2.4 Length of a curve

1) if $y=f(x)$ and $\frac{d y}{d x}$ is define on $[a, b]$ then the arc length is

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

2) if $x=g(y)$ and $\frac{d x}{d y}$ is define on $[c, d]$ then the arc length is

$$
\mathrm{L}=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

Ex / Find the arc length of the curve $y=x^{3 / 2}$
from $(1,1)$ to $(2,2 \sqrt{2})$ in two ways.
Method 1 :

1) $y=x^{3 / 2}$ from $x=1$ to $x=2$

$$
\frac{d y}{d x}=\frac{3}{2} x^{1 / 2} \quad \text { is define on }[1,2]
$$

$$
L=\int_{\boldsymbol{a}}^{\boldsymbol{b}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \rightarrow \quad L=\int_{1}^{2} \sqrt{1+\left(\frac{3}{2} x^{1 / 2}\right)^{2}} d x
$$

$$
=\int_{1}^{2} \sqrt{1+\frac{9}{4} x} \quad d x=\frac{4}{9} \int_{1}^{2} \frac{9}{4}\left(1+\frac{9}{4} x\right)^{1 / 2} d x
$$

$$
\left.=\frac{4}{9} \frac{\left[1+\frac{9}{4} x\right]^{3 / 2}}{3 / 2}\right]_{1}^{2}=\frac{4}{9} \frac{2}{3}\left[\left(1+\frac{9}{4} x\right)^{3 / 2}\right]_{1}^{2}=\frac{8}{27}\left[\left(1+\frac{9}{4}(2)^{3 / 2}-\left(1+\frac{9}{4}(1)^{3 / 2}\right]\right.\right.
$$

Method 2:

$$
\text { 2) } \begin{aligned}
& y= x^{3 / 2} \Rightarrow x=y^{2 / 3} \quad \text { from } y=1 \text { to } y=2 \sqrt{2} \\
& \frac{d x}{d y}=\frac{2}{3} y^{-1 / 3}=\frac{2}{3} \frac{1}{y^{1 / 3}} \\
& \text { is undefine at } 0 \text { out }[1,2 \sqrt{2}] \\
& L=\int_{1}^{2 \sqrt{2}} \sqrt{1+\left(\frac{2}{3} y^{-\frac{1}{3}}\right)^{2}} d y=\int_{1}^{2 \sqrt{2}} \sqrt{1+\left(\frac{4}{9 y^{2 / 3}}\right)} d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbf{1}}^{2 \sqrt{2}} \sqrt{\left(\frac{9 y^{2 / 3}+4}{9 y^{2 / 3}}\right)} d y=\frac{1}{3} \int_{1}^{2 \sqrt{2}} y^{-1 / 3} \sqrt{9 y^{2 / 3}+4} d y \\
& \left.=\frac{\mathbf{1}}{18} \int_{\mathbf{1}}^{\mathbf{2} \sqrt{2}} 6 y^{-1 / 3} \sqrt{9 y^{2 / 3}+4} d y=\frac{\mathbf{1}}{18} \frac{2}{3}\left(9 y^{2 / 3}+4\right)^{3 / 2}\right]_{1}^{2 \sqrt{2}}
\end{aligned}
$$

3- if $y=f(t)$ and $x=g(t)$ then

$$
L=\int_{t 1}^{t 2} \sqrt{\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2}} d t
$$

Ex / Find the circumference of acircle of radius a.
equation of circle of radius a is

$$
x^{2}+y^{2}=a^{2}
$$

and the parametric equations are

$$
\begin{gathered}
x=a \cos t \quad, \quad y=a \sin t \\
\Downarrow \\
\frac{d x}{d t}=-a \sin t \quad \frac{d y}{d t}=a \cos t \\
L=\int_{t 1}^{t 2} \sqrt{\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2}} d t \\
L=\int_{0}^{2 \pi} \sqrt{(a \cos t)^{2}+(-a \sin t)^{2}} d t \\
=\int_{0}^{2 \pi} \sqrt{a^{2}\left(\cos ^{2} t+\sin ^{2} t\right)} d t=\int_{0}^{2 \pi} a d t=a[t]=2 \pi a
\end{gathered}
$$

