is minimized:

FIGURE P3.16A A spring-mass system.

FIGURE P3.16B Additional spring and damper. 

m
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176 Linear Systems: Optimal and Robust Control

where r > 0

a. Draw the symmetric root locus plot.
b. Find the optimal closed-loop poles when .
c. Find the optimal closed-loop poles when .

P3.18 Consider the system shown in Figure 5.11.4 in which the torque T(t) is
the control input. Design a full state feedback controller such that the
following objective function is minimized:

where r > 0

Construct the symmetric root locus plot to determine optimal closed-loop
pole locations. Show the performance of your controller as r changes from
0 to ∞.

Parameters (ECP Manual):

J1 = 0.0024 kg-m2, J2 = 0.0019 kg-m2, J3
 = 0.0019 kg-m2

k1 = k2 = 2.8 N-m/rad

c1 = 0.007 N-m/rad/sec, c2 = c3 = 0.001 N-m/rad/sec

P3.19 Refer to Example 3.11. Select  and .
a. Find optimal state feedback gain for three different values

of , , and . In each case, assume that the initial condi-
tion on state vector is  and plots , , and
u(t) vs. time. Discuss your results.

b. Refer to Equation 3.5.88 and Figure 3.10. For all the three aforemen-
tioned values of , find  and . Also, plot f(t) vs. time for initial
state vector chosen in part a. Discuss your results.

P3.20 The following model is developed for longitudinal pressure oscillation in
a uniform chamber (Yang et al., 1992):

; i = 1, 2, …, n

I y t ru t dt= +
∞

∫1
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2 2
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State Feedback Control and Optimization 177

where  and  are the mean pressure and the pressure excitation
supplied by the actuator#  located at , respectively. The normal mode#
i of the chamber is described by

where  is the length of the chamber.

a. Develop a state space realization and find the open-loop poles with
n = 4.

b. Select a suitable location of a single actuator with n = 4, and find the
state feedback gain vector to locate the poles such that closed-loop
frequencies are same as those of the open loop, and there is at least a
5% damping ratio in each mode.

c. With the location of the actuator in part b, draw the symmetric root
locus for the following objective function:

d. Select suitable locations for two actuators, and find a state feedback
gain matrix to locate the poles, such that closed-loop frequencies are
same as those of open loop, and there is at least a 5% damping ratio
in each mode.

e. With the location of the actuator in part b, draw the symmetric root
locus for the following objective function:

Di� � = 1 � = 2 � = 3 � = 4

i = 1 –0.01 0.007 –0.001 0.007
i = 2 0.01 0.1 0.007 –0.001
i = 3 –0.01 0.01 0.75 0.008
i = 4 0.02 –0.005 0.01 1.50

Ei� � = 1 � = 2 � = 3 � = 4

i = 1 –0.005 –0.005 0.0025 0.0016
i = 2 –0.0025 –0.015 0.01 0.01
i = 3 –0.005 0.0 –0.02 0.02
i = 4 0.01 0.02 0.02 –0.025
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178 Linear Systems: Optimal and Robust Control

P3.21 Consider the flexible tetrahedral truss structure (Appendix F). The con-
troller is to be designed on the basis of first four modes of vibration.
Design a full state feedback LQR controller such that

is minimized. Demonstrate your controller performance for two values
of  0.1 and 1.

P3.22 Consider the single-link flexible manipulator described in Problem P3.4.
Consider two vibratory modes for the link. It is given that u < 1 N-m. If
the link is to be rotated by 30°, find the switching instants and move time
for the bang-bang (minimum-time) control. The link starts from the rest
and there should not be any vibration when the arm reaches its final position.
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