

- 10 -

8086 Microprocessor

The main features of 8086 µp are:

 It is a 16-bit Microprocessor (μp). It’s ALU, internal registers works with 16bit binary word.

 8086 has a 20 bit address bus can access up to 220= 1 MB memory locations.

 8086 has a 16bit data bus. It can read or write data to a memory/port either 16bits or 8 bit

at a time.

 It can support up to 64K I/O ports.

 It provides 14, 16 -bit registers.

 Frequency range of 8086 is 6-10 MHz

 It has multiplexed address and data bus AD0- AD15 and A16 – A19.

 It requires single phase clock with 33% duty cycle to provide internal timing.

 It can pre-fetch up to 6 instruction bytes from memory and queues them in order to speed

up instruction execution.

 It requires +5V power supply.

 A 40 pin dual in line package.

 8086 is designed to operate in two modes, Minimum mode and Maximum mode.

o The minimum mode is selected by applying logic 1 to the MN / 𝑀𝑀𝑀𝑀����� input pin.

This is a single microprocessor configuration.

o The maximum mode is selected by applying logic 0 to the MN / 𝑀𝑀𝑀𝑀����� input pin.

This is a multi-microprocessors configuration.

Architecture or Functional Block Diagram of 8086

The microarchitecture of a processor is its internal architecture-that is, the circuit building

blocks that implement the software and hardware architectures of the 8086 microprocessors.

The microarchitecture of the 8086 microprocessors employs parallel processing-that is, they are

implemented with several simultaneously operating processing units. Figure (2-1) shows the

internal architecture of the 8086 microprocessors. They contain two processing units: the B us

Interface Unit (BID) and the Execution Unit (EU).

Dr. Mohanad A. Shehab/ Electrical Engineering Department/ Mustansiriyah University

- 11 -

BUS INTERFACE UNIT:

• It provides a full 16 bit bidirectional data bus and 20 bit address bus.

• The bus interface unit connects the microprocessor to external devices. BIU performs

following operations:

 Instruction fetching

 Reading and writing data of data operands for memory

 Inputting/outputting data for input/output peripherals.

 And other functions related to instruction and data acquisition.

• To implement above functions, the BIU contains the segment registers, the instruction

pointer, address generation adder, bus control logic, and an instruction queue.

• The BIU uses a mechanism known as an instruction stream queue to implement pipeline

architecture.

BIU
EU

Fig. (2.1): Internal architecture of the 8086 microprocessor.

- 12 -

EXECUTION UNIT

• The Execution unit is responsible for decoding and executing all instructions.

• The EU consists of arithmetic logic unit (ALU), status and control flags, general-purpose

registers, and temporary-operand registers.

• The EU extracts instructions from the top of the queue in the BIU, decodes them,

generates operands if necessary, passes them to the BIU and requests it to perform the

read or write by cycles to memory or I/O and perform the operation specified by the

instruction on the operands.

• During the execution of the instruction, the EU tests the status and control flags and

updates them based on the results of executing the instruction.

Software Model of the 8086 Microprocessor

As a programmer of the 8086 you must become familiar with the various registers in the EU

and BIU. The 8086 microprocessor has a total of fourteen registers that are accessible to the

programmer. It is divided into four groups. They are:

• Four General purpose registers

• Four Index/Pointer registers

• Four Segment registers

• Two other register

Fig. (2.2): Software Model of the 8086 microprocessor.

- 13 -

General purpose registers:

Accumulator register consists of two 8-bit registers AL and AH, which can be combined together

and used as a 16-bit register AX. AL in this case contains the loworder byte of the word, and AH

contains the high-order byte. Accumulator can be used for I/O operations and string

manipulation.

Base register consists of two 8-bit registers BL and BH, which can be combined together and

used as a 16-bit register BX. BL in this case contains the low-order byte of the word, and BH

contains the high-order byte. BX register usually contains a data pointer used for based, based

indexed or register indirect addressing.

