Area between two curves:

a. If $f(x) \geq g(x)$ for $\mathrm{a} \leq x \leq b$ then $A=\int_{a}^{b}[f(x)-g(x)] d x$
b. If $f(y) \geq g(y)$ for $\mathrm{c} \leq y \leq d$ then $A=\int_{c}^{d}[(f(y)-g(y)] d y$

Ex / Find the area of the region enclosed between the curves
$y=x^{2}$ and $y=x+6$

$$
\begin{gathered}
x^{2}=\mathrm{x}+6 \\
x^{2}-x-6=0 \\
(\mathrm{x}+2)(\mathrm{x}-3)=0 \\
\Downarrow \quad \Downarrow \\
\mathrm{x}=-2 \quad \mathrm{x}=3
\end{gathered}
$$

Check $\mathrm{x}=0$

$$
\left.\begin{array}{l}
y_{1}=0(\text { below }) \quad y_{2}=6(\text { above }) \\
\mathrm{A}=\int_{-2}^{3}\left(y_{2}-y_{1}\right) d x=\int_{-2}^{3}\left[(x+6)-x^{2}\right] d x \\
= \\
=\left[\frac{x^{2}}{2}+6 x-\frac{x^{3}}{3}\right] \\
= \\
=\left(\frac{(3)^{2}}{2}+6(3)-\frac{(3)^{3}}{3}\right)-\left(\frac{(-2)^{2}}{2}+6(-2)-\frac{(-2)^{3}}{3}\right) \\
=
\end{array}\right)
$$

Ex/Find the area of the region enclosed between the curves

Method (1) $\quad y_{1}=\sqrt{x}, \quad y_{2}=-\sqrt{x} \quad, y_{3}=x-2$

$$
\begin{aligned}
& \sqrt{x}=-\sqrt{x} \\
& \pm \sqrt{x}=x-2 \\
& \sqrt{x}+\sqrt{x}=0 \\
& 2 \sqrt{x}=0 \\
& \sqrt{x}=0 \\
& x=0 \\
& A=A_{1}+A_{2} \\
& =\int_{0}^{1}[\sqrt{x}-(-\sqrt{x})] d x+\int_{1}^{4}[\sqrt{x}-(x-2)] d x \\
& =\int_{0}^{1} 2 \sqrt{x} d x+\int_{1}^{4}[\sqrt{x}-x+2] d x \\
& =2 \int_{0}^{1} x^{1 / 2} d x+\int_{1}^{4}\left[x^{1 / 2}-x+2\right] d x \\
& =2\left[\frac{x^{3 / 2}}{3 / 2}\right]+\left[\frac{x^{3 / 2}}{3 / 2}-\frac{x^{2}}{2}+2 x\right]=\frac{4}{3}+\frac{19}{6}=\frac{9}{2}
\end{aligned}
$$

Method (2)

$$
\begin{gathered}
y^{2}=y+2 \quad y^{2}-y-2=0 \\
(y+1)(y-2)=0 \\
\Downarrow \quad \Downarrow \\
Y=-1 \quad y=2
\end{gathered}
$$

$$
\begin{aligned}
& A=\int_{-1}^{2}\left[(y+2)-y^{2}\right] d y=\left[\frac{y^{2}}{2}+2 y-\frac{y^{3}}{3}\right] \\
& -1 \\
& =\left[\frac{(2)^{2}}{2}-2(2)-\frac{(2)^{3}}{3}\right]-\left[\frac{(-1)^{2}}{2}-2(-1)-\frac{(-1)^{3}}{3}\right]=\frac{9}{2}
\end{aligned}
$$

Ex / find the area of the region enclosed between the curves

$$
\begin{array}{cl}
y^{2}=-x, & y=x-6, y=-1, y=4 \\
y^{2}=-x, & y=x-6 \\
\Downarrow=-y^{2} & \mathrm{x}=\mathrm{y}+6
\end{array}
$$

$$
\begin{aligned}
A & =\int_{-1}^{4}\left(x_{1}-x_{2}\right) d y \\
& =\int_{-1}^{4}\left[(y+6)-\left(-y^{2}\right)\right] d y \\
& =\int_{-1}^{4}\left[y+6+y^{2}\right] d y \\
& =\left[\frac{y^{2}}{2}+6 y+\frac{y^{3}}{3}\right]_{-1}^{4}=\frac{160}{3}
\end{aligned}
$$

