First Class-First Course
Physics for Engineers
2019-2020

2.1.1 Uniformly Accelerated Rectilinear Motion.

When the acceleration is constant $a=a_{c}$, each of the following three kinematic equations
$a_{c}=\frac{d v}{d t} \quad v=\frac{d S}{d t} \quad a_{c}=v \frac{d v}{d S}$
can be integrated to obtain formula that relates a_{c}, v, S, and t.

Velocity as a Function of Time.

Assume $\mathrm{v}=\mathrm{v}_{0}$ when $\mathrm{t}=0$
$a_{c}=\frac{d v}{d t}$
$\int_{v_{0}}^{v} d v=\int_{0}^{t} a_{c} d t$
$\rightarrow^{+} \quad v=v_{0}+a_{c} t$

Position as a Function of Time

Assume $\mathrm{S}=\mathrm{S}_{0}$ when $\mathrm{t}=0$
$v=\frac{d S}{d t}=v_{0}+a_{c} t$
$\int_{S_{0}}^{S} d S=\int_{0}^{t}\left(v_{0}+a_{c} t\right) d t$
$\rightarrow^{+} \quad \boldsymbol{S}=\boldsymbol{S}_{\mathbf{0}}+\boldsymbol{v}_{\mathbf{0}} \boldsymbol{t}+\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{a}_{\boldsymbol{e}} \boldsymbol{t}^{\mathbf{2}}$

Velocity as a Function of Position

Assume $\mathrm{v}=\mathrm{v}_{0}$ at $\mathrm{S}=\mathrm{S}_{0}$
$a_{c}=v \frac{d v}{d S}$
$\int_{v_{0}}^{v} v d v=\int_{S_{0}}^{S} a_{c} d S$
$\rightarrow^{+} \quad v^{2}=v_{0}^{2}+2 a_{c}\left(S-S_{0}\right)$

A typical example of constant accelerated motion occurs when a body falls freely toward the earth, in this case the downward acceleration is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ or $32.2 \mathrm{ft} / \mathrm{s}^{2}$.

Remember that these equations are useful only the acceleration is constant and when

$$
\mathrm{t}=0, \mathrm{~S}=\mathrm{S}_{0}, \mathrm{v}=\mathrm{v}_{0} .
$$

Examples

Example(1):-

During a test a rocket travels upward at $75 \mathrm{~m} / \mathrm{s}$, and when it is 40 m from the ground its engine fails. Determine the maximum height S_{B} reached by the rocket and its speed just before it hits the ground. While in motion the rocket is subjected to a constant downward acceleration of $9.81 \mathrm{~m} / \mathrm{s}^{2}$ due to gravity. Neglect the effect of air resistance.

Solution:-

Maximum height

$+\uparrow v_{B}^{2}=v_{A}^{2}+2 a_{c}\left(S_{B}-S_{A}\right)$
$0=(75)^{2}+2(-9.81)\left(S_{B}-40\right)$
$S_{B}=327 \mathrm{~m}$

Velocity

$$
\begin{aligned}
& +\uparrow v_{C}^{2}=v_{B}^{2}+2 a_{G}\left(S_{C}-S_{B}\right) \\
& =0+2(-9.81)(0-327)=-80.1 \frac{\mathrm{~m}}{\mathrm{~s}}=80.1 \frac{\mathrm{~m}}{\mathrm{~s}} \downarrow
\end{aligned}
$$

Example(2):-

A motorist is travelling at $54 \mathrm{~km} / \mathrm{h}$ when she observes that a traffic light 240 m ahead of her turns red. The traffic light is timed to stay red for 24 s. If the motorist wishes to pass the light without stopping just as it turns green again, determine (a) the required uniform deceleration of the car, (b) the speed of the car as it passes the light.

Solution:-

Uniformly accelerated motion
$\mathrm{S}_{\mathrm{o}}=0, \mathrm{v}_{\mathrm{o}}=54 \mathrm{~km} / \mathrm{h}=15 \mathrm{~m} / \mathrm{s}$
a) $S=S_{0}+v_{0} t+\frac{1}{2} a_{c} t^{2}$

$54 \mathrm{~km} / \mathrm{h}$

when $t=24 \mathrm{~s}, \mathrm{~S}=240 \mathrm{~m}$
$240 \mathrm{~m}=0+(15 \mathrm{~m} / \mathrm{s})(24 \mathrm{~s})+\frac{1}{2} \mathrm{a}(24 \mathrm{~s})^{2}$
$.4167 \mathrm{~m} / \mathrm{s}^{2}$
b) $\mathrm{v}=\mathrm{v}_{0}+\mathrm{a}_{\mathrm{c}} \mathrm{t}$
when $\mathrm{t}=24 \mathrm{~s}$
$\mathrm{v}=(15 \mathrm{~m} / \mathrm{s})+(-0.4167 \mathrm{~m} / \mathrm{s})(24 \mathrm{~s})$
$\mathrm{v}=5 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=18 \mathrm{~km} / \mathrm{h}$

First Class-First Course
Physics for Engineers
2019-2020

Example(4):-

A motorist enters a freeway at $48 \mathrm{~km} / \mathrm{h}$ and accelerates uniformly to $96 \mathrm{~km} / \mathrm{h}$. from the odometer in the car. The motorist knows that she traveled 167 m while accelerating .determine (a) the acceleration of the car, (b) the time required to reach $96 \mathrm{~km} / \mathrm{h}$.

