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Correlation and Simple Linear
Regression1

In this tutorial article, the concepts of correlation and regression are reviewed and
demonstrated. The authors review and compare two correlation coefficients, the
Pearson correlation coefficient and the Spearman �, for measuring linear and non-
linear relationships between two continuous variables. In the case of measuring the
linear relationship between a predictor and an outcome variable, simple linear
regression analysis is conducted. These statistical concepts are illustrated by using a
data set from published literature to assess a computed tomography–guided inter-
ventional technique. These statistical methods are important for exploring the
relationships between variables and can be applied to many radiologic studies.
© RSNA, 2003

Results of clinical studies frequently yield data that are dependent of each other (eg, total
procedure time versus the dose in computed tomographic [CT] fluoroscopy, signal-to-
noise ratio versus number of signals acquired during magnetic resonance imaging, and
cigarette smoking versus lung cancer). The statistical concepts correlation and regression,
which are used to evaluate the relationship between two continuous variables, are re-
viewed and demonstrated in this article.

Analyses between two variables may focus on (a) any association between the variables,
(b) the value of one variable in predicting the other, and (c) the amount of agreement.
Agreement will be discussed in a future article. Regression analysis focuses on the form of
the relationship between variables, while the objective of correlation analysis is to gain
insight into the strength of the relationship (1,2). Note that these two techniques are used
to investigate relationships between continuous variables, whereas the �2 test is an exam-
ple of a test for association between categorical variables. Continuous variables, such as
procedure time, patient age, and number of lesions, have no gaps on the measurement
scale. In contrast, categorical variables, such as patient sex and tissue classification based
on segmentation, have gaps in their possible values. These two types of variables and the
assumptions about their measurement scales were reviewed and distinguished in an article
by Applegate and Crewson (3) published earlier in this Statistical Concepts Series in
Radiology.

Specifically, the topics covered herein include two commonly used correlation coeffi-
cients, the Pearson correlation coefficient (4,5) and the Spearman � (6–10) for measuring
linear and nonlinear relationship, respectively, between two continuous variables. Corre-
lation analysis is often conducted in a retrospective or observational study. In a clinical
trial, on the other hand, the investigator may also wish to manipulate the values of one
variable and assess the changes in values of another variable. To evaluate the relative
impact of the predictor variable on the particular outcome, simple regression analysis is
preferred. We illustrate these statistical concepts with existing data to assess patient skin
dose based on total procedure time by using a quick-check method in CT fluoroscopy–
guided abdominal interventions (11).

These statistical methods are useful tools for assessing the relationships between con-
tinuous variables collected from a clinical study. However, it is also important to distin-
guish these statistical methods. While they are similar mathematically, their purposes are
different. Correlation analysis is generally overused. It is often interpreted incorrectly (to
establish “causation”) and should be reserved for generating hypotheses rather than for
testing them. On the other hand, regression modeling is a more useful statistical technique
that allows us to assess the strength of the relationships in the data and the uncertainty in
the model by using confidence intervals (12,13).
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CORRELATION

The purpose of correlation analysis is
to measure and interpret the strength of
a linear or nonlinear (eg, exponential,
polynomial, and logistic) relationship be-
tween two continuous variables. When
conducting correlation analysis, we use
the term association to mean “linear asso-
ciation” (1,2). Herein, we focus on the
Pearson and Spearman � correlation co-
efficients. Both correlation coefficients
take on values between �1 and �1, rang-
ing from being negatively correlated (�1)
to uncorrelated (0) to positively corre-
lated (�1). The sign of the correlation
coefficient (ie, positive or negative) de-
fines the direction of the relationship.
The absolute value indicates the strength
of the correlation (Table 1, Fig 1). We
elaborate on two correlation coefficients,
linear (eg, Pearson) and rank (eg, Spear-
man), that are commonly used for mea-
suring linear and general relationships
between two variables.

Linear Correlation

The Pearson correlation coefficient is
also known as the sample correlation co-
efficient (r), product-moment correlation
coefficient, or coefficient of correlation
(14). It was introduced by Galton in 1877
(15,16) and developed later by Pearson
(17). It measures the linear relationship
between two random variables. For ex-
ample, when the value of the predictor is
manipulated (increased or decreased) by
a fixed amount, the outcome variable
changes proportionally (linearly). A lin-
ear correlation coefficient can be com-
puted by means of the data and their
sample means (Appendix A). When a sci-
entific study is planned, the required
sample size may be computed on the ba-
sis of a certain hypothesized value with
the desired statistical power at a specified
level of significance (Appendix B) (18).

