
Stresses and Strain s
in Flexible Pavements

2 .1

	

HOMOGENEOUS MAS S

The simplest way to characterize the behavior of a flexible pavement under whee l
loads is to consider it as a homogeneous half-space . A half-space has an infinitely larg e
area and an infinite depth with a top plane on which the loads are applied . The original
Boussinesq (1885) theory was based on a concentrated load applied on an elastic half -
space. The stresses, strains, and deflections due to a concentrated load can be integrat-
ed to obtain those due to a circular loaded area . Before the development of layere d
theory by Burmister (1943), much attention was paid to Boussinesq solutions becaus e
they were the only ones available. The theory can be used to determine the stresses ,
strains, and deflections in the subgrade if the modulus ratio between the pavement an d
the subgrade is close to unity, as exemplified by a thin asphalt surface and a thin gran-
ular base. If the modulus ratio is much greater than unity, the equation must be modi-
fied, as demonstrated by the earlier Kansas design method (Kansas State Highway
Commission, 1947) .

Figure 2 .1 shows a homogeneous half-space subjected to a circular load with a ra -
dius a and a uniform pressure q . The half-space has an elastic modulus E and a Poisso n
ratio v . A small cylindrical element with center at a distance z below the surface and r
from the axis of symmetry is shown . Because of axisymmetry, there are only three nor -
mal stresses, and o-t , and one shear stress, 7 rz , which is equal to Tu . These stress -
es are functions of q, r/a, and z/a .

2 .1 .1

	

Solutions by Chart s

Foster and Ahlvin (1954) presented charts for determining vertical stress o- Z , radial
stress o-r, tangential stress at , shear stress 7 rz , and vertical deflection w, as shown in
Figures 2 .2 through 2 .6 . The load is applied over a circular area with a radius a—and a n

45









2 .1 Homogeneous Mass 49

After the stresses are obtained from the charts, the strains can be obtained fro m

1
= = E [Qz — v(o r + (it ) ]

1
Er

= E
[7r — v(Qt + o-z) ]

E t = E [o-t — v(Qz + 0-A

If the contact area consists of two circles, the stresses and strains can be computed by
superposition .

Example 2 .1 :

Figure 2.7 shows a homogeneous half-space subjected to two circular loads, each 10 in . (254 mm)
in diameter and spaced at 20 in . (508 mm) on centers. The pressure on the circular area is 50 ps i
(345 kPa) . The half-space has elastic modulus 10,000 psi (69 MPa) and Poisson ratio 0 .5 . Deter-
mine the vertical stress, strain, and deflection at point A, which is located 10 in . (254 mm) below
the center of one circle.

(2 .1a )

(2.lb)

(2 .1c )

10 in.
50 ps i

	I
E=10,000psi

	

v = 0.5

10 in .
50 ps i

10 in.

YY

	

°A
az,6z,W =

FIGURE 2 . 7

Example 2.1 (1 in . = 25 .4 mm,
psi = 6 .9 kPa) .

20 in .

Solution: Given a = 5 in . (127 mm), q = 50 psi (345 kPa), and z = 10 in . (254 mm), from
Figures 2 .2, 2.3, and 2.4, the stresses at point A due to the left load with r/a = 0 and
z/a = 10/5 = 2 are Q Z = 0.28 X 50 = 14 .0 psi (96 .6 kPa) and a r = = 0.016 x 50 = 0 . 8
psi (5 .5 kPa) ; and those due to the right load with r/a = 20/5 = 4 and z/a = 2 are
o-z = 0.0076 x 50 = 0.38 psi (2 .6 kPa), O'r = 0 .026 x 50 = 1.3 psi (9 .0 kPa), and o-, = O . By
superposition, Q z = 14.0 + 0 .38 = 14 .38 psi (99 .2 kPa), = 0 .8 + 1 .3 = 2 .10 psi (14 .5 kPa) ,
and ift = 0 .8 psi (5.5 kPa) . From Eq. 2 .1a, Ez = [14 .38 — 0 .5(2.10 + 0.8)1/10,000 = 0 .00129 .
From Figure 2.6, the deflection factor at point A due to the left load is 0 .68 and that due to
the right load is 0 .21 . The total deflection w = (0 .68 + 0 .21) x 50 x 5/10,000 = 0 .022 in .
(0 .56 mm) . The final answer is cz = 14 .38 psi (99 .2 kPa), Ez = 0.00129, and w = 0 .022 in .

