Definition of the Natural Logarithm Function

The natural logarithm of a positive number x, written as $\ln x$, is defined as an integral.

$$\ln x = \int_1^x \frac{1}{t} dt, \qquad x > 0$$

From the Zero Width Interval Rule for definite integrals, we also have:

f^{x}	X	ln x
If $0 < x < 1$, then $\ln x = \int_1^1 \frac{1}{t} dt = -\int_x^1 \frac{1}{t} dt$	0	undefined
gives the negative of this area. $\int_{-1}^{1} dt$	0.05	-3.00
gives this area. $y = \ln x$	0.5	-0.69
$y = \frac{1}{x}$	1	0
$x \longrightarrow x$	2	0.69
If $x = 1$, then $\ln x = \int_{-1}^{1} \frac{1}{t} dt = 0$.	3	1.10
$y = \ln x$	4	1.39
	10	2.30

$\ln 1 = \int_1^1 \frac{1}{t} dt = 0$

The Derivative of $y = \ln x$

$$\frac{d}{dx}\ln x = \frac{d}{dx}\int_{1}^{x} \frac{1}{t}dt = \frac{1}{x}$$

For every positive value of x, we have:

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

If u is a differentiable function of x whose values are positive, so that $\ln u$ is defined, then applying the Chain Rule we obtain:

$$\frac{d}{dx}\ln u = \frac{1}{u} \cdot \frac{du}{dx}$$

Example 1: Find derivatives of the following functions:

a) $\frac{d}{dx} \ln 2x = \frac{1}{2x}(2) = \frac{1}{x}$

Notice from Example 2a that the function $y = \ln 2x$ has the same derivative as the function

- $y = \ln x$.
- b) $\frac{d}{dx}\ln(x^2+3) = \frac{1}{x^2+3}(2x) = \frac{2x}{x^2+3}$
- c) $\frac{d}{dx}\ln|x|$, $x \neq 0$

$$\frac{1}{|x|} \cdot \frac{x}{|x|} = \frac{x}{x^2} = \frac{1}{x}$$

Notice that the derivative of $|x| = 1 = \frac{x}{|x|}$

Algebraic Properties of the Natural Logarithm

For any numbers b > 0 and x > 0, the natural logarithm satisfies the following rules:

- 1. Product Rule: $\ln bx = \ln b + \ln x$
- 2. Quotient Rule: $\ln \frac{b}{x} = \ln b \ln x$
- 3. Reciprocal Rule: $\ln \frac{1}{x} = -\ln x$
- 4. Power Rule: $\ln x^r = r \ln x$ For r rational

Example 2: Interpreting the properties of Logarithms

- a) $\ln 6 = \ln(2 * 3) = \ln 2 + \ln 3$
- b) $\ln 4 \ln 5 = \ln \frac{4}{5} = \ln 0.8$
- c) $\ln \frac{1}{8} = -\ln 8 = -\ln 2^3 = -3\ln 2$

Civil Engineering Department

Lecture 2

Example 3: Applying the properties of Logarithms to function formulas

- a) $\ln 4 + \ln(\sin x) = \ln(4\sin x)$
- b) $\ln \frac{x+1}{2x-3} = \ln(x+1) \ln(2x-3)$
- c) $\ln(\sec x) = \ln \frac{1}{\cos x} = -\ln \cos x$
- d) $\ln \sqrt[3]{x+1} = \ln(x+1)^{1/3} = \frac{1}{3}\ln(x+1)$

The Integral $\int (1/u) du$

If u is a differentiable function that is never zero, then:

$$\int \frac{1}{u} du = \ln|u| + C$$

Whenever u = f(x) is a differentiable function that is never zero, we have that du = f'(x) dx and:

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

Example4: Calculate the following integral:

$$\int_{-\pi/2}^{\pi/2} \frac{4\cos\theta}{3+2\sin\theta} d\theta$$

Let: $u = 3 + 2\sin\theta$, $du = 2\cos\theta$

Therefore,

$$\int_{1}^{5} \frac{2}{u} du = 2 \ln|u|]_{1}^{5} = 2 \ln|5| - 2 \ln|1| = 2 \ln 5$$

The Integrals of tan x, cot x, sec x, and csc x

To integrate these trigonometric functions,

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\ln|\cos x| + C = \ln \frac{1}{|\cos x|} + C = \ln|\sec x| + C$$
$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \ln|\sin x| + C = -\ln|\csc x| + C$$

To integrate sec x, we multiply and divide by (sec $x + \tan x$) as an algebraic form of 1.