Rank Correlation

The Spearman � is the sample correla-
tion coefficient (rs) of the ranks (the rel-
ative order) based on continuous data
(19,20). It was first introduced by Spear-
man in 1904 (6). The Spearman � is used
to measure the monotonic relationship
between two variables (ie, whether one
variable tends to take either a larger or
smaller value, though not necessarily lin-
early) by increasing the value of the other
variable.

Linear versus Rank Correlation
Coefficients

The Pearson correlation coefficient ne-
cessitates use of interval or continuous
measurement scales of the measured out-
come in the study population. In con-
trast, rank correlations also work well
with ordinal rating data, and continuous
data are reduced to their ranks (Appendix
C) (20,21). The rank procedure will also
be illustrated briefly with our example
data. The smallest value in the sample
has rank 1, and the largest has the high-
est rank. In general, rank correlations are
not easily influenced by the presence of
skewed data or data that are highly vari-
able.

Statistical Hypothesis Tests for a
Correlation Coefficient

The null hypothesis states that the un-
derlying linear correlation has a hypoth-
esized value, �0. The one-sided alterna-
tive hypothesis is that the underlying
value exceeds (or is less than) �0. When
the sample size (n) of the paired data is
large (n � 30 for each variable), the stan-
dard error (s) of the linear correlation (r)
is approximately s(r) � (1 � r2)/�n. The
test statistic value (r � �0)/s(r) may be
computed by means of the z test (22). If
the P value is below .05, the null hypoth-
esis is rejected. The P value based on the

Spearman � can be found in the literature
(20,21).

Limitations and Precautions

It is worth noting that even if two vari-
ables (eg, cigarette smoking and lung
cancer) are highly correlated, it is not
sufficient proof of causation. One vari-
able may cause the other or vice versa, or
a third factor is involved, or a rare event
may have occurred. To conclude causa-
tion, the causal variables must precede
the variable it causes, and several con-
ditions must be met (eg, reversibility,
strength, and exposure response on the
basis of the Bradford-Hill criteria or the
Rubin causal model) (23–26).

SIMPLE LINEAR REGRESSION

The purpose of simple regression analysis
is to evaluate the relative impact of a
predictor variable on a particular out-
come. This is different from a correlation
analysis, where the purpose is to examine
the strength and direction of the rela-

TABLE 1
Interpretation of Correlation
Coefficient

Correlation
Coefficient Value

Direction and Strength
of Correlation

�1.0 Perfectly negative
�0.8 Strongly negative
�0.5 Moderately negative
�0.2 Weakly negative

0.0 No association
�0.2 Weakly positive
�0.5 Moderately positive
�0.8 Strongly positive
�1.0 Perfectly positive

Note.—The sign of the correlation coefficient
(ie, positive or negative) defines the direction
of the relationship. The absolute value indi-
cates the strength of the correlation.

Figure 1. Scatterplots of four sets of data generated by means of the following Pearson correlation coefficients (from left to right): r � 0
(uncorrelated data), r � 0.8 (strongly positively correlated), r � 1.0 (perfectly positively correlated), and r � �1 (perfectly negatively correlated).
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tionship between two random variables.
In this article, we deal with only linear
regression of one continuous variable on
another continuous variable with no
gaps on each measurement scale (3).
There are other types of regression (eg,
multiple linear, logistic, and ordinal)
analyses, which will be provided in a fu-
ture article in this Statistical Concepts
Series in Radiology.

A simple regression model contains
only one independent (explanatory) vari-
able, Xi, for i � 1, . . ., n subjects, and is
linear with respect to both the regression
parameters and the dependent variable.
The corresponding dependent (outcome)
variable is labeled. The model is ex-
pressed as

Yi � a � bXi � ei, (1)

where the regression parameter a is the in-
tercept (on the y axis), and the regression
parameter b is the slope of the regression
line (Fig 2). The random error term ei is
assumed to be uncorrelated, with a mean
of 0 and constant variance. For conve-
nience in inference and improved effi-
ciency in estimation (27), analyses often
incur an additional assumption that the
errors are distributed normally. Transfor-
mation of the data to achieve normality
may be applied (28,29). Thus, the word line
(linear, independent, normal, equal vari-
ance) summarizes these requirements.