Ex: Find the arc length of the curve $y=x^{2 / 3}$ between $x=-1$ and $x=8$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2}{3} x^{-1 / 3}=\frac{2}{3 x^{1 / 3}} \text { is undefine at } \quad x=0 \in[-1,8] \\
& y=x^{2 / 3} \rightarrow x=\mp \underset{y}{\mp} y^{3 / 2}{ }^{3 / 2}
\end{aligned}
$$

$$
\begin{gathered}
L_{1}: x=-y^{\frac{3}{2}} \rightarrow \frac{d x}{d y}=-\frac{3}{2} y^{1 / 2} \quad, 0 \leq y \leq 1 \\
\left.L_{1}=\int_{0}^{1} \sqrt{1+\left(\frac{9}{4} y\right)} d y=\frac{4}{9} \frac{\left(1+\frac{9}{4} y\right)^{\frac{3}{2}} 1}{3 / 2}\right]=1.74 \\
L_{2}: x=y^{3 / 2} \rightarrow \frac{d x}{d y}=\frac{3}{2} y^{1 / 2}, 0 \leq y \leq 4 \\
\left.L_{2}=\int_{0}^{4} \sqrt{1+\frac{9}{4} y} d y=\frac{4}{9} \frac{\left(1+\frac{9}{4} y\right)^{3 / 2}}{3 / 2}\right]=\cdots \cdots \\
L=L_{1}+L_{2}
\end{gathered}
$$

H.W.

1. Find the arc length of the curve $x=\frac{1}{3}\left(y^{2}+2\right)^{3 / 2}$ from $\mathrm{y}=0$ to $\mathrm{y}=1$
2. Find the arc length of the curve $y=\frac{x^{4}}{16}+\frac{1}{2 x^{2}}$ from $\mathrm{x}=2$ to $\mathrm{x}=3$
3. Find the arc length of the curve $24 x y=y^{4}+48$ from $y=2$ to $y=4$
4. Find the arc length of the curve $x=\frac{1}{8} y^{4}+\frac{1}{4} y^{-2}$ from $\mathrm{y}=1$ to $\mathrm{y}=4$

2.5 Area of the surface of Revolution :

1. if $y=f(x)$ and $\frac{d y}{d x}$ is define on $[a, b]$ then the area of the Surface geverated by revalving about x - axis is .

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \quad d x
$$

2. similarly if $x=\boldsymbol{g}(\boldsymbol{y})$ and $\frac{d x}{d y}$ is define on $[c, d]$ then the area of the surface generated by revolving about y-axis is

$$
S=\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

Ex/ Find the surface area genereted by revolving

$$
\begin{gathered}
y=f(x)=\sqrt{1-x^{2}}, 0 \leq x \leq \mathbf{1} / 2 \text { about the } x \text {-axis } \\
\frac{d y}{d x}=\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}}(-2 x)=\frac{-x}{\sqrt{1-x^{2}}} \text { is undefine at } x=-1, x=1 \\
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
S=\int_{0}^{1 / 2} 2 \pi\left(\sqrt{1-x^{2}}\right) \sqrt{1+\frac{x^{2}}{1-x^{2}}} d x \\
=\int_{0}^{1 / 2} 2 \pi \sqrt{1-x^{2}} * \frac{1}{\sqrt{1-x^{2}}} d x=2 \pi[x]=\pi
\end{gathered}
$$

Ex / Find the area of the surface geuerated by revolving

$$
\begin{gathered}
x=2 \sqrt{1-y},-\mathbf{1} \leq \boldsymbol{y} \leq \mathbf{0} \text { about } y \text {-axis } \\
\frac{d x}{d y}=-\frac{2}{2}(1-y)^{-1 / 2}=\frac{-1}{\sqrt{1-y}} \text { is undefine at } \mathrm{y}=1 \text { out }-\mathbf{1} \leq \boldsymbol{y} \leq \mathbf{0}
\end{gathered}
$$

$$
S=\int_{c}^{d} 2 \pi \quad g(y) \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

$$
\therefore S=\int_{-1}^{0} 2 \pi\left(2 \sqrt{1-y)} \sqrt{1+\left(\frac{-1}{\sqrt{1-y}}\right)^{2}} d y\right.
$$

$$
=4 \pi \int_{-1}^{0} \sqrt{1-y} \sqrt{1+\frac{1}{1-y}} d y
$$

$$
=4 \pi \int_{-1}^{0} \sqrt{1-y} \sqrt{\frac{1-y+1}{1-y}} \mathrm{dy}
$$

$$
=4 \pi \int_{-1}^{0} \sqrt{1-y} \quad \frac{\sqrt{2-y}}{\sqrt{1-y}} \quad d y=4 \pi \int_{-1}^{0}(2-y)^{1 / 2} d y
$$

$$
=-4 \pi \frac{[2-y]^{3 / 2}}{3 / 2} \quad \begin{gathered}
0 \\
-1
\end{gathered}
$$

HW: Find the area of the surface generaled by revolving

1. $x=\sqrt[3]{y}, 1 \leq y \leq 8$ about the x -axis.
2. $y=\sqrt{x}-\frac{1}{3} x^{\frac{3}{2}}, 1 \leq x \leq 3$ about x -axis.
3. $x=y^{3}, 0 \leq y \leq 1$ about y -axis.
4. $x=\sqrt{9-y^{2}},-2 \leq y \leq 2$ about y-axis.
5. $8 x y^{2}=2 y^{6}+1,1 \leq y \leq 2$ about y-axis.
