
- 49 -

4. STRING INSTRUCTIONS
The string instructions function easily on blocks of memory. They are user friendly

instructions, which help for easy program writing and execution. They can speed up the
manipulating code. They are useful in array handling, tables and records.By using these string
instructions, the size of the program is considerably reduced.
Five basic String Instructions define operations on one element of a string:
 Move byte or word string MOVSB/MOVSW
 Compare string CMPSB/CMPSW
 Scan string SCASB/SCASW
 Load string LODSB/LODSW
 Store string STOSB/STOSW

The general forms of these instructions are as shown below:

Mnem. Meaning Format Operation Flags
Effected

MOVS Move string MOVSB/
MOVSW

((DS)*10+(SI))→((ES)*10+ (DI))
(SI)± 1 → (SI); (DI) ± 1 → (DI) [byte]
(SI) ± 2 → (SI); (DI) ± 2 → (DI) [word]

none

CMPS Compare string CMPSB/
CMPSW

((DS)*10+(SI))-((ES)*10+ (DI))
(SI) ± 1 → (SI); (DI) ± 1 → (DI) [byte]
(SI) ± 2 → (SI); (DI) ± 2 → (DI) [word]

O, S, Z, A, P,
C

SCAS Scan string SCASB/
SCASW

(AL) or (AX) -((ES)*10+ (DI))
(DI) ± 1 → (DI) [byte]
(DI) ± 2 → (DI) [word]

O, S, Z, A, P,
C

LODS Load string LODSB/
LODSW

((DS)*10+ (SI))→(AL) or (AX)
(SI) ± 1 → (SI) [byte]
(SI) ± 2 → (SI) [word]

none

STOS Store string STOSB/
STOSW

(AL) or (AX) →((ES)*10+ (DI))
(DI) ± 1 → (DI) [byte]
(DI) ± 2 → (DI) [word]

none

Auto-indexing of String Instructions

Execution of a string instruction causes the address indices inSI and DI to be either
automatically incremented or decremented. The decision toincrement or decrement is made
based on the status of the direction flag. The direction Flag: Selects the auto increment (D=0) or
the autodecrement (D=1) operation for the DI and SI registers during string operations.

Mnemonic Meaning Format Operation Flags Effected
CLD Clear DF CLD 0→(DF) DF
STD Set DF STD 1→(DF) DF

Dr. Mohanad A. Shehab/ Electrical Engineering Department/ Mustansiriyah University

- 50 -

Prefixes and the String Instructions
In most applications, the basic string operations must be repeated in order to process

arrays of data. Inserting a repeat prefix before the instruction that is to be repeated does this,
the repeat prefixes of the 8086 are shown in table below. For example, the first prefix, REP,
caused the basic string operation to be repeated until the contents of register CX become equal
to 0. Each time the instruction is executed, it causes CX to be tested for 0. If CX is found not to be
0, it is decremented by 1 and the basic string operation is repeated. On the other hand, if it is 0,
the repeat string operation is done and the next instruction in the program is executed, the
repeat count must be loaded into CX prior to executing the repeat string instruction.

Mnemonic Used with Meaning

REP
MOVS
STOS
LODS

Repeat while not end of string
 CX≠0

REPE/REPZ CMPS
SCAS

Repeat while not end of string and strings are equal
CX≠0&ZF=1

REPNE/REPNZ CMPS
SCAS

Repeat while not end of string and strings are not equal
CX≠0 &ZF=0

Example1: Writea program loads the block of memory locations from 0A000H through 0A00FH
with number 5H.

Solution:

MOV AX, 0H
MOV DS, AX
MOV ES, AX
MOV AL, 05
MOV DI, A000H
MOV CX, 0FH
CLD

AGAIN: STOSB
LOOP AGAIN

Example 2: write a program to copy a block of 32 consecutive bytes fromthe block of memory
locations starting at address 2000H in the current Data Segment(DS) to a block of locations
starting at address 3000H in the current Extra Segment (ES).