Typical steps for regression model anal-
ysis are the following: (a) determine if the
assumptions underlying a normal relation-
ship are met in the data, (b) obtain the
equation that best fits the data, (c) evaluate
the equation to determine the strength of

the relationship for prediction and estima-
tion, and (d) assess whether the data fit
these criteria before the equation is applied
for prediction and estimation.

Least Squares Method

The main goal of linear regression is to
fit a straight line through the data that
predicts Y based on X. To estimate the in-
tercept and slope regression parameters
that determine this line, the least squares
method is commonly used. It is not neces-
sary for the errors to have a normal distri-
bution, although the regression analysis is
more efficient with this assumption (27).
With this regression method, a set of re-
gression parameters are found such that
the sum of squared residuals (ie, the differ-
ences between the observed values of the
outcome variable and the fitted values) are
minimized (14). The fitted y value is then
computed as a function of the given x
value and the estimated intercept and
slope regression parameter (Appendix D).
For example, in Equation (1), once the es-
timates of a and b are obtained from the
regression analysis, the predicted y value at
any given x value is calculated as a � bx.

Coefficient of Determination, R2

It is meaningful to interpret the value of
the Pearson correlation coefficient r by
squaring it; hence, the term R-square (R2)
or coefficient of determination. This mea-
sure (with a range of 0–1) is the fraction of
the variability in Y that can be explained
by the variability in X through their linear
relationship, or vice versa. That is, R2 �
SSregression/SStotal, where SS stands for the
sum of squares. Note that R2 is calculated
only on the basis of the Pearson correlation
coefficient in the linear regression analysis.
Thus, it is not appropriate to compute R2

on the basis of rank correlation coefficients
such as the Spearman �.

Statistical Hypothesis Tests

There are several hypotheses in the
context of regression analysis, for exam-
ple, to test if the slope of the regression
line is b � 0 (hypothesis, there is no lin-
ear association between Y and X). One
may also test whether intercept a takes
on a certain value. The significance of the
effects of the intercept and slope may
also be computed by means of a Student
t statistic introduced earlier in this Statis-
tical Concepts Series in Radiology (30).

Limitations and Precautions

The following understandings should
be considered when regression analysis is

performed. (a) To understand whether
the assumptions have been met, deter-
mine the magnitude of the gap between
the data and the assumptions of the
model. (b) No matter how strong a rela-
tionship is demonstrated with regression
analysis, it should not be interpreted as
causation (as in the correlation analysis).
(c) The regression should not be used to
predict or estimate outside the range of
values of the independent variable of the
sample (eg, extrapolation of radiation
cancer risk from the Hiroshima data to
that of diagnostic radiologic tests).

AN EXAMPLE: DOSE VERSUS
TOTAL PROCEDURE TIME
IN CT FLUOROSCOPY

We applied these statistical methods to
help assess the benefit of the use of CT
fluoroscopy to guide interventions in the
abdomen (11). During CT fluoroscopy–
guided interventions, one might postu-
late that the radiation dose received by a
patient is related to (or correlated with)
the total procedure time, because the
more difficult the procedure is, the more
CT fluoroscopic scanning is required,
which means a longer procedure time.
The rationale was to assess whether radi-
ation dose could be estimated by simply
measuring the total CT fluoroscopic pro-
cedure time, with the null hypothesis
that the slope of the regression line is 0.

Earlier, we discussed two methods to
target lesions with CT fluoroscopy. In
one method, continuous CT scanning is
used during needle placement. In the
other method, short CT scanning is used
to image the needle after it is placed. The
latter method, the so-called quick-check
method, has been adopted almost exclu-
sively at our institution. Now, we demon-
strate correlation and regression analyses
based on a subset of the interventional
procedures (n � 19). With the quick-
check method, we examine the relation-
ship between total procedure time (in
minutes) and dose (in rads) on a natural
log scale. We also examine the marginal
ranks of the x (log of total time) and y
(log of dose) components (Table 2). For
convenience, the x data are given in as-
cending order.

