
TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

23

Pointers
We have already seen how variables are seen as memory cells that can be accessed using their identifiers. This
way we did not have to care about the physical location of our data within memory, we simply used its identifier
whenever we wanted to refer to our variable.

The memory of your computer can be imagined as a succession of memory cells, each one of the minimal size that
computers manage (one byte). These single-byte memory cells are numbered in a consecutive way, so as, within
any block of memory, every cell has the same number as the previous one plus one.

This way, each cell can be easily located in the memory because it has a unique address and all the memory cells
follow a successive pattern. For example, if we are looking for cell 1776 we know that it is going to be right
between cells 1775 and 1777, exactly one thousand cells after 776 and exactly one thousand cells before cell 2776.

Reference operator (&)

As soon as we declare a variable, the amount of memory needed is assigned for it at a specific location in memory
(its memory address). We generally do not actively decide the exact location of the variable within the panel of
cells that we have imagined the memory to be - Fortunately, that is a task automatically performed by the
operating system during runtime. However, in some cases we may be interested in knowing the address where our
variable is being stored during runtime in order to operate with relative positions to it.

The address that locates a variable within memory is what we call a reference to that variable. This reference to a

variable can be obtained by preceding the identifier of a variable with an ampersand sign (&), known as reference
operator, and which can be literally translated as "address of". For example:

ted = &andy;

This would assign to ted the address of variable andy, since when preceding the name of the variable andy with

the reference operator (&) we are no longer talking about the content of the variable itself, but about its reference
(i.e., its address in memory).

From now on we are going to assume that andy is placed during runtime in the memory address 1776. This number

(1776) is just an arbitrary assumption we are inventing right now in order to help clarify some concepts in this

tutorial, but in reality, we cannot know before runtime the real value the address of a variable will have in memory.

Consider the following code fragment:

andy = 25;
fred = andy;
ted = &andy;

The values contained in each variable after the execution of this, are shown in the following diagram:

First, we have assigned the value 25 to andy (a variable whose address in memory we have assumed to be 1776).

Compound data types

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

24

The second statement copied to fred the content of variable andy (which is 25). This is a standard assignment

operation, as we have done so many times before.

Finally, the third statement copies to ted not the value contained in andy but a reference to it (i.e., its address,
which we have assumed to be 1776). The reason is that in this third assignment operation we have preceded the

identifier andy with the reference operator (&), so we were no longer referring to the value of andy but to its
reference (its address in memory).

The variable that stores the reference to another variable (like ted in the previous example) is what we call a

pointer. Pointers are a very powerful feature of the C++ language that has many uses in advanced programming.
Farther ahead, we will see how this type of variable is used and declared.

Dereference operator (*)

We have just seen that a variable which stores a reference to another variable is called a pointer. Pointers are said
to "point to" the variable whose reference they store.

Using a pointer we can directly access the value stored in the variable which it points to. To do this, we simply
have to precede the pointer's identifier with an asterisk (*), which acts as dereference operator and that can be
literally translated to "value pointed by".

Therefore, following with the values of the previous example, if we write:

beth = *ted;

(that we could read as: "beth equal to value pointed by ted") beth would take the value 25, since ted is 1776, and
the value pointed by 1776 is 25.

You must clearly differentiate that the expression ted refers to the value 1776, while *ted (with an asterisk *
preceding the identifier) refers to the value stored at address 1776, which in this case is 25. Notice the difference of
including or not including the dereference operator (I have included an explanatory commentary of how each of
these two expressions could be read):

beth = ted; // beth equal to ted (1776)
beth = *ted; // beth equal to value pointed by ted (25)

Notice the difference between the reference and dereference operators:

• & is the reference operator and can be read as "address of"

• * is the dereference operator and can be read as "value pointed by"

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

25

Thus, they have complementary (or opposite) meanings. A variable referenced with & can be dereferenced with *.