Count register consists of two 8-bit registers CL and CH, which can be combined together and

used as a 16-bit register CX. When combined, CL register contains the loworder byte of the

word, and CH contains the high-order byte. Count register can be used in Loop, shift/rotate

instructions and as a counter in string manipulation

Data register consists of two 8-bit registers DL and DH, which can be combined together and

used as a 16-bit register DX. When combined, DL register contains the low order byte of the

word, and DH contains the high-order byte. Data register can be used as a port number in I/O

operations. In integer 32-bit multiply and divide instruction the DX register contains high-order

word of the initial or resulting number.

Index or Pointer Registers

These registers can also be called as Special Purpose registers.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register indirect

addressing, as well as a source data address in string manipulation instructions. Used in

conjunction with the DS register to point to data locations in the data segment.

http://www.8085projects.info/post/Index-or-Pointer-Registers.aspx
http://www.8085projects.info/image.asp?picture=General%20purpose%20registers_3.gif

- 14 -

Destination Index (DI) is a 16-bit register. Used in conjunction with the ES register in string

operations. DI is used for indexed, based indexed and register indirect addressing, as well as a

destination data address in string manipulation instructions. In short, Destination Index and SI

Source Index registers are used to hold address.

Stack Pointer (SP) is a 16-bit register pointing to program stack, ie it is used to hold the address

of the top of stack. The stack is maintained as a LIFO with its bottom at the start of the stack

segment (specified by the SS segment register).Unlike the SP register, the BP can be used to

specify the offset of other program segments.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. It is usually used by

subroutines to locate variables that were passed on the stack by a calling program. BP register is

usually used for based, based indexed or register indirect addressing.

Segment Registers

Most of the registers contain data/instruction offsets within 64 KB memory segment.

There are four different 64 KB segments for instructions, stack, data and extra data. To specify

where in 1 MB of processor memory these 4 segments are located the processor uses four

segment registers.

Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor

instructions. The processor uses CS segment for all accesses to instructions referenced by

instruction pointer (IP) register. CS register cannot be changed directly. The CS register is

automatically updated during far jump, far call and far return instructions.

http://www.8085projects.info/post/Segment-Registers.aspx
http://www.8085projects.info/image.asp?picture=Pointer%20and%20Index%20registers_2.gif
http://www.8085projects.info/image.asp?picture=Segment%20Registers_1.gif

- 15 -

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program stack.

By default, the processor assumes that all data referenced by the stack pointer (SP) and base

pointer (BP) registers is located in the stack segment. SS register can be changed directly using

POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program data.

By default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX)

and index register (SI, DI) is located in the data segment. DS register can be changed directly

using POP and LDS instructions.

Extra segment (ES) used to hold the starting address of Extra segment. Extra segment is

provided for programs that need to access a second data segment. Segment registers cannot be

used in arithmetic operations.

Other registers of 8086

Instruction Pointer (IP or program counter) is a 16-bit register. This is a crucially important

register which is used to control which instruction the CPU executes. The ip, or program counter,

is used to store the memory location of the next instruction to be executed. The CPU checks the

program counter to ascertain which instruction to carry out next. It then updates the program

counter to point to the next instruction. Thus the program counter will always point to the next

instruction to be executed.

Flag Register determines the current state of the processor. They are modified automatically by

CPU after mathematical operations, this allows to determine the type of the result, and to

determine conditions to transfer control to other parts of the program. 8086 has 9 flags and they

are divided into two categories:

1. Status Flags

Status Flags represent result of last arithmetic or logical instruction executed. Conditional

flags are as follows:

 Carry Flag (CF): This flag indicates an overflow condition for unsigned integer arithmetic.

It is also used in multiple-precision arithmetic.

 Auxiliary Flag (AF): If an operation performed in ALU generates a carry/barrow from lower

nibble (i.e. D0 D3) to upper nibble (i.e. D4 – D7), the AF flag is set i.e. carry given by D3 bit to

http://www.8085projects.info/post/Internal-Registers-of-8086.aspx

- 16 -

D4 is AF flag. This is not a general-purpose flag, it is used internally by the processor to

perform Binary to BCD conversion.