In Table 2, each set of rank data is
derived by first placing the 19 observa-
tions in each sample in ascending order
and then assigning ranks 1–19. Ties are
broken by means of averaging the respec-
tive adjacent ranks. Finally, the ranks are
identified for the observations of each of
the paired x and y samples.

Figure 2. Simple linear regression model
shows that the expectation of the dependent
variable Y is linear in the independent variable
X, with an intercept a � 1.0 and a slope b �
2.0.
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The natural log (ln) transformation of
the total time is used to make the data
appear normal, for more efficient analy-
sis (Appendix D), with normality verified
statistically (31). However, normality is
not necessary in the subsequent regres-
sion analysis. We created a scatterplot of
the data, with the log of dose (ln[rad]) on
the x axis and the log of total time (ln-
[minutes]) on the y axis (Fig 3).

For illustration purposes, we will con-
duct both correlation and regression
analyses; however, the choice of analysis
depends on the aim of research. For ex-
ample, if the investigators wish to assess
whether there is a relationship between
time and dose, then correlation analysis
is appropriate. In comparison, if the in-
vestigators wish to evaluate the impact of
the total time on the resulting dose, then
regression analysis is preferred.

Correlations

To compute the Spearman � with a Pear-
son correlation coefficient of r � 0.85, the
marginal ranks of time and dose were de-
rived separately; consequently, rs � 0.84.
Both correlation coefficients confirm that
the log of total time and the log of dose are
correlated strongly and positively.

Regression

We first conducted a simple linear re-
gression analysis of the data on a log scale
(n � 19); results are shown in Table 3. The
value calculated for R2 was 0.73, which
suggests that 73% of the variability of the
data could be explained by the linear re-
gression.

The regression line, expressed in the
form given in Equation (1), is Y �
�9.28 � 2.83X, where the predictor vari-
able X represents the log of total time,
and the outcome variable Y represents
the log of dose. The estimated regression
parameters are a � �9.28 (intercept) and
b � 2.83 (slope) (Fig 4). This regression
line can be interpreted as follows: At X �
0, the value of Y is �9.28. For every one-
unit increase in X, the value of Y will
increase on average by 2.83. Effects of
both the intercept and slope are statisti-
cally significant (P � .005) (Excel; Mi-
crosoft, Redmond, Wash); therefore, the
null hypothesis (H0, the dose remains
constant as the total procedure time in-
creases) is rejected. Thus, we confirm the
alternative hypothesis (H1, the dose in-
creases in the total procedure time).

The regression line may be used to give
predicted values of Y. For example, if in a
future CT fluoroscopy procedure, the log

total time is specified at x � 4 (translated to
e4 � 55 minutes, approximately), then the
log dose that is to be applied is approxi-
mately y � �9.28 � 2.83 � 4 � 2.04 (trans-
lated to e2.04 � 7.69 rad). On the other
hand, if the log total time is specified at x �
4.5 (translated to e4.5 � 90 minutes, ap-
proximately), then the log dose that is to
be applied is approximately y � �9.28 �
2.83 � 4.5 � 3.46 (translated to e3.46 �
31.82 rad). Such prediction can be useful
for future clinical practice.

SUMMARY AND REMARKS

Two important statistical concepts, cor-
relation and regression, which are used

commonly in radiology research, are re-
viewed and demonstrated herein. Addi-

TABLE 2
Total Procedure Time and Dose of CT Fluoroscopy–guided Procedures, by
Means of the Quick-Check Method

Subject
No.

x Data: Log Time
(ln[min])

Ranks of
x Data

y Data: Log Dose
(ln[rad])

Ranks of
y Data

1 3.61 1 1.48 2
2 3.87 2 1.24 1
3 3.95 3 2.08 5.5
4 4.04 4 1.70 3
5 4.06 5 2.08 5.5
6 4.11 6 2.94 10
7 4.19 7 2.24 7
8 4.20 8 1.85 4
9 4.32 9.5 2.84 9

10 4.32 9.5 3.93 16
11 4.42 11.5 3.03 11
12 4.42 11.5 3.23 13
13 4.45 13 3.87 15
14 4.50 14 3.55 14
15 4.52 15 2.81 8
16 4.57 16 4.07 17
17 4.58 17 4.44 19
18 4.61 18 3.16 12
19 4.74 19 4.19 18

Source.—Reference 11.
Note.—Paired x and y data are sorted according to the x component; therefore, the log of the

total procedure time and the log of the corresponding rank have an increasing order. When ties are
present in the data, the average of their adjacent ranks is used. Pearson correlation coefficient
between log time and log dose, r � 0.85; Spearman � � 0.84.