Earlier we performed the following two assignment operations:

andy = 25;
ted = &andy;

Right after these two statements, all of the following expressions would give true as result:

andy == 25
&andy == 1776
ted == 1776
*ted == 25

The first expression is quite clear considering that the assignment operation performed on andy was andy=25. The
second one uses the reference operator (&), which returns the address of variable andy, which we assumed it to

have a value of 1776. The third one is somewhat obvious since the second expression was true and the assignment

operation performed on ted was ted=&andy. The fourth expression uses the dereference operator (*) that, as we
have just seen, can be read as "value pointed by", and the value pointed by ted is indeed 25.

So, after all that, you may also infer that for as long as the address pointed by ted remains unchanged the

following expression will also be true:

*ted == andy

Declaring variables of pointer types

Due to the ability of a pointer to directly refer to the value that it points to, it becomes necessary to specify in its

declaration which data type a pointer is going to point to. It is not the same thing to point to a char as to point to

an int or a float.

The declaration of pointers follows this format:

type * name;

where type is the data type of the value that the pointer is intended to point to. This type is not the type of the
pointer itself! but the type of the data the pointer points to. For example:

int * number;
char * character;
float * greatnumber;

These are three declarations of pointers. Each one is intended to point to a different data type, but in fact all of

them are pointers and all of them will occupy the same amount of space in memory (the size in memory of a
pointer depends on the platform where the code is going to run). Nevertheless, the data to which they point to do

not occupy the same amount of space nor are of the same type: the first one points to an int, the second one to a
char and the last one to a float. Therefore, although these three example variables are all of them pointers which

occupy the same size in memory, they are said to have different types: int*, char* and float* respectively,
depending on the type they point to.

I want to emphasize that the asterisk sign (*) that we use when declaring a pointer only means that it is a pointer

(it is part of its type compound specifier), and should not be confused with the dereference operator that we have

seen a bit earlier, but which is also written with an asterisk (*). They are simply two different things represented

with the same sign.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

26

Now have a look at this code:

// my first pointer
#include <iostream>
using namespace std;

int main ()
{
 int firstvalue, secondvalue;
 int * mypointer;

 mypointer = &firstvalue;
*mypointer = 10;
mypointer = &secondvalue;
*mypointer = 20;
cout << "firstvalue is " << firstvalue << endl;
cout << "secondvalue is " << secondvalue << endl;
return 0;

}

firstvalue is 10
secondvalue is 20

Notice that even though we have never directly set a value to either firstvalue or secondvalue, both end up with
a value set indirectly through the use of mypointer. This is the procedure:

First, we have assigned as value of mypointer a reference to firstvalue using the reference operator (&). And

then we have assigned the value 10 to the memory location pointed by mypointer, that because at this moment is

pointing to the memory location of firstvalue, this in fact modifies the value of firstvalue.

In order to demonstrate that a pointer may take several different values during the same program I have repeated
the process with secondvalue and that same pointer, mypointer.

Here is an example a little bit more elaborated:

// more pointers
#include <iostream>
using namespace std;

int main ()
{
 int firstvalue = 5, secondvalue = 15;
 int * p1, * p2;

 p1 = &firstvalue; // p1 = address of firstvalue
 p2 = &secondvalue; // p2 = address of secondvalue
*p1 = 10; // value pointed by p1 = 10
*p2 = *p1; // value pointed by p2 = value pointed by

p1
 p1 = p2; // p1 = p2 (value of pointer is copied)
*p1 = 20; // value pointed by p1 = 20

 cout << "firstvalue is " << firstvalue << endl;
 cout << "secondvalue is " << secondvalue << endl;
 return 0;
}

firstvalue is 10
secondvalue is 20

I have included as a comment on each line how the code can be read: ampersand (&) as "address of" and asterisk
(*) as "value pointed by".

Notice that there are expressions with pointers p1 and p2, both with and without dereference operator (*). The
meaning of an expression using the dereference operator (*) is very different from one that does not: When this

operator precedes the pointer name, the expression refers to the value being pointed, while when a pointer name

appears without this operator, it refers to the value of the pointer itself (i.e. the address of what the pointer is
pointing to).