(0.56 mm) . The results obtained from KENLAYER are Q z = 14.6 psi (100 .7 kPa), ez = 0 .00132,
and w = 0 .0218 in . (0 .554 mm), which check closely with those from the charts.
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In applying Boussinesq's solutions, it is usually assumed that the pavemen t
above the subgrade has no deformation, so the deflection on the pavement surfac e
is equal to that on the top of the subgrade . In the above example, if the pavemen t
thickness is 10 in . (254 mm) and point A is located on the surface of the subgrade,
the deflection on the pavement surface is 0 .022 in . (0 .56 mm) .

2 .1 .2 Solutions at Axis of Symmetry

When the load is applied over a single circular loaded area, the most critical stress ,
strain, and deflection occur under the center of the circular area on the axis of symme -
try, where T,, = 0 and if, = o t , so o Z and o-, are the principal stresses .

Flexible Plate The load applied from tire to pavement is similar to a flexible plat e
with a radius a and a uniform pressure q . The stresses beneath the center of the plat e
can be determined from

z3	
az = g~1

	

(a 2 + z 2 ) 1 .5 ]

q

	

2(1 + v)z

	

z 3
= 2 [1 + 2v — (a2 + z2)° .5 + (a2 + z2)1 . 5

Note that o-, is independent of E and v, and o - , is independent of E . From Eq. 2 .1 ,
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= 2E

	

1—2v

2vz
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3z
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The vertical deflection w can be determined fro m

a w =
(1 v)qa

(a 2 + z 2 )os +
1	

a

	 2v
[(a2 + z2)os — z)]}

	

(2.6)
E

When v = 0 .5, Eq. 2 .6 can be simplified to

3qa 2
w =

2E(a2 + z2 ) ° 5

On the surface of the half-space, z = 0 ; from Eq . 2 .6 ,

2(1 — v2 )qa

w0

	

E
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Example 2.2 :

Same as Example 2 .1, except that only the left loaded area exists and the Poisson ratio is 0 .3, as
shown in Figure 2 .8 . Determine the stresses, strains, and deflection at point A .

10 in .

50 psi

10 in .

E = 10,000 psi
v = 0 .3

Ao

allo,e,w=?

FIGURE 2 . 8

Example 2.2 (1 in. = 25 .4 mm ,
1 psi = 6 .9 kPa) .

Solution: Given a = 5 in. (127 mm), q = 50 psi (345 kPa), and z = 10 in. (254 mm), from
Eq. 2 .2, vz = 50[1 — 1000/(25 + 100) 15] = 14 .2 psi (98 .0 kPa) . With v = 0.3, from Eq. 2.3 ,

= 25[1 + 0 .6 — 2 .6 x 10/(125)°.5 + 1000/(125) 15 ] _ -0.25 psi (—1 .7 kPa) . The negativ e
sign indicates tension, which is in contrast to a compressive stress of 0 .8 psi (5 .5 kPa) when
v = 0 .5 . From Eq . 2.4, Ez = 1.3 x 50/10,000 [1 — 0.6 + 0 .6 x 10/(125) 05 — 1000/(125) 15] =

0 .00144 . From Eq . 2 .5, Er = 1.3 x 50/20,000 [1 — 0.6 — 1 .4 x 10/(125) 05 + 1000/(125) 15] =

-0.00044 . From Eq . 2.6, w = 1 .3 X 50 x 5/10,000 {5/(125 ) 05 + 0 .4/5[(125 ) 0 .5 — 10]} = 0 .017 6
in . (0 .447 mm). The results obtained from KENLAYER are cr = 14 .2 psi (98.0 kPa) ,
0 r = -0 .249 psi (—1 .72 kPa), ez = 0 .00144, Er = -0 .000444, and w = 0 .0176 in . (0 .447 mm) ,
which are nearly the same as those derived from the formulas.

Rigid Plate All the above analyses are based on the assumption that the load is ap-
plied on a flexible plate, such as a rubber tire . If the load is applied on a rigid plate, such
as that used in a plate loading test, the deflection is the same at all points on the plate ,
but the pressure distribution under the plate is not uniform. The differences between a
flexible and a rigid plate are shown in Figure 2 .9 .

The pressure distribution under a rigid plate can be expressed as (Ullidtz, 1987 )

q a
q ( r ) = 2(a2 — ,2r.5

	

(2.9 )

Uniform Pressure q

	I
Nonuniform Pressure q(r)

r Vvw Vw v
Pressur e
Distribution

Deflection
Basin

(a) Flexible Plate

	

(b) Rigid Plate

FIGURE 2 . 9

Differences between flexible and rigid plates .
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in which r is the distance from center to the point where pressure is to be determine d
and q is the average pressure, which is equal to the total load divided by the area . The
smallest pressure is at the center and equal to one-half of the average pressure . The
pressure at the edge of the plate is infinity . By integrating the point load over the area ,
it can be shown that the deflection of the plate i s

	

7r(l

	

v 2 )qa
'w0

	

(
1	 2E	 	 (2 .10 )

A comparison of Eq . 2 .10 with Eq. 2 .8 indicates that the surface deflection unde r
a rigid plate is only 79% of that under the center of a uniformly distributed load . This
is reasonable because the pressure under the rigid plate is smaller near the center o f
the loaded area but greater near the edge . The pressure near the center has a greater
effect on the surface deflection at the center . Although Eqs . 2 .8 and 2 .10 are based on a
homogeneous half-space, the same factor, 0 .79, can be applied if the plates are place d
on a layer system, as indicated by Yoder and Witczak (1975) .