Solution:-
a)Acceleration of the car

$$
\mathrm{v}^{2}=\mathrm{v}_{0}^{2}+2 \mathrm{a}_{\mathrm{c}}\left(\mathrm{~S}-\mathrm{S}_{\mathrm{o}}\right)
$$

$a_{c}=\frac{v^{2}-v_{0}^{2}}{2\left(S-S_{0}\right)}$
$\mathrm{v}_{\mathrm{o}}=48 \mathrm{~km} / \mathrm{h}=48 \frac{\mathrm{~km}}{\mathrm{~h}} \times \frac{1000 \mathrm{~m}}{\mathrm{~km}} \times \frac{\mathrm{h}}{3600 \mathrm{~s}}$
$\mathrm{v}_{\mathrm{o}}=13.33 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=96 \mathrm{~km} / \mathrm{h}=26.66 \mathrm{~m} / \mathrm{s}$
$\mathrm{S}_{\mathrm{o}}=0$
$\mathrm{S}=167 \mathrm{~m}$
$a_{c}=\frac{26.66^{2}-13.33^{2}}{2(167-0)}=1.6 \mathrm{~m} / \mathrm{s}^{2}$
b) Time to reach $96 \mathrm{~km} / \mathrm{h}$
$v=v_{0}+a_{c} t$
$t=\frac{v-v_{0}}{a_{c}}=\frac{26.66-13.33}{1.6}=8.33 \mathrm{~s}$

First Class-First Course
Physics for Engineers
2019-2020

Example(5):-

Automobiles A and B are travelling in adjacent highway lanes and at $\mathrm{t}=\mathrm{o}$ have the positions and speeds shown. Knowing that automobile A has a constant acceleration of $1.8 \mathrm{~m} / \mathrm{s}^{2}$ and that B has a constant deceleration of $1.2 \mathrm{~m} / \mathrm{s}^{2}$, determine (a) when and where A will overtake B (b) the speed of each automobile at that time $(\underline{\boldsymbol{H} . \boldsymbol{W} 4})$.

Solution:-

Motion of A

$\mathrm{v}_{\mathrm{A}}=\left(\mathrm{v}_{\mathrm{A}}\right)_{\mathrm{o}}+\mathrm{a}_{\mathrm{A}} \mathrm{t}$
$=35+1.8 \mathrm{t}$
$\mathrm{S}_{\mathrm{A}}=\left(\mathrm{S}_{\mathrm{A}}\right)_{0}+\left(\mathrm{v}_{\mathrm{A}}\right)_{\mathrm{O}} \mathrm{t}+\frac{1}{2} \mathrm{a}_{\mathrm{A}} \mathrm{t}^{2}$
$\mathrm{S}_{\mathrm{A}}=0+35 \mathrm{t}+\frac{1}{2}(1.8) \mathrm{t}^{2}$

Motion of B

$\mathrm{v}_{\mathrm{B}}=\left(\mathrm{v}_{\mathrm{B}}\right)_{\mathrm{o}}+\mathrm{a}_{\mathrm{B}} \mathrm{t}$
$=53-1.2 \mathrm{t}$
$\mathrm{S}_{B}=\left(\mathrm{S}_{\mathrm{B}}\right)_{0}+\left(\mathrm{v}_{\mathrm{B}}\right)_{0} \mathrm{t}+\frac{1}{2} \mathrm{a}_{\mathrm{B}} \mathrm{t}^{2}$
(vA) $o=35 \mathrm{~m} / \mathrm{s}$

(vB) $0=53 \mathrm{~m} / \mathrm{s}$

$\longrightarrow S$

$S_{B}=75+53 t+\frac{1}{2}(-1.2) t^{2}$
(a) A overtake B att=t1
$\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{\mathrm{B}}$
$35 \mathrm{t}+0.9 \mathrm{t}_{1}^{2}=75+53 \mathrm{t}_{1}-0.6 \mathrm{t}_{1}^{2}$
$\mathrm{t} 1=-3.22 \mathrm{~s}$ and $\mathrm{t}=15.2 \mathrm{~s}$
subs in (1)
$\mathrm{SA}=35(15.2)+0.9(15.2)^{2}=740 \mathrm{~m}$