Ex / Find the area bounded by $y=\sin x, y=\cos x$, from $x=0$ to $x=2 \pi$ Sketch the region)

$$
A=A_{1}+A_{2}+A_{3}
$$

$=\int_{0}^{\pi / 4}(\cos x-\sin x) d x+\int_{\frac{\pi}{4}}^{5 \frac{\pi}{4}}(\sin x-\cos x) d x+\int_{\frac{5 \pi}{4}}^{2 \pi}(\cos x-\sin x) d x$
$\left.\left.=\sin x+\cos x]_{0}^{\pi / 4}-\cos x-\sin x\right]_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}+\sin x+\cos x\right]_{\frac{5 \pi}{4}}^{2 \pi}=4 \sqrt{2}$

Ex / Find the area of the region enclosed between the curves

$$
y=x, y=4 x, y=-x+2, \text { sketch the region. }
$$

$$
\begin{aligned}
& y_{1}=y_{3} \\
& 4 x=x \xrightarrow{\text { yields }} x=0
\end{aligned}
$$

$$
\begin{aligned}
y_{2} & =y_{3} \\
-x+2 & =x \\
& 2 x=2 \xrightarrow{\text { yields }} x=1
\end{aligned}
$$

$$
\mathrm{A}=A_{1}+A_{2}
$$

$$
=\int_{0}^{2 / 5}(4 x-x) d x+\int_{2 / 5}^{1}[(-x+2)-x] d x
$$

$$
=\left[4 \frac{x^{2}}{2}-\frac{x^{2}}{2}{ }_{0}^{2 / 5}+\left[-\frac{x^{2}}{2}+2 x-\frac{x^{2}}{2}\right]_{2 / 5}^{1}\right.
$$

$$
=\left[3 \frac{x^{2}}{2} \underset{0}{2 / 5}+\left[-x^{2}+2 x\right]=\frac{3}{5}\right.
$$

Ex: Find k that divide the area between $y=x^{2}$ and $y=9$ into two equal parts . $y=x^{2} \rightarrow x= \pm \sqrt{y}$

to be equal parts $\quad A_{1}=A_{2}$

$$
\begin{aligned}
\int_{k}^{9}[\sqrt{y}-(-\sqrt{y})] d y & =\int_{0}^{k}[\sqrt{y}-(-\sqrt{y})] d y \\
2 \int_{k}^{9} \sqrt{y} d y & =2 \int_{0}^{k} \sqrt{y} d y \\
\int_{k}^{9} y^{1 / 2} d y & =\int_{0}^{k} y^{1 / 2} d y
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{2}{\beta}\left[\begin{array} { r }
{ 9 } \\
{ y ^ { 3 / 2 }] = 2 / 3 } \\
{ k }
\end{array} \left[\begin{array}{r}
k \\
\left.y^{3 / 2}\right] \\
0
\end{array}\right.\right. \\
& 9^{3 / 2}-k^{3 / 2}=k^{3 / 2}-0 \\
& 27=2 k^{3 / 2} \\
& 27 / 2=k^{3 / 2} \rightarrow \quad(27 / 2)^{2 / 3}=k
\end{aligned}
$$

2.3-Volumes

a. Volumes by Disks

$$
V=\int_{a}^{b} \pi(f(x))^{2} d x
$$

Ex/ Find the volume of the solid obtained when the region under the curve $y=\sqrt{x}$ over the interval $[1,4]$ is revolved about the x-axis . $V=\int_{a}^{b} \pi(f(x))^{2} d x$

$$
V=\int_{1}^{4} \pi[\sqrt{x}]^{2} d x=\pi\left[\frac{x^{2}}{2}\right] \quad=8 \pi-\frac{\pi}{2}=\frac{15 \pi}{2}
$$

b. Volumes by washers:

$$
V=\int_{0}^{2} \pi\left[(f(x))^{2}-(g(x))^{2}\right] d x
$$

Ex: find the volume generated by revolving the area enclosed by

$$
y=x^{2}+1, \quad y=x+3 \text { about the } x-\text { axis }
$$

$$
\begin{gathered}
y_{1}=y_{2} \\
x^{2}+1=x+3 \\
x^{2}-x-2=0 \\
(x+1)(x-2)=0 \\
\Downarrow \quad \Downarrow \\
x=-1 \quad x=2
\end{gathered}
$$