Example 2 .3 :

A plate loading test using a plate of 12-in . (305-mm) diameter was performed on the surface o f
the subgrade, as shown in Figure 2.10 . A total load of 8000 lb (35 .6 kN) was applied to the plate ,
and a deflection of 0 .1 in . (2 .54 mm) was measured . Assuming that the subgrade has Poisson
ratio 0 .4, determine the elastic modulus of the subgrade .

12 in .

8000 lb
Rigid Plate
Deflects 0 .1 in .

Example 2 .3 (1 = 25 .4 mm ,
1lb=4.45N) .

	

v=0.4

	

E_ ?

Solution: The average pressure on the plate is q = 8000/(367r) = 70 .74 psi (488 kPa) . Fro m
Eq. 2.10, E = all — 0 .16) x 70 .74 x 6/(2 x 0 .1) = 5600 psi (38 .6 MPa) .

2 .1 .3 Nonlinear Mass

Boussinesq's solutions are based on the assumption that the material that constitute s
the half-space is linear elastic . It is well known that subgrade soils are not elastic an d
undergo permanent deformation under stationary loads . However, under the repeate d
application of moving traffic loads, most of the deformations are recoverable and ca n
be considered elastic . It is therefore possible to select a reasonable elastic modulu s
commensurate with the speed of moving loads . Linearity implies the applicability o f
the superposition principle, so the elastic constant must not vary with the state of
stresses . In other words, the axial deformation of a linear elastic material under an axial
stress should be independent of the confining pressure . This is evidently not true for

FIGURE 2 .10



2 .1 Homogeneous Mass 53

r
q ~ ` La I
	 A.. . .
Layer 1

	

E

Layer 2

	

E 2
Layer 3

	

E 3
Layer 4

	

E 4
Layer 5

	

E

E 6

E7 -

Layer 6
a

FIGURE 2 .1 1
Division of half-space into a
seven-layer system.
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soils, because their axial deformation depends strongly on the magnitude of confinin g
pressures. Consequently, the effect of nonlinearity on Boussinesq's solution is of prac -
tical interest .

Iterative Method To show the effect of nonlinearity of granular materials on vertica l
stresses and deflections, Huang (1968a) divided the half-space into seven layers, a s
shown in Figure 2 .11, and applied Burmister's layered theory to determine the stresse s
at the midheight of each layer . Note that the lowest layer is a rigid base with a ver y
large elastic modulus.

After the stresses are obtained, the elastic modulus of each layer is determine d
from

E=Ea(1+/3O)

	

(2 .11 )

in which 8 is the stress invariant, or the sum of three normal stresses ; E is the elastic
modulus under the given stress invariant ; E0 is the initial elastic modulus, or the modu -
lus when the stress invariant is zero ; and a is a soil constant indicating the increase in
elastic modulus per unit increase in stress invariant . Note that the stress invariant
should include both the effects of the applied load and the geostatic stresses ; it can b e
expressed as

e=~ Z +u,+o +yz(1+2K0 )

	

(2.12 )

in which o-z , 0 r, and at are the vertical, radial, and tangential stresses due to loading ; y
is the unit weight of soil ; z is the distance below ground surface at which the stres s
invariant is computed; and Ko is the coefficient of earth pressure at rest. The proble m
can be solved by a method of successive approximations . First, an elastic modulus i s
assumed for each layer and the stresses are obtained from the layered theory . Given
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the stresses thus obtained, a new set of moduli is determined from Eq. 2 .11 and a new
set of stresses is then computed . The process is repeated until the moduli between tw o
consecutive iterations converge to a specified tolerance .

