
Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

1CH2-

Chapter 2
Operating-System Structures

This chapter will discuss the following concepts:

2.1 Operating System Services
2.2 User Operating System Interface
2.3 System Calls
2.4 System Programs
2.5 Operating System Design and Implementation
2.6 Operating System Structure
2.7 System Boot

Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

2CH2-

2.1 Operating System Services

An operating system provides certain services to programs and to

the users of those programs.

One set of operating-system services provides functions that are

helpful to the user.

 User interface: Almost all operating systems have a user interface

(UI). This interface can take several forms. One is a command-line

interface (CLI), which uses text commands. Another is a batch

interface, in which commands are entered into files, and those files

are executed. Most commonly a graphical user interface (GUI) is

used. Here, the interface is a window system with a pointing device.

Some systems provide two or all three of these variations.

 Program execution: The system must be able to load a program

into memory and to run that program. The program must be able to

end its execution, either normally or abnormally (indicating error).

 I/O operations: A running program may require I/O, which may

involve a file or an I/O device. For efficiency and protection, users

usually cannot control I/O devices directly. Therefore, the operating

system must provide a means to do I/O.

 File-system manipulation: The file system is of particular interest.

Programs need to read and write files and directories. They also

need to create and delete them by name, search for a given file, and

list file information.

 Communications: sometimes one process needs to exchange

information with another process. Such communication may occur

between processes that are executing on the same computer or

Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

3CH2-

between processes that are executing on different computer systems

tied together by a computer network.

 Error detection: The operating system needs to be constantly aware

of possible errors. Errors may occur in the CPU and memory

hardware (such as a memory error or a power failure), in I/O

devices (such as a parity error on tape, a connection failure on a

network, or lack of paper in the printer), and in the user program

(such as an arithmetic overflow, an attempt to access an illegal

memory location). For each type of error, the operating system

should take the appropriate action to ensure correct and consistent

computing.

Another set of operating-system functions exists not for helping the

user but rather for ensuring the efficient operation of the system itself.

 Resource allocation: When there are multiple users or multiple jobs

running at the same time, resources must be allocated to each of

them.

 Accounting: We want to keep track of which users use how much

and what kinds of computer resources. This record keeping may be

used for accounting (so that users can be billed) or simply for

accumulating usage statistics.

 Protection and security: Protection involves ensuring that all

access to system resources is controlled. Security of the system

from outsiders is also important. Such security starts with requiring

each user to authenticate him or herself to the system, usually by

means of a password, to gain access to system resources.

Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

4CH2-

2.2 User Operating System Interface

There are two fundamental approaches for users to interface with

the operating system. One technique is to provide a command-line

interface or command interpreter. The second approach allows the user

to interface with the operating system via a graphical user interface

(GUI).

2.2.1 Command Interpreter

Some operating systems include the command interpreter in the

kernel. Others, such as Windows XP and UNIX, treat the command

interpreter as a special program that is running when a job is initiated or

when a user first logs on. On systems with multiple command interpreters

to choose from, the interpreters are known as shells. For example, on

UNIX and Linux systems, there are several different shells a user may

choose from.

2.2.2 Graphical User Interfaces

A second strategy for interfacing with the operating system is

through a user friendly graphical user interface (GUI). Rather than

having users directly enter commands via a command-line interface, a

GUI allows provides a mouse-based window-and-menu system as an

interface. A GUI provides a desktop where the mouse is moved to

position its pointer on images, or icons, on the screen (the desktop) that

represent programs, files, directories—known as a folder—, and system

functions.

Graphical user interfaces first appeared due in part to research

taking place in the early 1970s at Xerox PARC research facility.

Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

5CH2-

2.3 System Calls

System calls provide an interface to the services made available by

an operating system. These calls are generally available as routines

written in C and C++, although certain low level tasks (for example, tasks

where hardware must be accessed directly), may need to be written using

assembly-language instructions.

Let's first use an example to illustrate how system calls are used:

writing a simple program to read data from one file and copy them to

another file. The first input that the program will need is the names of the

two files: the input file and the output file. These names can be specified

in many ways, depending on the operating-system design.

Once the two file names are obtained, the program must open the

input file and create the output file. Each of these operations requires

system call. Now that both files are set up, we enter a loop that reads

from the input file (a system call) and writes to the output file (another

system call). Finally, after the entire file is copied, the program may close

both files (another system call), write a message to the console or window

(more system calls), and finally terminate normally (the final system

call). As we can see, even simple programs may make heavy use of the

operating system. Frequently, systems execute thousands of system calls

per second.

Most programmers never see this level of detail, however.

Typically, application developers design programs according to an

application programming interface (API). The API specifies a set of

functions that are available to an application programmer

Three of the most common APIs available to application

programmers are the Win32 API for Windows systems, the POSIX API

Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

6CH2-

for POSIX-based systems (which includes virtually all versions of UNIX,

Linux, and Mac OS X), and the Java API for designing programs that

run on the Java virtual machine.

2.3.1 Example

C program invoking printf() library call, which calls write()

system call. As shown in figure 2.1.

Figure 2.1 system call example

2.3.2 Types of System Calls

System calls can be grouped roughly into five major categories:

 Process control
 file manipulation
 device manipulation
 information maintenance
 Communications

Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

7CH2-

The following table summarizes the types of system calls normally

provided by an operating system.

