Experiment Number : (11)

Signed Conditional Jump Instructions

Object:

To recognize the different between the signed and unsigned conditional jump instructions, and also where are used.

Theory:

Sign Number:

There is no way to say for sure whether the hexadecimal byte (0FFh) is positive or negative, it can represent both decimal value " 255 " \& "-1". 8 bit can be used to create 256 combinations (include zero), so we simply presume the first 128 combinations ($0 . .127$) will represent positive number and next 128 combinations (128..255) will represent negative numbers.

In order to get "-5" we should subtract 5 from the number of combination (256), so will get $256-5=251$.
Using this complex way to represent negative numbers has some meaning in math when you add " -5 " to " 5 " you should get "zero". This is what happens when processor add tow bytes 5 and 251 , the result gets over 255, because of the overflow processor gets zero.

Example:

When combinations $128 . .255$ are used the high bit is always 1 , so this maybe used to determine the sign of the number.

The same principle is used for words (16 bit values), 16 bits create 65536 combinations, first 32768 combinations (0.32767) are used to represent positive numbers, and next 32768 combinations (32768..65535) represent negative numbers.

Overflow:

Any changing of the number from positive +ve to negative -ve or changing from negative -ve to positive +ve is represent the over flow.

Example:

Let $\mathrm{AL}=\mathbf{1 2 7}$ in decimal
BL = 1
$A L=A L+B L=128$
The OF flag will set as one because 127 represent +ve and 128 represent -ve value (changing from positive to negative).
$A L=129$ in decimal
BL $=2$
$A L=A L-B L=127$
The OF flag will set as one because 129 represent -ve and 127 represent +ve value (changing from negative to positive).
$A X=32767$ in decimal
BX $=1$
$A X=A X+B X=32768$
The OF flag will set as one because 32767 represent + ve and 32768 represent ve value (changing from positive to negative).
$A X=32770$ in decimal
$B X=4$
$A X=A X-B X=32766$
The OF flag will set as one because 32770 represent -ve and 32766 represent $+v e$ value (changing from negative to positive).

Jump instructions for signed number:

1. JE Label
2. JZ Label
3. JG Label
4. JL Label
5. JGE Label
6. JLE Label

Jump if equal
Jump if zero
Jump if grater
Jump if less
Jump if grater or equal
Jump if less or equal

ZF $=1$
ZF $=1$
$\mathrm{ZF}=\mathbf{0} \& \mathrm{SF}=\mathbf{O F}$
$\mathbf{S F} \neq \mathbf{O F}$
$\mathbf{S F}=\mathbf{O F}$
ZF = 1 OR SF $\neq O F$

Some of the above instructions can be negative as seen below:

1. JNE Label
2. JNZ Label
3. JNG Label
4. JNL Label

Jump if not-equal
ZF $=0$
Jump if not-zero
Jump if not-grater
Jump if not-less
$\mathbf{Z F}=0$
ZF $=1$ OR SF $\neq O F$
$\mathbf{S F}=\mathbf{O F}$

All of the above instructions test the some of the flag and its:

Example:

Write 8086 program to find the min value of DT_{1}, store the result into DT_{2}. $\mathrm{DT}_{1}=-5,3,1,-6,2,1,0,-11,10,9$

Solution:

.DATA
DT1 DB -5,3,1,-6,2,1,0,-11,10,10,9
DT2 DB 0
.CODE
MOV AX@ DATA
MOV DS, AX
MOV SI, OFFSET DT1
MOV DI, OFFSET DT2
MOV CX, 0009
MOV BX, 0
MOV AL, [SI+BX]
L: INC BX
CMP AL, [SI+BX]
JLE M
MOV AL. [SI + BX]
M: LOOP L
MOV [DI], AL
RET

Procedure:

You have 5 numbers ($-5,4,-7,4,0$) write 8086 program to do:

1. Let above program is DT_{1}.
2. Let $\mathbf{D S}=\mathbf{1 0 0 0 H}, \mathbf{S I}=\mathbf{0 0 0 0}, \mathrm{DI}=\mathbf{0 0 5 0 H}$
3. Find the no. of the number that is negative.
4. Store the results into DT_{2}.
5. Execute the above program and find the results.

Home Work:

1. Write 8086 program to find the max and min values of the DT_{1}, store the results into DT_{2}
$\mathrm{DT}_{1}=-5,3,1,-6,2,1,0,-11,10,9$
2. Write 8086 program to store the numbers (-5) to (5) into DT ${ }_{1}$ without using the counter $C X$.
3. Write 8086 program to store the no. of the even numbers of the DT_{1} store the results into DT_{2}.
$\mathrm{DT}_{1}=-10,10,21,-1,0,-11$
4. Write 8086 program to store the number (1) to DT_{3} if the summation of DT_{1} and DT_{2} caused zero results otherwise store (0) in DT_{3} $\mathrm{DT}_{1}=1,5,10,-12,0$
$\mathrm{DT}_{2}=4,-5,-10,-12,0$