In applying the layered theory for nonlinear analysis, a question immediatel y

arises : Which radial distance r should be used to determine the stresses and the
moduli? Huang (1968a) showed that the vertical stresses are not affected signifi-
cantly by whether the stresses at r = 0 or r = co are used to determine the elastic
modulus, but the vertical displacements are tremendously affected . He later use d
the finite-element method and found that the nonlinear behavior of soils has a larg e
effect on vertical and radial displacements, an intermediate effect on radial and tan -
gential stresses, and a very small effect on vertical and shear stresses (Huang ,

1969a) . Depending on the depth of the point in question, the vertical stresses base d
on nonlinear theory may be greater or smaller than those based on linear theory

and, at a certain depth, both theories could yield the same stresses . This may explain
why Boussinesq's solutions for vertical stress based on linear theory have been ap-
plied to soils with varying degrees of success, even though soils themselves are basi-
cally nonlinear .

Approximate Method One approximate method to analyze a nonlinear half-space i s
to divide it into a number of layers and determine the stresses at the midheight of eac h
layer by Boussinesq's equations based on linear theory. From the stresses thus ob-
tained, the elastic modulus E for each layer is determined from Eq . 2.11 . The deforma-
tion of each layer, which is the difference in deflection between the top and bottom of
each layer based on the given E, can then be obtained . Starting from the rigid base, o r
a depth far from the surface where the vertical displacement can be assumed zero, th e
deformations are added to obtain the deflections at various depths . The assumption of
Boussinesq's stress distribution was used by Vesic and Domaschuk (1964) to predict
the shape of deflection basins on highway pavements, and satisfactory agreement s
were reported.

It should be noted that Eq . 2 .11 is one of the many constitutive equations fo r
sands . Uzan (1985), Pezo et al . (1992), and Pezo (1993) assumed that the modulu s
of granular materials depended not only on the stress invariant, 0, but also on th e
deviator stress, which is the difference between major and minor principal stresses .
This concept has been used in the 2002 Design Guide, as presented in Appendix F .
Other constitutive relationships for sands or clays can also be used, as discussed i n
Section 3 .1 .4 .

Example 2 .4 :

A circular load having radius 6 in . (152 mm) and contact pressure 80 psi (552 kPa) is applied o n
the surface of a subgrade. The subgrade soil is a sand with the relationship between the elastic
modulus and the stress invariant shown in Figure 2 .12a . The soil has Poisson ratio 0.3, the mas s
unit weight is 110 pcf (17.3 kN/m 3 ), and the coefficient of earth pressure at rest is 0 .5 . The soi l
is divided into six layers, as shown in Figure 2 .12b . Determine the vertical surface displacement
at the axis of symmetry.
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FIGURE 2 .1 2
Example 2.4 (1 in . = 25 .4 mm, 1 psi = 6.9 kPa, 1 pcf = 157 .1 N/m 3 ) .

Solution: At the midheight of layer 1, z = 6 in . (152 mm) . From Eq . 2 .2, a-, = 80[1 — 216/
(36 + 36 ) 1 - 5 ] = 51 .7 psi (357 kPa). From Eq . 2.3, o-, = a•, = 40 [1 + 2 x 0 .3 — 2 .6 X 6/(72) 05 +
216/(72 ) 1 .5] = 4 .60 psi

	

(31.7

	

kPa) .

	

From

	

Eq .

	

2 .12,

	

0 = 51 .7 + 4 .6 + 4 .6 + 110 x 6 (1 +
2 x 0 .5)412) 3 = 61.7 psi (426 kPa) . From Eq. 2 .11 with E° = 18,800 psi (130 MPa) an d
/3 = 0 .0104, as shown in Figure 2 .12a, E = 18,800 (1 + 0 .0104 x 61 .7) = 30,900 psi (213 MPa) .
From Eq. 2 .6, the deflection at top, when z = 0, w = 1 .3 x 80 x 6 (1 + 1 — 0.6)/30,900 =
0.0283 in. (0 .719 mm), and the deflection at bottom, when z = 12 in . (305 mm), w = 1 .3 x 80 x
6 {6/(36 + 144) 05 + 0 .4[(180)°.5 — 12]/6}/30,900 = 0.0109 in. (0 .277 mm) . The deformation fo r
layer 1 is 0.0283 — 0 .0109 = 0 .0174 in . (0 .442 mm) . The deformations for other layers can be de-
termined similarly, and the results are tabulated in Table 2 .1 .
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TABLE 2 .1 Computation of Deformation for Each Layer

z at mid- Deform-
Layer Thickness height a, a, B (psi) E wE ation
no . (in .) (in .) (psi) (psi) Loading Geostatic (psi) (lb/in .) (in .)