Solution:

CLD
MOV AX, data_seg
MOV DS, AX
MOV AX, extra_seg
MOV ES, AX

http://oopweb.com/Assembly/Documents/ArtOfAssembly/Volume/Chapter_15/CH15-2.html#HEADING2-213

- 51 -

MOV CX, 20H
MOV SI, 2000H
MOV DI, 3000H
MOVSB
REP

Example 3: Write a program that scans the 70 bytes start atlocation D0H in the current Data
Segment for the value 45H, if this value is found replace it with the value 29Hand exit scanning.

Solution:

MOV AX,data-seg
MOV DS, AX
CLD
MOV DI, 00D0H
MOV CX, 0046H
MOV AL, 45H
REPNE
SCASB
DEC DI
MOV [DI], 29H
HLT

Example 4: Write a program to move a block of 100 consecutive bytes of data starting at offset
address 400H in memory to another block of memory locations starting at offset address 600H.
Assume both block at the same data segment F000H. Use loop instructions.

Solution :

MOV CX,64H
MOV AX,F000H
MOV DS,AX
MOV ES,AX
MOV SI,400H
MOV DI,600H
CLD

NXTPT: MOVSB
LOOP NXTPT
HTL

Example 5:Explain the function of the following sequence of instructions

MOV DL, 05
MOV AX, 0A00H
MOV DS, AX
MOV SI, 0
MOV CX, 0FH

- 52 -

AGAIN: INC SI
CMP [SI], DL
LOOPNE AGAIN

Solution: The first 5 instructions initialize internal registers and set up a data segmentthe loop in
the program searches the 15 memory locations starting fromMemory location A001Hfor the
data stored in DL (05H). As long as the valueIn DL is not found the zero flag is reset, otherwise it
is set. The LOOPNEDecrements CX and checks for CX=0 or ZF =1. If neither of these conditions
ismet the loop is repeated. If either condition is satisfied the loop is complete.Therefore, the
loop is repeated until either 05 is found or alllocations in the address range A001H through A00F
have been checked and are foundnot to contain 5.

Example 6: Implement the previous example using SCAS instruction.
Solution:

MOV AX, 0H
MOV DS, AX
MOV ES, AX
MOV AL, 05
MOV DI, A001H
MOV CX, 0FH
CLD

AGAIN: SCASB
LOOPNE AGAIN

- 53 -

5. CONTROL TRANSFER INSTRUCTIONS
These instructions transfer the program control from one address to other address. (Not

in a sequence). They are again classified into four groups. They are:

Unconditional
Transfer Instructions

Conditional Transfer
Instructions

Iteration Control
Instructions

Interrupt
Instructions

JMP
CALL
RET

JA / JNBE
JAE / JNB
JB / JNAE
JBE / JNA
JC
JE / JZ
JG / JNLE
JGE / JNL
JL / JNGE

JLE / JNG
JNC
JNE / JNZ
JNO
JNP / JPO
JNS
JO
JP / JPE
JS

LOOP
LOOPE / LOOPZ
LOOPNE / LOOPNZ

INT
INTO
IRET

5.1 JUMP Instruction

8086 allowed two types of jump operation. They are the unconditional jump and the
conditional jump.

5.1.1 Unconditional jump:

JMP (Jump) unconditionally transfers control from one code segment location to
another. These locations can be within the same code segment (near control transfers) or in
different code segments (far control transfers). There are two basic kinds of unconditional
jumps:

1. Intrasegment Jump: is limited to addresses within the current code segment. This type of
jump is achieved by just modifying the value in IP.

2. Intersegment Jump:permit jumps from one code segment to another. Implementation of
this type of jump requires modification of the contents of both CS and IP.

