
TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

47

ofstream, like ostream, has a pointer known as the put pointer that points to the location where the next element

has to be written.

Finally, fstream, inherits both, the get and the put pointers, from iostream (which is itself derived from both

istream and ostream).

These internal stream pointers that point to the reading or writing locations within a stream can be manipulated
using the following member functions:

tellg() and tellp()
These two member functions have no parameters and return a value of the member type pos_type, which is an

integer data type representing the current position of the get stream pointer (in the case of tellg) or the put

stream pointer (in the case of tellp).

seekg() and seekp()
These functions allow us to change the position of the get and put stream pointers. Both functions are overloaded

with two different prototypes. The first prototype is:

seekg (position);
seekp (position);

Using this prototype the stream pointer is changed to the absolute position position (counting from the beginning

of the file). The type for this parameter is the same as the one returned by functions tellg and tellp: the
member type pos_type, which is an integer value.

The other prototype for these functions is:

seekg (offset, direction);
seekp (offset, direction);

Using this prototype, the position of the get or put pointer is set to an offset value relative to some specific point

determined by the parameter direction. offset is of the member type off_type, which is also an integer type.
And direction is of type seekdir, which is an enumerated type (enum) that determines the point from where

offset is counted from, and that can take any of the following values:

ios::beg offset counted from the beginning of the stream

ios::cur offset counted from the current position of the stream pointer

ios::end offset counted from the end of the stream

The following example uses the member functions we have just seen to obtain the size of a file:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

48

// obtaining file size
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 long begin,end;
 ifstream myfile ("example.txt");
 begin = myfile.tellg();
 myfile.seekg (0, ios::end);
 end = myfile.tellg();
 myfile.close();
 cout << "size is: " << (end-begin) << " bytes.\n";
 return 0;
}

size is: 40 bytes.

Binary files

In binary files, to input and output data with the extraction and insertion operators (<< and >>) and functions like

getline is not efficient, since we do not need to format any data, and data may not use the separation codes used

by text files to separate elements (like space, newline, etc...).

File streams include two member functions specifically designed to input and output binary data sequentially:

write and read. The first one (write) is a member function of ostream inherited by ofstream. And read is a
member function of istream that is inherited by ifstream. Objects of class fstream have both members. Their

prototypes are:

write (memory_block, size);
read (memory_block, size);

Where memory_block is of type "pointer to char" (char*), and represents the address of an array of bytes where
the read data elements are stored or from where the data elements to be written are taken. The size parameter is

an integer value that specifies the number of characters to be read or written from/to the memory block.

// reading a complete binary file
#include <iostream>
#include <fstream>
using namespace std;

ifstream::pos_type size;
char * memblock;

int main () {
 ifstream file ("example.bin",
ios::in|ios::binary|ios::ate);
 if (file.is_open())
 {
 size = file.tellg();
 memblock = new char [size];
 file.seekg (0, ios::beg);
 file.read (memblock, size);
 file.close();

 cout << "the complete file content is in memory";

 delete[] memblock;
 }
 else cout << "Unable to open file";
 return 0;
}

the complete file content is in memory

In this example the entire file is read and stored in a memory block. Let's examine how this is done:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

49

First, the file is open with the ios::ate flag, which means that the get pointer will be positioned at the end of the

file. This way, when we call to member tellg(), we will directly obtain the size of the file. Notice the type we have
used to declare variable size:

ifstream::pos_type size;

ifstream::pos_type is a specific type used for buffer and file positioning and is the type returned by

file.tellg(). This type is defined as an integer type, therefore we can conduct on it the same operations we

conduct on any other integer value, and can safely be converted to another integer type large enough to contain
the size of the file. For a file with a size under 2GB we could use int:

int size;
size = (int) file.tellg();

Once we have obtained the size of the file, we request the allocation of a memory block large enough to hold the
entire file:

memblock = new char[size];

Right after that, we proceed to set the get pointer at the beginning of the file (remember that we opened the file
with this pointer at the end), then read the entire file, and finally close it:

file.seekg (0, ios::beg);
file.read (memblock, size);
file.close();

At this point we could operate with the data obtained from the file. Our program simply announces that the content
of the file is in memory and then terminates.

Buffers and Synchronization

When we operate with file streams, these are associated to an internal buffer of type streambuf. This buffer is a
memory block that acts as an intermediary between the stream and the physical file. For example, with an

ofstream, each time the member function put (which writes a single character) is called, the character is not
written directly to the physical file with which the stream is associated. Instead of that, the character is inserted in
that stream's intermediate buffer.

When the buffer is flushed, all the data contained in it is written to the physical medium (if it is an output stream)
or simply freed (if it is an input stream). This process is called synchronization and takes place under any of the
following circumstances:

• When the file is closed: before closing a file all buffers that have not yet been flushed are synchronized
and all pending data is written or read to the physical medium.

• When the buffer is full: Buffers have a certain size. When the buffer is full it is automatically
synchronized.

• Explicitly, with manipulators: When certain manipulators are used on streams, an explicit

synchronization takes place. These manipulators are: flush and endl.

• Explicitly, with member function sync(): Calling stream's member function sync(), which takes no

parameters, causes an immediate synchronization. This function returns an int value equal to -1 if the
stream has no associated buffer or in case of failure. Otherwise (if the stream buffer was successfully
synchronized) it returns 0.