873 . 6
1 12 6 51 .72 4 .60 60.92 0 .76 30,860 0.0174

338 . 0
2 12 18 11 .69 -0 .51 10 .67 2.29 21,330 0.0073

182 . 1
3 12 30 4 .57 -0.27 4.03 3 .82 20,330 0 .0029

123 . 2
4 12 42 2 .39 -0 .15 2 .09 5 .35 20,250 0 .001 5

92. 9
5 12 54 1 .46 -0 .09 1 .28 6 .88 20,400 0 .0009

74. 5
6 540 330 0 .04 0 .00 0 .04 42.01 27,020 0 .0025

7 . 5
Total 0 .0325

Note . 1 in. = 25 .4 mm, 1 psi = 6 .9 kPa, 1 lb/in . = 175 N/m.

To compute the deformation of each layer, the product of w and E at each
layer interface is first determined from Eq . 2 .6 . The difference in wE between th e
two interfaces divided by E gives the deformation of the layer. The surface deflec-
tion is the sum of all layer deformations and equals to 0 .0325 in . (0 .826 mm) . It is in-
teresting to note that the stress invariant 0 due to the applied load decreases wit h
depth, while that due to geostatic stresses increases with depth . As a result, the elas-
tic moduli for all layers, except layers 1 and 6, become nearly the same . Note als o
that more than 50% of the surface deflections are contributed by the deformation i n
the top 12 in. (305 mm) .

The same problem was solved by KENLAYER after the incorporation of
Eq. 2 .11 into the program . The differences in stress distribution between Boussines q
and Burmister theory and the resulting moduli are shown in Table 2 .2 . It can be seen
that the two solutions correspond well . The surface deflection based on layered theor y

TABLE 2 .2 Differences in Stresses and Moduli between Boussinesq and Burmister Solution s

Boussinesq Burmister

z at midheight (in .) a- (psi) a, (psi) E (psi) o

	

(psi) a, (psi) E (psi)

6 51 .72 4 .60 30,860 50 .46 4 .50 30,580
18 11 .69 -0 .51 21,330 10 .61 -0 .65 21,07 0
30 4 .57 -0 .27 20,330 4 .26 -0.27 20,28 0
42 2 .39 -0 .15 20,250 2 .31 -0.11 20,26 0
54 1 .46 -0 .09 20,400 1 .47 0 .01 20,44 0

330 0 .04 0 .00 27,020 0 .04 0 .00 27,020

Note . 1 in . = 25 .4 mm, 1 psi = 6 .9 kPa .
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is 0 .0310 in . (0 .787 mm), which also agrees with the 0 .0325 in. (0 .826 mm) from Boussi -
nesq theory.

2.2

	

LAYERED SYSTEM S

Flexible pavements are layered systems with better materials on top and cannot be
represented by a homogeneous mass, so the use of Burmister's layered theory is mor e
appropriate . Burmister (1943) first developed solutions for a two-layer system an d
then extended them to a three-layer system (Burmister, 1945) .With the advent of com -
puters, the theory can be applied to a multilayer system with any number of layer s
(Huang, 1967, 1968a) .

Figure 2 .13 shows an n-layer system. The basic assumptions to be satisfied are :

1. Each layer is homogeneous, isotropic, and linearly elastic with an elastic modulu s
E and a Poisson ratio v .

2. The material is weightless and infinite in areal extent .

3. Each layer has a finite thickness h, except that the lowest layer is infinite i n
thickness .

4. A uniform pressure q is applied on the surface over a circular area of radius a .
5. Continuity conditions are satisfied at the layer interfaces, as indicated by th e

same vertical stress, shear stress, vertical displacement, and radial displacement .
For frictionless interface, the continuity of shear stress and radial displacement i s
replaced by zero shear stress at each side of the interface.

In this section, only some of the solutions on two- and three-layer systems with
bonded interfaces are presented . The theoretical development of multilayer systems i s
discussed in Appendix B .

2 .2 .1 Two-Layer System s

The exact case of a two-layer system is the full-depth construction in which a thick
layer of HMA is placed directly on the subgrade. If a pavement is composed of thre e

Layer 1

	

El, v 1

Layer 2

	

E2, V2

Layer n

	

En, v n

FIGURE 2 .1 3
An n-layer system subjected t o
a circular load .
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layers (e .g ., an asphalt surface course, a granular base course, and a subgrade), it is nec -
essary to combine the base course and the subgrade into a single layer for computin g
the stresses and strains in the asphalt layer or to combine the asphalt surface cours e
and base course for computing the stresses and strains in the subgrade .

Vertical Stress The vertical stress on the top of subgrade is an important factor i n
pavement design. The function of a pavement is to reduce the vertical stress on th e
subgrade so that detrimental pavement deformations will not occur . The allowabl e
vertical stress on a given subgrade depends on the strength or modulus of the sub -
grade. To combine the effect of stress and strength, the vertical compressive strain ha s
been used most frequently as a design criterion . This simplification is valid for highway
and airport pavements because the vertical strain is caused primarily by the vertica l
stress and the effect of horizontal stress is relatively small . As pointed out in
Section 1 .5 .2, the design of railroad trackbeds should be based on vertical stres s
instead of vertical strain, because the large horizontal stress caused by the distributio n
of wheel loads through rails and ties over a large area makes the vertical strain a poo r
indicator of the vertical stress .