 Parity Flag (PF): This flag is used to indicate the parity of result. If lower order 8-bits of the

result contains even number of 1‟s, the Parity Flag is set and for odd number of 1‟s, the

Parity Flag is reset.

 Zero Flag (ZF): It is set; if the result of arithmetic or logical operation is zero else it is reset.

 Sign Flag (SF): In sign magnitude format the sign of number is indicated by MSB bit. If the

result of operation is negative, sign flag is set.

 Overflow Flag (OF): It occurs when signed numbers are added or subtracted. An OF

indicates that the result has exceeded the capacity of machine.

2. Control Flags

Control flags are set or reset deliberately to control the operations of the execution unit.

Control flags are as follows:

1. Trap Flag (TP):

 It is used for single step control.

 It allows user to execute one instruction of a program at a time for debugging.

 When trap flag is set, program can be run in single step mode.

2. Interrupt Flag (IF):

 It is an interrupt enable/disable flag.

 If it is set, the maskable interrupt of 8086 is enabled and if it is reset, the interrupt

is disabled.

 It can be set by executing instruction sit and can be cleared by executing CLI

instruction.

- 17 -

3. Direction Flag (DF):

 It is used in string operation.

 If it is set, string bytes are accessed from higher memory address to lower memory

address.

 When it is reset, the string bytes are accessed from lower memory address to

higher memory address.

MEMORY SEGMENTATION

The 8086 microprocessor operate in

the Real mode memory addressing. Real

mode operation allows the microprocessor to

address only the first 1M byte of memory

space. The first 1M byte of memory is called

either the real memory or conventional

memory system. Even though the 8086 has a

1M byte address space, not all this memory is

active at one time. Actually, the 1M bytes of

memory are partitioned into 64K byte

(65,536) segments. The 8086-80286

microprocessors allow four memory segments. Figure 2-

3 shows these memory segments.

Think of segments as windows that can be moved over any area of memory to access

data or code. Also note that a program can have more than four segments, but can only access

four segments at a time.

Example: Let the segment registers be assigned as follow: CS = 0009H, DS = 0FFFH, SS =

10E0, and ES = 3281H. We note here that code segment and data segment are overlapped while

other segments are disjointed.

Fig. (2.3): Real Mode,
Segmented Memory Model.

- 18 -

In the real mode a combinational of a segment address and offset address access a

memory location. All real mode memory address must consist of a segment address plus an

offset address. The microprocessor has a set of rules that apply to segments whenever memory

is addressed. These rules define the segment register and offset register combination (see Table

2-1). For example, the code segment register is always used with the instruction pointer to

address the next instruction in a program. This combination is CS:IP. The code segment register

defines the start of the code segment and the instruction pointer locates the next instruction

within the code segment

TABLE (2-1): 8086 default 16 bit segment and offset address combinations

Segment Offset Special Purpose

CS IP Instruction address
SS BP Stack address
SS SP Top of the stack
DS BX, DI,SI, an 8-bit number, or a 16-bit number Data address
ES DI for string instructions String destination address

This combination (CS:IP) locates the next instruction executed by the microprocessor. For

example if CS = 1400H and IP = 1200H, the microprocessor fetches its next instruction from

memory location:

- 19 -

Physical address=Segment base address*10+Offset (Effective) address

 PA = SBA * 10+ EA

=1400H*10+1200H=15200H.

Q: What is segmentation? What are its advantages? How is segmentation implemented in
typical microprocessors?
Ans:

Segment memory addressing divides the memory into many segments. Each of these
segments can be considered as a linear memory space. Each of these segment is addressed by a
segment register. However since the segment register is 16 bit wide and the memory needs 20
bits for an address the 8086 appends four bits segment register to obtain the segment address.
Therefore, to address the segment 10000H by , say the SS register, the SS must contain 1000H.
The first advantage that memory segmentation has is that only 16 bit registers are required both
to store segment base address as well as offset address. This makes the internal circuitry easier
to build as it removes the requirement for 20 bits register in case the linear addressing method is
used. The second advantage is relocatability.

Fig. (2.3): Generating a physical address