By washer method

$$
\begin{aligned}
V & =\int_{a}^{b} \pi\left[[f(x)]^{2}-[g(x)]^{2}\right] d x \\
& =\int_{-1}^{2} \pi\left[(x+3)^{2}-\left(x^{2}+1\right)^{2}\right] d x \\
& =\pi \int_{-1}^{2}\left[x^{2}+6 \mathrm{x}+9-\mathrm{x}^{4}-2 \mathrm{x}^{2}-1\right] \mathrm{dx} \\
& =\pi \int_{-1}^{2}\left[-\mathrm{x}^{4}-\mathrm{x}^{2}+6 \mathrm{x}+8\right] \mathrm{dx} \\
& =\pi\left[-\frac{x^{5}}{5}-\frac{x^{3}}{3}-3 \mathrm{x}^{2}+8 \mathrm{x}\right] \\
& =\frac{\mathbf{2 7 \pi}}{\mathbf{5}}
\end{aligned}
$$

Ex/ Find the volume of solid generated by revolving the region enclosed by $x=y^{2}$ and $x=y \quad 1$-about the x-axis 2- about the Line $y=-1$.

1- about the x-axis

$$
x=y^{2} \Rightarrow y= \pm \sqrt{x}
$$

$$
\begin{gathered}
y_{1}=y_{2} \\
\sqrt{x}=x \\
x=x^{2} \\
x^{2}-x=0 \\
x(x-1)=0 \\
\Downarrow \quad \Downarrow \\
x=0 \quad x=1
\end{gathered}
$$

By washer method

$$
\begin{aligned}
V & =\int_{a}^{b} \pi\left[[f(x)]^{2}-[g(x)]^{2}\right] d x \\
& =\int_{0}^{1} \pi\left(\left((\sqrt{x})^{2}-(x)^{2}\right) \mathrm{dx}\right. \\
& =\pi \int_{0}^{1}\left(x-x^{2}\right) d x=\pi\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\pi\left[\frac{1}{2}-\frac{1}{3}\right]=\frac{\pi}{6}
\end{aligned}
$$

2- about the line $y=-1$

$$
\begin{aligned}
V & =\int_{a}^{b} \pi[f(x)-(-1)]^{2}-[g(x)-(-1)]^{2} d x \\
& =\int_{0}^{1} \pi\left[(\sqrt{x}+1]^{2}-(x+1)^{2}\right] d x \\
& =\pi \int_{0}^{1}\left[x+2 \sqrt{x}+1-x^{2}-2 x-1\right] d x \\
& =\pi \int_{0}^{1}\left[-x+2 \sqrt{x}-x^{2}\right] d x \\
& =\pi\left[\frac{-x^{2}}{2}+4 \frac{x^{\frac{3}{2}}}{3}-\frac{x^{3}}{3}\right]=\frac{\boldsymbol{\pi}}{\mathbf{2}}
\end{aligned}
$$

Ex / Find the volume of the solid generated when the region enclosed by $y=\sqrt{x+1}, y_{2}=\sqrt{2 x}$ and $y_{2}=0$ is revolved about the x-axis.

$$
\begin{aligned}
& y_{1}=y_{2} \\
& \sqrt{x+1}=\sqrt{2 x} \\
& x+1=2 x \\
& x=1 \\
& y_{2}=y_{3} \\
& \begin{array}{rlrl}
y_{1} & =y_{3} & \sqrt{2 x} & =0 \\
\sqrt{x+1} & =0 & x & =0
\end{array} \\
& x=-1 \\
& V=\mathrm{v}_{1}+\mathrm{v}_{2} \\
& =\int_{-1}^{0} \pi[\sqrt{x+1}]^{2} d x+\int_{0}^{1} \pi\left([\sqrt{x+1}]^{2}-[\sqrt{2 x}]^{2}\right) d x \\
& =\pi \int_{-1}^{0}(x+1) d x+\pi \int_{0}^{1}[x+1-2 x] d x \\
& =\pi \int_{-1}^{0}(x+1) d x+\pi \int_{0}^{1}(1-x) d x \\
& =\pi\left[\frac{x^{2}}{2}+x\right]_{-1}^{0}+\pi\left[x-\frac{x^{2}}{2}\right]_{0}^{1}=
\end{aligned}
$$

c. Volume by Cylindrical shells:

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

Ex / Find the volume of the solid generated when the region enclosed by $y=\sqrt{x}$ over [1,4] is revolved about the y-axis.

$$
\begin{aligned}
& \boldsymbol{V}=\int_{\boldsymbol{a}}^{\boldsymbol{b}} 2 \pi \quad \boldsymbol{x} f(x) d \boldsymbol{x} \\
&=\int_{1}^{4} 2 \pi x \sqrt{x} d x \\
&=2 \pi \int_{1}^{4} x^{3 / 2} d x=2 \pi\left[\frac{x^{5 / 2}}{5 / 2}\right] \\
& 1 \\
&=2 \pi \cdot \frac{2}{5}\left[\begin{array}{r}
4 \\
\left.x^{5 / 2}\right] \\
1
\end{array}=\frac{4 \pi}{5}[32-1]=\frac{124 \pi}{5}\right.
\end{aligned}
$$

Ex / use cylindrical shell method to find the volume of the solid generated when the region in the first quadrant enclosed by

$$
y=x \quad \text { and } y=x^{2} \quad \text { is revolved about } y-a x i s
$$

$$
\begin{aligned}
V & =\int_{a}^{b} 2 \pi x[f(x)-g(x)] d x \\
& =\int_{0}^{1} 2 \pi x\left[x-x^{2}\right] d x=2 \pi \int_{0}^{1}\left(x^{2}-x^{3}\right) d x \\
& =2 \pi\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]=2 \pi\left[\frac{1}{3}-\frac{1}{4}\right]=\frac{\pi}{6}
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=y_{2} \\
& x^{2}=x \\
& x^{2}-\mathrm{x}=0 \\
& x(x-1)=0 \\
& \Downarrow \quad \Downarrow \\
& x=0 \quad x=1
\end{aligned}
$$

Ex / use cylindrical shell to find the volume of the solid generated when the region under $y=x^{2}$ over the internal $[0,2]$ is revolved about $\boldsymbol{x}-$ axis

x	y
0	0
2	4

$$
\boldsymbol{y}=\boldsymbol{x}^{2} \rightarrow \boldsymbol{x}=\sqrt{y}
$$

$$
\begin{aligned}
V & =\int_{a}^{b} 2 \pi y[f(y)-g(y)] d x \\
& =\int_{0}^{4} 2 \pi y[2-\sqrt{y}] d y \\
& =2 \pi \int_{0}^{4}\left[2 y-y^{3 / 2}\right] d y=2 \pi\left[y^{2}-\frac{y^{5 / 2}}{5 / 2}\right]=\frac{32}{5} \pi
\end{aligned}
$$

Ex / use cylndrical shells method to find the volume of the solid ge nerated when the region is enclosed by $\boldsymbol{y}=\boldsymbol{x}^{\mathbf{3}} \boldsymbol{y}=\mathbf{1}, \boldsymbol{x}=\mathbf{0}$ is revolved 1.about the line $y=1, \quad 2$ about the line $y=-1$

1. $\boldsymbol{V}=\int_{a}^{b} 2 \pi[1-y][f(y)-g(y)] d y$

$=2 \pi \int_{0}^{1}[1-y][\sqrt[3]{y}-0] d y$
$=2 \pi \int_{0}^{1}\left[y^{1 / 3}-y^{4 / 3}\right] d y=2 \pi\left[\frac{y^{4 / 3}}{4 / 3}-\frac{y^{7 / 3}}{7 / 3} \underset{0}{1}=2 \pi\left[\frac{3}{4}-\frac{3}{7}\right]=\frac{9 \pi}{14}\right.$

Note : about $y=-1$

2. $\boldsymbol{V}=\int_{a}^{b} 2 \pi[y-(-1)][f(y)-g(y)] d y$
$=2 \pi \int_{0}^{1}[y+1][\sqrt[3]{y}-0] d y$
$=2 \pi \int_{0}^{1}\left[y^{4 / 3}+y^{1 / 3}\right] d y=2 \pi\left[\frac{y^{\frac{7}{3}}}{\frac{7}{3}}+\frac{y^{\frac{4}{3}}}{\frac{4}{3}}\right]=2 \pi\left[\frac{3}{7}+\frac{3}{4}\right]=\frac{33 \pi}{14}$