TABLE 3
Results based on Correlation and
Regression Analysis for Example
Data

Regression Statistic Numerical Result

Correlation coefficient r 0.85
R-square (R2) 0.73
Regression parameter

Intercept �9.28
Slope 2.83

Source.—Reference 11.

Figure 3. Scatterplot of the log of dose (y
axis) versus the log of total time (x axis). Each
point in the scatterplot represents the values of
two variables for a given observation.

Figure 4. Scatterplot of the log of dose (y
axis) versus the log of total time (x axis). The
regression line has the intercept a � �9.28 and
slope b � 2.83. We conclude that there is a
possible association between the radiation
dose and the total time of the procedure.
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tional sources of information and elec-
tronic textbooks on statistical analysis
methods found on the World Wide Web
are listed in Appendix E. A glossary of the
statistical terms used in this article is pre-
sented in Appendix F.

When correlation analysis is con-
ducted to measure the association be-
tween two random variables, either the
Pearson linear correlation coefficient or
the Spearman rank correlation coeffi-
cient � may be adopted. The former coef-
ficient is used to measure the linear rela-
tionship but is not recommended for use
with skewed data or data with extremely
large or small values (often called the
outliers). In contrast, the latter coeffi-
cient is used to measures a general asso-
ciation, and it is recommended for use
with data that are skewed or that have
outliers.

When simple regression analysis is
conducted to assess the linear relation-
ship of a dependent variable as a func-
tion of the independent variable, caution
must be used when determining which
of the two variables is viewed as the in-
dependent variable that makes sense
clinically. A useful graphical aid is a scat-
terplot. Once the regression line is ob-
tained, caution should also be used to
avoid prediction of a y value for any
value of x that is outside the range of the
data. Finally, correlation and regression
analyses do not infer causality, and more
rigorous analyses are required if causal
inference is to be made (23–26).

APPENDIX A

Formula for computing the Pearson cor-
relation coefficient, r: The formula for com-
puting r between bivariate data, Xi and Yi

values (i � 1,. . .,n) is

r �

�
i�1

n

	Xi � X� 
	Yi � Y�


��
i�1

n

	Xi � X� 
2�
i�1

n

	Yi � Y�
2

,

where X and Y are the sample means of the
Xi and Yi values, respectively.

The Pearson correlation coefficient may
be computed by means of a computer-based
statistics program (Excel; Microsoft) by us-
ing the option “Correlation” under the op-
tion “Data Analysis Tools”. Alternatively, it
may also be computed by means of a
built-in software function “Cor” (Insightful;
MathSoft, Seattle, Wash [MathSoft S-Plus 4
guide to statistics, 1997; 89–96]. Available
at: www.insightful.com) or with a free soft-

ware program (R Software. Available at: lib
.stat.cmu.edu/R).

APPENDIX B

Total sample size based on the Pearson
correlation coefficient: Specify r � expected
correlation coefficient, C � 0.5 � ln[(1 �
r)/(1 � r)], N � total number of subjects
required, � � type I error (ie, significance
level, typically fixed at 0.05), � � type II
error (ie, 1 minus statistical power, typically
fixed at 0.10). Then N � [(Z� � Z�)/C]2 � 3,
where Z� is the inverse of the cumulative
probability of a standard normal distribu-
tion with the tail probability of �. Similarly,
Z� is the inverse of the cumulative proba-
bility of a standard normal distribution
with the tail probability of �. Consequently,
compute the smallest integer, n, such that
n � N, as the required sample size.

For example, an investigator wishes to
conduct a clinical trial of a paired design
based on a one-tailed hypothesis test of the
correlation coefficient. The null hypothesis
is that the correlation between two vari-
ables is r � 0.60 (ie, C � 0.693) in the
population of interest. The alternative hy-
pothesis is that the correlation is r  0.60.
Type I error is fixed to be 0.05 (ie, Z� �
1.645), while type II error is fixed to be 0.10
(ie, Z� � 1.282). Thus, the required sample
size is N � 21 subjects. A sample size table
may also be found in reference 18.