Civil Engineering Department

Lecture 2

$$\int \sec x \, dx = \int \sec x \cdot \frac{\sec x + \tan x}{\sec x + \tan x} \, dx = \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} = \ln|\sec x + \tan x| + C$$

For csc x, we multiply and divide by $(\csc x + \cot x)$.

$$\int \csc x \, dx = \int \csc x \cdot \frac{\csc x + \cot x}{\csc x + \cot x} \, dx = \int \frac{\csc^2 x + \csc x \cot x}{\csc x + \cot x} = -\ln|\csc x + \cot x| + C$$

Example 5: Calculate the following integral:

$$\int_0^{\pi/6} \tan 2x \, dx = \int_0^{\pi/3} \tan u \, \frac{du}{2} = \frac{1}{2} \int_0^{\pi/3} \tan u \, du = \frac{1}{2} \ln|\sec u| \Big]_0^{\pi/3} = \frac{1}{2} (\ln 2 - \ln 1) = \frac{1}{2} \ln 2$$

Example 6: Using the Logarithmic Differentiation, find dy/dx if:

$$y = \frac{(x^2 + 1)(x + 3)^{1/2}}{x - 1}, \qquad x > 1$$

Solution: the Natural logarithm of both sides is taken:

$$\ln y = \ln \frac{(x^2 + 1)(x + 3)^{1/2}}{x - 1}$$
$$\ln y = \ln(x^2 + 1)(x + 3)^{1/2} - \ln(x - 1)$$
$$\ln y = \ln(x^2 + 1) + \ln(x + 3)^{1/2} - \ln(x - 1)$$
$$\ln y = \ln(x^2 + 1) + \frac{1}{2}\ln(x + 3) - \ln(x - 1)$$

The derivatives of both sides are taken with respect to *x*:

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{x^2 + 1} \cdot 2x + \frac{1}{2} \cdot \frac{1}{x + 3} - \frac{1}{x - 1}$$

Then, solve for dy/dx:

$$\frac{dy}{dx} = y\left(\frac{2x}{x^2+1} + \frac{1}{2x+6} - \frac{1}{x-1}\right)$$

Finally, substitute the function of *y*:

Civil Engineering Department

Lecture 2

$$\frac{dy}{dx} = \frac{(x^2+1)(x+3)^{1/2}}{x-1} \left(\frac{2x}{x^2+1} + \frac{1}{2x+6} - \frac{1}{x-1}\right)$$

Example 7: Using the Logarithmic Differentiation, find dy/dx if:

$$y = \ln x . \frac{1}{x} . \sqrt{x}$$

Solution: the Natural logarithm of both sides is taken:

$$\ln y = \ln\left(\ln x \cdot \frac{1}{x} \cdot \sqrt{x}\right)$$
$$\ln y = \ln(\ln x) + \ln\frac{1}{x} + \ln\sqrt{x}$$
$$\ln y = \ln(\ln x) + \ln\frac{1}{x} + \frac{1}{2}\ln x$$
$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{\frac{1}{x}}{\ln x} + \frac{-\frac{1}{x^2}}{\frac{1}{x}} + \frac{1}{2} \cdot \frac{1}{x}$$
$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{x \cdot \ln x} - \frac{1}{x} + \frac{1}{2x}$$
$$\frac{dy}{dx} = y \cdot \left(\frac{1}{x \cdot \ln x} - \frac{1}{2x}\right)$$

Finally, substitute the function of *y*:

$$\frac{dy}{dx} = \left(\ln x \cdot \frac{1}{x} \cdot \sqrt{x}\right) \cdot \left(\frac{1}{x \cdot \ln x} - \frac{1}{2x}\right)$$

Homework

1. Use the properties of the natural logarithms to simplify the following expressions:

a)
$$\ln \sin \theta - \ln \left(\frac{\sin \theta}{5}\right)$$

b) $\ln(3x^2 - 9x) + \ln \left(\frac{1}{3x}\right)$
c) $\frac{1}{2}\ln(4t^4) - \ln 2$

2. Find the first derivative of the following functions with respect to *x*:

- a) $y = \ln x^3$ b) $y = \ln \left(\frac{10}{x}\right)$ c) $y = \ln(\ln(\ln x))$
- 3. Evaluate the following integrals:

a)
$$\int_{-1}^{0} \frac{3 \, dx}{3x-2}$$

b)
$$\int \frac{\sec x \, dx}{\sqrt{\ln(\sec x + \tan x)}}$$