The stresses in a two-layer system depend on the modulus ratio El/E2 and the
thickness–radius ratio h t/a . Figure 2.14 shows the effect of a pavement layer on the dis -
tribution of vertical stresses under the center of a circular loaded area . The chart is ap -
plicable to the case when the thickness h i of layer 1 is equal to the radius of contac t
area, or hi/a = 1 . As in all charts presented in this section, a Poisson ratio of 0 .5 is as -
sumed for all layers. It can be seen that the vertical stresses decrease significantly with
the increase in modulus ratio . At the pavement–subgrade interface, the vertical stress is
about 68% of the applied pressure if El /E2 = 1, as indicated by Boussinesq's stress
distribution, and reduces to about 8% of the applied pressure if E 2 /E2 = 100 .

Figure 2 .15 shows the effect of pavement thickness and modulus ratio on the ver -
tical stress cY at the pavement–subgrade interface under the center of a circular loaded
area. For a given applied pressure q, the vertical stress increases with the increase i n
contact radius and decreases with the increase in thickness. The reason that the rati o
a/h i instead of hi/a was used is for the purpose of preparing influence charts (Huang ,
1969b) for two-layer elastic foundations .
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Example 2 .5 :
A circular load having radius 6 in . (152 mm) and uniform pressure 80 psi (552 kPa) is applied o n
a two-layer system, as shown in Figure 2 .16 . The subgrade has elastic modulus 5000 psi (35 MPa )
and can support a maximum vertical stress of 8 psi (55 kPa) . If the HMA has elastic modulus
500,000 psi (3 .45 GPa), what is the required thickness of a full-depth pavement? If a thin surfac e
treatment is applied on a granular base with elastic modulus 25,000 psi (173 MPa), what is th e
thickness of base course required ?

	c 6 in .

80 psi

= 500,000 psi

FIGURE 2 .1 6
Example 2 .5 (1 in . = 25 .4 mm ,
1 psi = 6.9 kPa) .

Solution: Given El/E2 = 500,000/5000 = 100 and o-c/q = 8/80 = 0 .1, from Figure 2 .15 ,
a/h t = 1 .15, or h l = 6/1 .15 = 5 .2 in . (132 mm), which is the minimum thickness for full depth .
Given El /E2 = 25,000/5000 = 5 and o-c /q = 0.1, from Figure 2 .15, a/hl = 0 .4, or h i = 6/
0.4 = 15 in. (381 mm), which is the minimum thickness of granular base required .

In this example, an allowable vertical stress of 8 psi (55 kPa) is arbitrarily selected t o
show the effect of the modulus of the reinforced layer on the thickness required . The al-
lowable vertical stress should depend on the number of load repetitions . Using the Shell de-
sign criterion and the AASHTO equation, Huang et al . (1984b) developed the relationship

Nd = 4.873 x 10-5 uc-3 .734 E3 .583

	

(2 .13 )

in which Nd is the allowable number of stress repetitions to limit permanent deforma-
tion, cr is the vertical compressive stress on the surface of the subgrade in psi, and E2 i s

ti

FIGURE 2 .1 5
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Vertical interface stresses for two-laye r
systems . (After Huang (1969b) . )a/hi

E 2 = 5000 psi
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Vertical surface deflections for two-layer systems. (After Burmister (1943))

the elastic modulus of the subgrade in psi . For a stress of 8 psi (5 kPa) and an elastic
modulus of 5000 psi (35 MPa), the allowable number of repetitions is 3 .7 x 105 .

Vertical Surface Deflection Vertical surface deflections have been used as a criterion
of pavement design. Figure 2.17 can be used to determine the surface deflections fo r
two-layer systems. The deflection is expressed in terms of the deflection factor F2 by

1.5ga

	

wo =
E,

F2

	

(2.14)

The deflection factor is a function of E t/E2 and h 1/a . For a homogeneous half-space
with htla = 0, F2 = 1, so Eq. 2.14 is identical to Eq . 2.8 when v = 0 .5 . If the load is
applied by a rigid plate, then, from Eq 2.10 ,

1.18ga

	

wo = E F2

	

(2.15 )
2

Example 2.6 :

A total load of 20,000 lb (89 kN) was applied on the surface of a two-layer system through a rigi d

plate 12 in. (305 mm) in diameter, as shown in Figure 2 .18. Layer 1 has a thickness of 8 in. (203

mm) and layer 2 has an elastic modulus of 6400 psi (44 .2 MPa). Both layers are incompressibl e

with a Poisson ratio of 0 .5 . If the deflection of the plate is 0.1 in . (2 .54 mm), determine the elastic

modulus of layer 1 .