APPENDIX C

Formula for computing Spearman � and
Pearson rs: Replace bivariate data, Xi and Yi

(i � 1,. . .,n), by their respective ranks Ri �
rank(Xi) and Si � rank(Yi). Rank correlation
coefficient, rs, is defined as the Pearson cor-
relation coefficient between the Ri and Si

values, which can be computed by means of
the formula given in Appendix A. An alter-
native direct formula was given by Hett-
mansperger (19).

The Spearman � may also be computed by
first reducing the continuous data to their
marginal ranks by using the “rank and per-
centile” option with Data Analysis Tools
(Excel; Microsoft) or the “rank” function
(Insightful; MathSoft) or the free software.
Both software programs correctly rank the
data in ascending order. However, the rank
and percentile option in Excel ranks the
data in descending order (the largest is 1).
Therefore, to compute the correct ranks,
one may first multiply all of the data by �1
and then apply the rank function. Excel
also gives integer ranks in the presence of
ties compared with the methods that yield
possible noninteger ranks, as described in
the standard statistics literature (19).

Subsequently, the sample correlation co-
efficient is computed on the basis of the

ranks of the two marginal data by using the
Correlation option in Data Analysis Tools
(Excel; Microsoft) or by using the Cor func-
tion (Insightful; MathSoft) or the free soft-
ware.

APPENDIX D

Simple regression analysis: Regression
analysis may be performed by using the
“Regression” option with Data Analysis
Tools (Excel; Microsoft). This regression
analysis tool yields the sample correlation
R2; estimates of the regression parameters,
along with their statistical significance on
the basis of the Student t test; residuals; and
standardized residuals. Scatter, line fit, and
residual plots may also be created. Alterna-
tively, the analyses can be performed by
using the function “lsfit” (Insightful; Math-
Soft) or the free software.

With either program, one may choose to
transform the data or exclude outliers be-
fore conducting a simple regression analy-
sis. A commonly used variance-stabilizing
transformation is the natural log function
(ln) applied to one or both variables. Other
transformation (eg, Box-Cox transforma-
tion) and weighting methods in regression
analysis may also be used (28,29).

APPENDIX E

Uniform resource locator, or URL, links to
electronic statistics textbooks: www.davidm
lane.com/hyperstat/index.html, www.statsoft
.com/textbook/stathome.html, www.ruf.rice.edu
/�lane/rvls.html, www.bmj.com/collections
/statsbk/index.shtml, espse.ed.psu.edu/statistics
/investigating.htm.

APPENDIX F

Glossary of statistical terms:
Bivariate data.—Measurements obtained

on more than one variable for the same unit
or subject.

Correlation coefficient.—A statistic be-
tween �1 and 1 that measures the associa-
tion between two variables.

Intercept.—The constant a in the regres-
sion equation, which is the value for y when
x � 0.

Least squares method.—The regression line
that is the best fit to the data for which the
sum of the squared residuals is minimized.

Outlier.—An extreme observation far
away from the bulk of the data, often
caused by faulty measuring equipment or
recording error.

Pearson correlation coefficient.—Sample
correlation coefficient for measuring the
linear relationship between two variables.

R2.—The square of the Pearson correla-
tion coefficient r, which is the fraction of
the variability in Y that can be explained by
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the variability in X through their linear re-
lationship or vice versa.

Rank.—The relative ordering of the mea-
surements in a variable, which can be non-
integer numbers in the presence of ties.

Residual.—The difference between the ob-
served values of the outcome variable and
the fitted values based on a linear regression
analysis.

Scatterplot.—A plot of the observed biva-
riate outcome variable (y axis) against its
predictor variable (x axis), with a dot for
each pair of bivariate observations.

Simple linear regression analysis.—A linear
regression analysis with one predictor and
one outcome variable.

Skewed data.—A distribution is skewed if
there are more extreme data on one side of
the mean. Otherwise, the distribution is
symmetric.

Slope.—The constant b in the regression
equation, which is the change in y that cor-
responds to a one-unit increase (or de-
crease) in x.

Spearman �.—A rank correlation coeffi-
cient for measuring the monotone relation-
ship between two variables.
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