1. Intrasegment Jump

()bit 8 LableShort −

()bit 16 LableNear −

()()reg.IP 16gptrRe =
()M.L ofcontent IP 16Memptr =

2. Intersegment Jump








=
=

−
bit 16 ondsecCS

bit 16 firstIP
 LableFar









=
=

 byte 2 ondsec of contentCS
byte 2 first of contentIP

 Memptr

- 54 -

Example 1:Assume the following state of 8086:(CS)=1075H, (IP)=0300H, (SI)=A00H, (DS)=400H,
(DS:A00)=10H, (DS:A01)=B3H, (DS:A02)=22H, (DS:A03)=1AH. To what address is program control
passed if each of the following JMP instruction is execute?
(a) JMP 85⇒ 1075:85⇒Short jump
(b) JMB 1000H ⇒ 1075:1000 ⇒Near jump
(c) JMP [SI]⇒ 1075: B310⇒Near jump
(d) JMP SI ⇒ 1075:0A00⇒Near jump
(e) JMP FAR [SI] ⇒1A22: B310⇒ Far jump
(f) JMP 3000:1000 ⇒3000:1000⇒ Far jump

5.1.2Conditional Jump

The conditional jump instructions test the following flag bits: S, Z, C, P, and O. If the
condition under test is true, a branch to the label associated with jump instruction occurs. If the
condition is false, the next sequential step in the program executes. Tables below are a list of
each of the conditional jump instructions.

Table1: Unsigned Conditional Transfers

Mnemonic Meaning “Jump if….. ” Condition Tested

JA/JNBE above/not below nor equal (CF or ZF) = 0
JAE/JNB above or equal/not below CF = 0
JB/JNAE below/not above nor equal CF = 1
JBE/JNA below or equal/not above (CF or ZF) = 1
JC Carry CF = 1
JE/JZ equal/zero ZF = 1
JNC not carry CF = 0
JNE/JNZ not equal/not zero ZF = 0
JNP/JPO not parity/parity odd PF = 0
JP/JPE parity/parity even PF = 1
JCXZ CX register is zero CF or ZF = 0

Table2: Signed Conditional Transfers

Mnemonic Meaning “Jump if….. ” Condition Tested

JG/JNLE greater/not less nor equal ((SF xor OF) or ZF) = 0
JGE/JNL greater or equal/not less (SF xor OF) = 0
JL/JNGE less/not greater nor equal (SF xor OF) = 1
JLE/JNG less or equal/not greater ((SF xor OF) or ZF) = 1
JNO not overflow OF = 0
JNS not sign (positive, including 0) SF = 0
JO Overflow OF = 1
JS sign (negative) SF = 1

- 55 -

Example 2: Write a program to move a block of 100 consecutive bytes of data string at offset
address 8000H in memory to another block of memory location starting at offset address A000H.
Assume that both blocks are in the same data segment value 3000H.
Solution:

 MOV AX, 3000H
 MOV DS, AX
 MOV SI, 8000H
 MOV DI, A000H
 MOV CX, 64H
NXT: MOV AH, [SI]
 MOV [DI], AH
 INC SI
 INC DI
 DEC CX
 JNZ NXT
 HLT

Example 3: Write a program to add (50)H numbers stored at memory locations start
at4400:0100H , then store the result at address 200H in the same data segment.
Solution:

MOV AX , 4400H
MOV DS , AX
MOV CX , 0050Hcounter
MOV BX , 0100H offset

Again: ADD AL, [BX]
INC BX label
DEC CX
JNZ Again
MOV [0200], AL

5.2CALL and RETInstructions
 A subroutine is a special segment of program that can be called for execution form any

point in program.
 There two basic instructions for subroutine : CALL and RET
 CALL instruction is used to call the subroutine.
 RET instruction must be included at the end of the subroutine to initiate the return

sequence to the main program environment.
 Just like the JMP instruction, CALL allows implementation of two types of operations: the

intrasegment call and intersegment call.
 Every subroutine must end by executing an instruction that returns control to the main

program. This is the return (RET).
 The operand of the call instruction initiates an intersegment or intrasegment call
 The intrasegment call causes contents of IP to be saved on Stack.
 The Operand specifies new value in the IP that is the first instruction in the subroutine.