1 . 0
0. 8

0 .6
0 .5

0 .4

0 .3

0 .2

0 . 1

0 .08

0 .06
0 .05

0 .04

0 .03

0 .02
543

h l / a
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12 in.

20,000 lb
Rigid Plate
Deflects 0 .1 in.

El ?

	

v I = 0 .5

	

8 in .

E2 = 6400 psi

	

v2 = 0.5

FIGURE 2 .1 8
Example 2 .6 (in . = 25 .4 mm, 1 psi = 6 .9 kPa,
l lb = 4 .45 N) .

Solution: The average pressure on the plate is q = 20,000/(367r) = 176 .8 psi (1 .22 MPa) .
From Eq. 2 .15, F2 = 0 .1 X 6400/(1 .18 x 176 .8 x 6) = 0 .511 . Given hi /a = 8/6 = 1 .333, from
Figure 2 .17, EI/E2 = 5, or El = 5 X 6400 = 32,000 psi (221 MPa) .

Vertical Interface Deflection The vertical interface deflection has also been used as a
design criterion . Figure 2 .19 can be used to determine the vertical interface deflectio n
in a two-layer system (Huang, 1969c) . The deflection is expressed in terms of the de-
flection factor F by

qa
w = E, F

a
(2 .16)

F

0 0.1 0 .2 0 .3 0 .4 0 .5 0.6 0 .7 0 .8 0 .9 1 .0 1 .1 1 .2 .3 1 .4 1 . 5
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11,1
NUMBERS ON CURVES INDICATE rI a

h 2a
4

Vertical deflectio n
El

	

at this point to be
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E l
=E2

Deflection = E F
E2

FIGURE 2 .1 9
Vertical interface deflections for two-layer systems . (After Huang (1969c) .)
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	 sought	 i

FIGURE 2 .19 (Continued )

Note that Fin Eq . 2 .16 is different from F2 in Eq. 2 .14 by the factor 1 .5 . The deflection
factor is a function of E1 /E2, h 1 la, and r/a, where r is the radial distance from the center
of loaded area . Seven sets of charts for the modulus ratios 1, 2 .5, 5, 10, 25, 50, and 100 ,
are shown; the deflection for any intermediate modulus ratio can be obtained by inter-
polation. The case of E1/E2 = 1 is Boussinesq's solution .

Example 2 .7 :

Figure 2 .20 shows a set of dual tires, each having contact radius 4 .52 in . (115 mm) and contact
pressure 70 psi (483 kPa) . The center-to-center spacing of the dual is 13 .5 in . (343 mm) . Layer 1
has thickness 6 in . (152 mm) and elastic modulus 100,000 psi (690 MPa) ; layer 2 has elastic mod-
ulus 10,000 psi (69 MPa) . Determine the vertical deflection at point A, which is on the interfac e
beneath the center of one loaded area .

4 .52 in .

	

4 .52 in .
13 .5

70 psi

I
El = 100,000 psi

	

t
6"

	

FIGURE 2 .2 0w=?

	

I•

	

i'

	

Example 2 .7 (1 in. = 25 .4 mm ,
A

	

E 2 = 10,000 psi

	

1 psi = 6 .9 kPa) .
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Solution: Given El /E2 = 100,000/10,000 = 10 and h l /a = 6/4 .52 = 1 .33, from Figure 2 .19 ,
the deflection factor at point A due to the left load with r/a = 0 is 0 .56 and that due to the right
load with r/a = 13 .5/4 .52 = 2.99 is 0 .28 . By superposition, F = 0 .56 + 0 .28 = 0.84 . From
Eq. 2 .16, w = 70 X 4 .52/10,000 X 0.84 = 0.027 in . (0 .69 mm) . The interface deflection obtained
from KENLAYER is 0 .0281 in . (0 .714 mm), which checks well with the chart solution .

It should be pointed out that the maximum interface deflection under dual tires might no t
occur at point A . To determine the maximum interface deflection, it is necessary to compute th e
deflection at several points, say one under the center of one tire, one at the center between tw o
tires, and the other under the edge of one tire, and find out which is maximum .

