0.6 Continuity

Def: a fun. $f(x)$ is said to be continuous at a if it satisfy

1) $f(x)$ is defined at a
2) $\lim _{x \rightarrow a} f(x)$ exist
3) $\lim _{x \rightarrow a} f(x)=f(a)$

Ex: is the fun. $f(x)=\left\{\begin{array}{cc}2 x+3 & x \leq 4 \\ 7+\frac{16}{x} & x>4\end{array} \quad\right.$ continuous at $x=4$

1) $f(4)=2(4)+3=11$ define at 4
2) $\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4} 7+\frac{16}{x}=11$ exist

$$
\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4}(2 x+3)=11
$$

3) $\lim _{x \rightarrow 4} f(x)=f(4)=11$

$$
\therefore f \text { is continuous at } x=4
$$

Ex: where is the function $f(x)=\frac{x^{2}-9}{x^{2}-5 x+6}$ continuous.

$$
\begin{array}{r}
x^{2}-5 x+6=0 \\
(x-2)(x-3)=0 \\
x=2 \text { and } x=3
\end{array}
$$

$\therefore \quad f(x)$ is continuous at every where except $x=2$ and $x=3$
or the points of discontinuity at $x=2$ and $x=3$
$:$ find the value of k that make the function.

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{ll}
k x^{2} & x \leq 2 \\
2 x+k & x>2
\end{array} \text { continuous at } x=2\right. \\
& \lim _{x \rightarrow 2} f(x)=f(2) \\
& \lim _{x \rightarrow 2} 2 \mathrm{x}+\mathrm{k}=\mathrm{k}\left(2^{2}\right) \\
& 4+\mathrm{k}=4 \mathrm{k} \rightarrow 3 \mathrm{k}=4 \quad \rightarrow k=\frac{4}{3}
\end{aligned}
$$

Ex: find $\lim _{x \rightarrow \infty}\left[\cos \left(\frac{\pi x^{2}+1}{x^{2}+3}\right)\right]$

$$
\begin{aligned}
\therefore \lim _{x \rightarrow \infty}\left[\cos \left(\frac{\pi x^{2}+1}{x^{2}+3}\right)\right]= & \cos \left[\lim _{x \rightarrow \infty}\left(\frac{\pi x^{2}+1}{x^{2}+3}\right)\right] \\
& =\cos \left[\lim _{x \rightarrow \infty} \frac{\pi+\frac{1}{x^{2}}}{1+\frac{3}{x^{2}}}\right]=\cos \pi=-1
\end{aligned}
$$

Ex: find $\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x} * \frac{1+\cos x}{1+\cos x} \\
& =\lim _{x \rightarrow 0} \frac{x \sin x(1+\cos x)}{1-\cos ^{2} x} \\
& =\lim _{x \rightarrow 0} \frac{x \sin x(1+\cos x)}{\sin ^{\frac{1}{2} x}}=\lim _{x \rightarrow 0} \frac{x(1+\cos x)}{\sin x}=\frac{\lim _{x \rightarrow 0}(1+\cos x)}{\lim _{x \rightarrow 0} \sin x / x}=\frac{2}{1}
\end{aligned}
$$

Chapter 1

1.1 Differentiation

Def.: Let $y=f(x)$ be a function, then the derivative of f with respect to x is defined by $\frac{d y}{d x}=\dot{y}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Ex: use definition of derivative to find the derivative of $f(x)=x^{2}$

$$
\begin{aligned}
\frac{d y}{d x}=y^{\prime} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}=\lim _{h \rightarrow 0} 2 x+h=2 x
\end{aligned}
$$

Theorem: if f and g are differentiable functions at x and k is constant then:

1. $\frac{d}{d x}(k)=0$
2. $\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x}(f(x)) \pm \frac{d}{d x}(g(x))$
3. $\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot \frac{d}{d x} g(x)+g(x) \cdot \frac{d}{d x} f(x)$
4. $\frac{d}{d x}(k f(x))=k \frac{d}{d x} f(x)$
5. $\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right) \quad=\frac{g(x) \cdot \frac{d}{d x} f(x)-f(x) \cdot \frac{d}{d x} g(x) .}{g(x)^{2}} \quad$ provided $g(x) \neq 0$
6. $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$

Higher Derivatives:

If f is differentiable function at x then the higher derivatives define:

$$
\begin{gathered}
f^{\prime \prime}(x)=\frac{d^{2} f}{d x^{2}} \\
f^{\prime \prime \prime}(x)=\frac{d^{3} f}{d x^{3}} \\
f^{(4)}(x)=\frac{d^{4}(x)}{d x^{4}}
\end{gathered}
$$

Ex: Let $y=\left(\frac{x-1}{x+1}\right)\left(2 x^{7}-x^{2}\right)$ find $\frac{d y}{d x}$.

$$
\begin{aligned}
& \frac{d y}{d x}=\left(\frac{x-1}{x+1}\right)\left(14 x^{6}-2 x\right)+\left(2 x^{7}-x^{2}\right) \frac{(x+1) \cdot 1-(x-1) \cdot 1}{(x+1)^{2}} \\
& \frac{d y}{d x}=\left(\frac{x-1}{x+1}\right)\left(14 x^{6}-2 x\right)+\frac{2\left(2 x^{7}-x^{2}\right)}{(x+1)^{2}}
\end{aligned}
$$