- 56 -

 The Intersegment call causes contents of IP and CS to be saved in the stack and new
values to be loaded in IP and CS that identifies the location of the first instruction of the
subroutine.

 Execution of RET instruction at the end of the subroutine causes the original values of IP
and CS to be POPed from stack.

Example 4:
CALL 1234h
CALL BX
CALL [BX]
CALL DWORD PTR [DI]

Example5: write a procedure named Squarethat squares the contents of BL and places the result
in BX.
Solution:
Square: PUSH AX

MOV AL, BL
MUL BL
MOV BX, AX
POP AX
RET

Example6: write a program that computes y = (AL)2 + (AH)2 + (DL)2 , places the result in CX. Make
use of the SQUARE subroutine defined in the previous example. (Assume result y doesn’t exceed
16 bit)
Solution:

MOV CX, 0000H
MOVBL,AL
CALL Square
ADD CX, BX
MOV BL,AH
CALL Square
ADD CX, BX
MOV BL,DL
CALL Square
ADD CX, BX
HLT

- 57 -

5.3 Iteration Control Instructions
The 8086 microprocessor has three instructions specifically designed for implementing

loop operations. These instructions can be use in place of certain conditional jump instruction
and give the programmer a simpler way of writing loop sequences. The loop instructions are
listed in table below:

Mnemonic Meaning Format Operation

LOOP LOOP LOOP short-label

(CX)←(CX)-1
Jump to location defined by short-
label if (CX) ≠ 0; otherwise, execute
next instruction

LOOPE/
LOOPZ

Loop while equal/
loop while zero

LOOPE/LOOPZ short-
label

(CX)←(CX)-1
Jump to location defined by short-
label if (CX) ≠ 0; an d (ZF)=1;
otherwise, execute next instruction

LOOPNE/
LOOPNZ

Loop while not
equal/ loop while
not zero

LOOPNE/LOOPNZshort-
label

(CX)←(CX)-1
Jump to location defined by short-
label if (CX) ≠ 0; and (ZF)=0; otherwise,
execute next instruction

Example: Write a program to move a block of 100 consecutive bytes of data starting at offset
address 400H in memory to another block of memory locations starting at offset address 600H.
Assume both block at the same data segment F000H. (Similar to the example viewed in lecture 6
at page 59). Use loop instructions.
Solution:

MOV AX,F000H
MOV DS,AX
MOV SI,0400H
MOV DI,0600H
MOV CX, 64H

NEXTPT: MOV AH,[SI]
MOV [DI], AH
INC SI
INC DI LOOPNEXTPT
HLT

6. PROCESS CONTROL INSTRUCTIONS

These instructions are used to change the process of the Microprocessor. They change
the process with the stored information. They are again classified into two groups. They are:

1. Flage Control Instructions
2. External Hardware Synchronization Instructions

- 58 -

6.1 Flag Control Instructions:
These instructions directly affected the state of flags. Figure below shows these

instructions.

Mnemonic Meaning Format Operation Flags Effected

STC Set Carry Flag STC 1→(CF) CF

CLC Clear Carry Flag CLC 0→(CF) CF

CMC Complement Carry Flag CMC () ()CFCF → CF

STD Set Direction Flag STD 1→ (DF) DF

CLD Clear Direction Flag CLD 0→ (DF) DF

STI Set Interrupt Flag STI 1 → (IF) IF

CLI Clear Interrupt Flag CLI 0 → (IF) IF

Example: Write an instruction sequence to save the current contents of the 8086’s flags in the
memory location pointed to by SI and then reload the flags with the contents of memory
location pointed toby DI
Solution:

LAHF
MOV [SI], AH
MOV AH, [DI]
SAHF

Example: Clear the carry flag without using CLC instruction.
Solution:

STC
CMC

6.2External Hardware Synchronization Instructions:

Mnemonic Meaning
HLT Halt processor
WAIT Wait for TEST pin activity
ESC Escape to external processor interface
LOCK Lock bus during next instruction
NOP No operation

