
Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

1CH5-

Chapter 5
Process

This chapter will discuss the following concepts:

 5.1 Process Concept
5.2 Process Scheduling
5.3 Operations on Processes
5.4 Inter-process Communication

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

2CH5-

5.1 Process Concept

A question that arises in discussing operating systems involves

what to call all the CPU activities. A batch system executes jobs, whereas

a time-shared system has user programs, or tasks. Even on a single-user

system such as Microsoft Windows, a user may be able to run several

programs at one time: a word processor, a web browser, and an e-mail

package. Even if the user can execute only one program at a time, the

operating system may need to support its own internal programmed

activities, such as memory management. In many respects, all these

activities are similar, so we call all of them processes. The terms job and

process are used almost interchangeably in this text.

5.1.1 The Process

Informally, as mentioned earlier, a process is a program in

execution. A process is more than the program code, which is sometimes

known as the text section. It also includes the current activity, as

represented by the value of the program counter and the contents of the

processor's registers. A process generally also includes the process

stack, which contains temporary data, and a data section, which contains

global variables. A process may also include a heap, which is memory

that is dynamically allocated during process run time. The structure of a

process in memory is shown in Figure 5.1.

We emphasize that a program by itself is not a process; a program

is a passive entity, such as a file containing a list of instructions stored on

disk (often called an executable file), whereas a process is an active

entity, with a program counter specifying the next instruction to execute

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

3CH5-

and a set of associated resources. A program becomes a process when an

executable file is loaded into memory.

Figure 5.1 Process in memory.

5.1.2 Process State
As a process executes, it changes state. The state of a process is

defined in part by the current activity of that process. Each process may

be in one of the following states:

 New: The process is being created.

 Running: Instructions are being executed.

 Waiting: The process is waiting for some event to occur (such as an

I/O completion or reception of a signal).

 Ready: The process is waiting to be assigned to a processor.

 Terminated: The process has finished execution.

The state diagram corresponding to these states is presented in

Figure 5.2.

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

4CH5-

Figure 5.2 Diagram of process state.

5.1.3 Process Control Block

Each process is represented in the operating system by a process

control block (PCB). A PCB is shown in Figure 5.3. It contains many

pieces of information associated with a specific process, including these:

 Process state: The state may be new, ready, running, waiting,

halted, and so on.

 Program counter: The counter indicates the address of the next

instruction to be executed for this process.

 CPU registers: The registers vary in number and type, depending

on the computer architecture. They include accumulators, index

registers, stack pointers, and general-purpose registers, plus any

condition-code information. (Figure 5.4).

 CPU-scheduling information: This information includes a process

priority, pointers to scheduling queues, and any other scheduling

parameters.

 Memory-management information: This information may include

such information as the value of the base and limit registers, the

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

5CH5-

page tables, or the segment tables, depending on the memory system

used by the operating system.

 Accounting information: This information includes the amount of

CPU and real time used, time limits, account numbers, job or

process numbers, and so on.

 I/O status information: This information includes the list of I/O

devices allocated to the process, a list of open files, and so on.

Figure 5.3 Process control block (PCB).

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

6CH5-

Figure 5.4 Diagram showing CPU switch from process to process.

5.1.4 Threads

A process is a program that performs a single thread of execution.

For example, when a process is running a word-processor program, a

single thread of instructions is being executed. This single thread of

control allows the process to perform only one task at one time. The user

cannot simultaneously type in characters and run the spell checker within

the same process.

5.2 Process Scheduling

The objective of multiprogramming is to have some process

running at all times, to maximize CPU utilization. The objective of time

sharing is to switch the CPU among processes so frequently that users can

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

7CH5-

interact with each program while it is running. To meet these objectives,

the process scheduler selects an available process (possibly from a set of

several available processes) for program execution on the CPU. For a

single-processor system, there will never be more than one running

process. If there are more processes, the rest will have to wait until the

CPU is free and can be rescheduled.

5.2.1 Scheduling Queues

As processes enter the system, they are put into a job queue, which

consists of all processes in the system. The processes that are residing in

main memory and are ready and waiting to execute are kept on a list

called the ready queue. The system also includes other queues.

Suppose the process makes an I/O request to a shared device, such

as a disk. Since there are many processes in the system, the disk may be

busy with the I/O request of some other process. The process therefore

may have to wait for the disk. The list of processes waiting for a

particular I/O device is called a device queue. Each device has its own

device queue (Figure 5.5).

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

8CH5-

Figure 5.5 the ready queue and various I/O device queues.

A new process is initially put in the ready queue. It waits there until

it is selected for execution, or is dispatched. Once the process is

allocated the CPU and is executing, one of several events could occur:

 The process could issue an I/O request and then be placed in an I/O

queue.

 The process could create a new sub-process and wait for the sub-

process's termination.

 The process could be removed from the CPU, as a result of an

interrupt, and be put back in the ready queue.