• Process control
o end, abort
o load, execute
o create process, terminate process
o get process attributes, set process attributes
o wait for time
o wait event, signal event
o allocate and free memory

• File management
o create file, delete file
o open, close
o read, write, reposition
o get file attributes, set file attributes

• Device management
o request device, release device
o read, write, reposition
o get device attributes, set device attributes
o logically attach or detach devices

• Information maintenance
o get time or date, set time or date
o get system data, set system data
o get process, file, or device attributes
o set process, file, or device attributes

• Communications
o create, delete communication connection
o send, receive messages
o transfer status information
o attach or detach remote devices

Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

8CH2-

2.4 System Programs

Another aspect of a modern system is the collection of system

programs. Recall Figure 1.1, there are the system programs and the

application programs. Some of them are simply user interfaces to system

calls. They can be divided into these categories:

 File management: These programs create, delete, copy, rename,

print, dump, list, and generally manipulate files and directories.

 Status information: Some programs simply ask the system for the

date, time, amount of available memory or disk space, number of

users, or similar status information.

 File modification: Several text editors may be available to create

and modify the content of files stored on disk or other storage

devices.

 Programming-language support: Compilers, assemblers,

debuggers and interpreters for common programming languages

(such as C, C++, Java, Visual Basic, and PERL) are often provided

to the user with the operating system.

 Program loading and execution: Once a program is assembled or

compiled, it must be loaded into memory to be executed. The system

may provide absolute loaders, re-locatable loaders, linkage

editors, and overlay loaders.

 Communications: These programs provide the mechanism for

creating virtual connections among processes, users, and computer

systems. They allow users to send messages to one another's screens,

to browse web pages, to send electronic-mail messages, to log in

remotely, or to transfer files from one machine to another.

Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

9CH2-

2.5 Operating-System Design and Implementation

The first problem in designing a system is to define goals and

specifications. At the highest level, the design of the system will be

affected by the choice of hardware and the type of system.

Once an operating system is designed, it must be implemented.

Traditionally, operating systems have been written in assembly language.

Now, however, they are most commonly written in higher-level

languages such as C or C++. The first system that was not written in

assembly language was probably the Master Control Program (MCP).

MCP was written in a variant of ALGOL.

The Linux and Windows XP operating systems are written mostly

in C, although there are some small sections of assembly code for device

drivers and for saving and restoring the state of registers.

The advantages of using a higher-level language for implementing

operating systems are: The code can be written faster, and is easier to

understand and debug. Finally, an operating system is far easier to

port—to move to some other hardware— if it is written in a higher-level

language. For example, MS-DOS was written in Intel 8088 assembly

language. Consequently, it is available on only the Intel family of CPUs.

The Linux operating system, in contrast, is written mostly in C and is

available on a number of different CPUs, including Intel 80X86,

Motorola 680X0, SPARC, and MIPS RXOO0.

The only possible disadvantages of implementing an operating

system in a higher-level language are reduced speed and increased

storage requirements. This, however, is no longer a major issue in

today's systems.

Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

10CH2-

2.6 Operating-System Structure

A system as large and complex as a modern operating system must

be engineered carefully if it is to function properly and be modified

easily. A common approach is to partition the task into small components

rather than have one monolithic system.

2.6.1 Simple Structure

Many commercial systems do not have well-defined structures.

Frequently, such operating systems started as small, simple, and limited

systems and then grew beyond their original scope. MS-DOS is an

example of such a system. Figure 2.2 shows its structure.

Figure 2.2 MS-DOS layer structures

Another example of limited structuring is the original UNIX

operating system. UNIX is another system that initially was limited by

hardware functionality. It consists of two separable parts: the kernel and

the system programs. As shown in Figure 2.3.

Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

11CH2-

Figure 2.3 UNIX system structure.

2.6.2 Layered Approach

A system can be made modular in many ways. One method is the

layered approach, in which the operating system is broken up into a

number of layers (levels). The bottom layer (layer 0) is the hardware; the

highest (layer N) is the user interface. As shown in Figure 2.4.

The main advantage of the layered approach is simplicity of

construction and debugging.

Figure 2.4 A layered operating system.

Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

12CH2-

2.6.3 Microkernels

This method structures the operating system by removing all

nonessential components from the kernel and implementing them as

system and user-level programs. The result is a smaller kernel. One

benefit of the microkernel approach is ease of extending the operating

system. The resulting operating system is easier to port from one

hardware design to another. The microkernel also provides more security

and reliability, since most services are running as user processes. If a

service fails, the rest of the operating system remains untouched.

2.6.4 Modules

Perhaps the best current methodology for operating-system design

involves using object oriented programming techniques to create a

modular kernel. Here, the kernel has a set of core components and

dynamically links in additional services either during boot time or during

run time. Such a strategy uses dynamically loadable modules and is

common in modern implementations of UNIX, such as Solaris and

Linux. For example, the Solaris operating system structure, shown in

Figure 2.5.

Figure 2.5 Solaris loadable modules.

Operating Systems Chapter 2
Operating-System Structures

3'rd class by: Raoof Talal

13CH2-

2.7 System Boot

After an operating system is generated, it must be made available

for use by the hardware. But how does the hardware know where the

kernel is or how to load that kernel? The procedure of starting a computer

by loading the kernel is known as booting the system. On most computer

systems, a small piece of code known as the bootstrap program locates

the kernel, loads it into main memory, and starts its execution. Some

computer systems, such as PCs, use a two-step process in which a simple

bootstrap loader fetches a more complex boot program from disk, which

in turn loads the kernel.

When a CPU receives a reset event—for instance, when it is

powered up or rebooted—the instruction register is loaded with a

predefined memory location, and execution starts there. At that location is

the initial bootstrap program. This program is in the form of read-only

memory (ROM), because the RAM is in an unknown state at system

startup. ROM is convenient because it needs no initialization and cannot

be infected by a computer virus.

Some systems—such as cellular phones, PDAs, and game

consoles—store the entire operating system in ROM. Storing the

operating system in ROM is suitable for small operating systems, simple

supporting hardware.

End of chapter 2