Ex: Find $\frac{d}{d \lambda}\left[\frac{\lambda \lambda_{o}+\lambda^{6}}{2-\lambda_{o}}\right]$

$$
\begin{aligned}
& =\frac{1}{2-\lambda_{o}} \frac{d}{d \lambda}\left[\lambda \lambda_{o}+\lambda^{6}\right] \\
& =\frac{1}{2-\lambda_{o}}\left[\lambda_{o}+6 \lambda 5\right]=\frac{\left[\lambda_{o}+6 \lambda 5\right]}{2-\lambda_{o}}
\end{aligned}
$$

Ex: Find $\left.\frac{d^{2} y}{d x^{2}}\right|_{x=1}=\frac{d^{2} y}{d x^{2}}(1)$ where $y=6 x^{5}-4 x^{2}$

$$
\begin{aligned}
& \frac{d y}{d x}=30 x^{4}-8 x \\
& \frac{d^{2} y}{d x^{2}}=120 x^{3}-8 \\
&\left.\frac{d^{2} y}{d x^{2}}\right|_{x=1}=112
\end{aligned}
$$

Ex: Find an equation for the line that is tangent to $y=(1-x)(1+x)$ at the point where $\mathrm{x}=2$.

$$
\begin{aligned}
& \boldsymbol{y}=(1-x)(1+x)=\mathbf{1}-\boldsymbol{x}^{2} \\
& y=-2 x \rightarrow \text { slope }=\boldsymbol{m}=y^{\prime}(2)=-\mathbf{4} \\
& y(2)=1-(2)^{2}=-3 \quad \rightarrow \quad\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{y}_{\mathbf{1}}\right)=(\mathbf{2},-\mathbf{3})
\end{aligned}
$$

The equation of the line is $\quad\left(y-y_{1)}=\boldsymbol{m}\left(\boldsymbol{x}-x_{1}\right)\right.$

$$
\begin{gathered}
y-(-3)=(-4)(x-2) \\
y=-4 x+5
\end{gathered}
$$

Derivatives of Trigonometric Functions:

1. $\frac{d}{d x}(\sin u)=\cos u \frac{d u}{d x}$
2. $\frac{d}{d x}(\cos u)=-\sin u \frac{d u}{d x}$
3. $\frac{d}{d x}(\tan u)=\sec ^{2} u \frac{d u}{d x}$
4. $\frac{d}{d x}(\cot u)=-\csc ^{2} u \frac{d u}{d x}$
5. $\frac{d}{d x}(\sec u)=\sec u \tan u \frac{d u}{d x}$
6. $\frac{d}{d x}(\csc u)=-\csc u \cot u \frac{d u}{d x}$

Ex: Find $\boldsymbol{f}(\boldsymbol{x})$ if $f(x)=\frac{\sin x \sec x}{1+x \tan x}$

$$
f(x)=\frac{(1+x \tan x)(\sin x \cdot \sec x \tan x+\sec x \cdot \cos x)-(\sin x \sec x)\left(x \cdot \sec ^{2} x+\tan x \cdot 1\right)}{(1+x \tan x)^{2}}
$$

The Chain rule:

1. If $\mathrm{y}=f(u)$ and $u=g(x)$ then $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$

Or

$$
\frac{d y}{d x}=\dot{f}(g(x)) \dot{g}(x)
$$

2. If $\mathrm{y}=f(\mathrm{t})$ and $x=g(t)$ then $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$.

Ex: Let $y=u^{10}$ and $u=x^{3}+7 x+1$, Find $\frac{d y}{d x}$ in two ways.

1. $\frac{d y}{d u}=10 u^{9}, \frac{d u}{d x}=3 x^{2}+7 \rightarrow \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$

$$
\begin{array}{r}
\frac{d y}{d x}=\left(10 u^{9}\right) \cdot\left(3 x^{2}+7\right) \\
\frac{d y}{d x}=\left[10\left(x^{3}+7 x+1\right)^{9}\right] \cdot\left(3 x^{2}+7\right)
\end{array}
$$

2. $y=\left(x^{3}+7 x+1\right)^{10} \rightarrow \frac{d y}{d x}=\left[10\left(x^{3}+7 x+1\right)^{9}\right] \cdot\left(3 x^{2}+7\right)$

Let $y=t^{2}$ and $x=5 t+2$ Find $\frac{d y}{d x}$

$$
\frac{d y}{d t}=2 t \quad, \quad \frac{d x}{d t}=5 \quad \rightarrow \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t}{5}=\frac{2}{5}\left(\frac{x-2}{5}\right)
$$

Implicit Differentiation:

$$
\begin{gathered}
\text { Ex: Find } \frac{d y}{d x} \quad \text { if } \quad 5 y^{2}+\sin \boldsymbol{y}=\boldsymbol{x}^{2} \\
10 \mathrm{y} \frac{d y}{d x}+\cos \mathrm{y} \frac{d y}{d x}=2 \mathrm{x} \\
(10 \mathrm{y}+\cos \mathrm{y}) \frac{d y}{d x}=2 \mathrm{x} \\
\frac{d y}{d x}=\frac{2 \mathrm{x}}{(10 \mathrm{y}+\cos \mathrm{y})}
\end{gathered}
$$

Ex: find $\frac{d w}{d \lambda}$ if $a^{2} w^{2}+b^{2} \lambda^{2}=1$ where \mathbf{a}, \mathbf{b} are constants.

$$
2 a^{2} w \frac{d w}{d \lambda}+2 b^{2} \lambda=0 \rightarrow \frac{d w}{d \lambda}=\frac{-b^{2} \lambda}{a^{2} w}
$$