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

9CH5-

5.2.2 Schedulers

A process migrates among the various scheduling queues

throughout its lifetime. The operating system must select, for scheduling

purposes, processes from these queues in some fashion. The selection

process is carried out by the appropriate scheduler.

Often, in a batch system, more processes are submitted than can be

executed immediately. These processes are spooled to a mass-storage

device (typically a disk), where they are kept for later execution. The

long-term scheduler, or job scheduler, selects processes from this pool

and loads them into memory for execution. The short-term scheduler, or

CPU scheduler, selects from among the processes that are ready to

execute and allocates the CPU to one of them.

Some operating systems, such as time-sharing systems, may

introduce an additional, intermediate level of scheduling. This is called

medium-term scheduler. The key idea behind a medium-term scheduler

is that sometimes it can be advantageous to remove processes from

memory (and from active contention for the CPU) and thus reduce the

degree of multiprogramming. Later, the process can be reintroduced into

memory, and its execution can be continued where it left off. This scheme

is called swapping.

5.2.3 Context Switch

Switching the CPU to another process requires performing a state

save of the current process and a state restore of a different process. This

task is known as a context switch. When a context switch occurs, the

kernel saves the context of the old process in its PCB and loads the saved

context of the new process scheduled to run. Context-switch speed varies

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

10CH5-

from machine to machine, depending on the memory speed, the number

of registers that must be copied, and the existence of special

instructions (such as a single instruction to load or store all registers).

5.3 Operations on Processes

The processes in most systems can execute concurrently, and they

may be created and deleted dynamically. Thus, these systems must

provide a mechanism for process creation and termination.

5.3.1 Process Creation

A process may create several new processes, via a create-process

system call, during the course of execution. The creating process is called

a parent process, and the new processes are called the children of that

process. Each of these new processes may in turn create other processes,

forming a tree of processes.

Most operating systems identify processes according to a unique

process identifier (or pid), which is typically an integer number. Figure

5.6 illustrates a typical process tree for the Solaris operating system,

showing the name of each process and its pid. In Solaris, the process at

the top of the tree is the sched process, with pid of 0. The sched process

creates several children processes—including pageout, fsflush and init.

The init process serves as the root parent process for all user processes.

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

11CH5-

Figure 5.6 A tree of processes on a typical Solaris system.

In general, a process will need certain resources (CPU time,

memory, files, and I/O devices) to accomplish its task. When a process

creates a sub-process, that sub-process may be able to obtain its resources

directly from the operating system, or it may be constrained to a subset of

the resources of the parent process. The parent may have to partition its

resources among its children, or it may be able to share some resources

(such as memory or files) among several of its children. When a process

creates a new process, two possibilities exist in terms of execution:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

12CH5-

5.3.2 Process Termination

A process terminates when it finishes executing its final statement

and asks the operating system to delete it by using the exit () system call.

At that point, the process may return a status value (typically an integer)

to its parent process. All the resources of the process—including physical

and virtual memory, open files and I/O buffers—are de-allocated by the

operating system.

A parent may terminate the execution of one of its children for a

variety of reasons, such as these:

 The child has exceeded its usage of some of the resources that it has

been allocated.

 The task assigned to the child is no longer required.

 The parent is exiting, and the operating system does not allow a

child to continue if its parent terminates.

5.4 Inter-process Communication

Processes executing concurrently in the operating system may be

either independent processes or cooperating processes. A process is

independent if it cannot affect or be affected by the other processes

executing in the system. Any process that does not share data with any

other process is independent.

A process is cooperating if it can affect or be affected by the other

processes executing in the system. Clearly, any process that shares data

with other processes is a cooperating process. There are several reasons

for providing an environment that allows process cooperation:

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

13CH5-

 Information sharing: Since several users may be interested in the

same piece of information (for instance, a shared file), we must

provide an environment to allow concurrent access to such

information.

 Computation speedup: If we want a particular task to run faster,

we must break it into subtasks, each of which will be executing in

parallel with the others.

 Modularity: We may want to construct the system in a modular

fashion, dividing the system functions into separate processes or

threads.

 Convenience: Even an individual user may work on many tasks at

the same time. For instance, a user may be editing, printing, and

compiling in parallel.

Cooperating processes require an inter-process communication

(IPC) mechanism that will allow them to exchange data and information.

There are two fundamental models of inter-process communication: (1)

shared memory and (2) message passing.

In the shared memory model, a region of memory that is shared

by cooperating processes is established. Processes can then exchange

information by reading and writing data to the shared region.

In the message passing model, communication takes place by

means of messages exchanged between the cooperating processes. The

two communications models are contrasted in Figure 5.7.

Operating Systems Chapter 5 Process
3'rd class by: Raoof Talal

14CH5-

Figure 5.7 Communications models, (a) Message passing, (b) Shared
memory.

End of chapter 5