Critical Tensile Strain The tensile strains at the bottom of asphalt layer have bee n
used as a design criterion to prevent fatigue cracking . Two types of principal strains
could be considered. One is the overall principal strain based on all six components o f
normal and shear stresses . The other, which is more popular and was used in KEN -
LAYER, is the horizontal principal strain based on the horizontal normal and shear
stresses only. The overall principal strain is slightly greater than the horizontal princi -
pal strain, so the use of overall principal strain is on the safe side .

Huang (1973a) developed charts for determining the critical tensile strain at th e
bottom of layer 1 for a two-layer system . The critical tensile strain is the overall strain
and can be determined from

e=fFe

	

(2.17)

in which e is the critical tensile strain and Fe is the strain factor, which can be deter-
mined from the charts .

Single Wheel Figure 2 .21 presents the strain factor for a two-layer system under
a circular loaded area . In most cases, the critical tensile strain occurs under the center

2 0

10

5

2

0 . 1

0 .05

FIGURE 2 .21

	

0 .02
Strain factor for single wheel .
(After Huang (1973a) .)
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of the loaded area, where the shear stress is zero . However, when both hi/a and Ei/E2
are small, the critical tensile strain occurs at some distance from the center, as the pre -
dominant effect of the shear stress. Under such situations, the principal tensile strain s
at the radial distances 0, 0.5a, a, and 1.5a from the center were computed, and the
critical value was obtained and plotted in Figure 2 .21 .

Example 2 .8 :

Figure 2 .22 shows a full-depth asphalt pavement 8 in . (203 mm) thick subjected to a single-whee l
load of 9000 lb (40 kN) having contact pressure 67 .7 psi (467 kPa) . If the elastic modulus of th e
asphalt layer is 150,000 psi (1 .04 GPa) and that of the subgrade is 15,000 psi (104 MPa), deter-
mine the critical tensile strain in the asphalt layer .

9000 lb

67 .7 ps i

E l = 150,000 psi

	

8 in.

E2 = 15,000 ps i

FIGURE 2 .2 2

Example 2 .8 (1 in . = 25 .4 mm, 1 psi = 6 .9 kPa, 1 lb = 4 .45 N) .

Solution: Given a = 9000/(r x 67 .7) = 6 .5 in . (165 mm), h i/a = 8/6 .5 = 1 .23, and Ei /E2 =
150,000/15,000 = 10, from Figure 2 .21, Fe = 0 .72 . From Eq . 2 .17, the critical tensile strain
e = 67 .7 x 0 .72/150,000 = 3 .25 x 10-4 , which checks well with the 3 .36 x 10-4 obtained by
KENLAYER.

It is interesting to note that the bonded interface makes the horizontal tensil e
strain at the bottom of layer 1 equal to the horizontal tensile strain at the top of layer
2. If layer 2 is incompressible and the critical tensile strain occurs on the axis of sym-
metry, then the vertical compressive strain is equal to twice the horizontal strain, a s
shown by Eq. 2 .21 (as is discussed later) . Therefore, Figure 2 .21 can be used to deter-
mine the vertical compressive strain on the surface of the subgrade as well .

Dual Wheels Because the strain factor for dual wheels with a contact radius a
and a dual spacing Sd depends on Sd/a in addition to Ei/E2 and hi/a, the most direct
method is to present charts similar to Figure 2 .21, one for each value of Sd/a . However ,
this approach requires a series of charts, and the interpolation could be quite time -
consuming . To avoid these difficulties, a unique method was developed that require s
only one chart, as shown in Figure 2 .23 .

In this method, the dual wheels are replaced by a single wheel with the sam e
contact radius a, so that Figure 2 .21 can still be used. Because the strain factor for dua l
wheels is generally greater than that for a single wheel, a conversion factor C, which is th e
ratio between dual- and single-wheel strain factors, must be determined . Multiplication of
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the conversion factor by the strain factor obtained from Figure 2.21 will yield the strain
factor for dual wheels .

The two-layer theory indicates that the strain factor for dual wheels depends o n
h 1/a, Sd /a, and Ei/E2 . As long as the ratios hi/a and S d/a remain the same, the strain fac -
tor will be the same, no matter how large or small the contact radius a may be . Consid -
er a set of dual wheels with Sd = 24 in. (610 mm) and a = 3 in . (76 mm). The strain
factors for various values of h 1 and E1/E2 were calculated and the conversion factors
were obtained and plotted as a set of curves on the upper part of Figure 2 .23 . Another
set of curves based on the same S d but with a = 8 in. (203 mm) is plotted at the bot-
tom. It can be seen that, for the same dual spacing, the larger the contact radius, th e
larger the conversion factor . However, the change in conversion factor due to th e
change in contact radius is not very large, so a straight-line interpolation should give a
fairly accurate conversion factor for any other contact radii . Although Figure 2 .23 is
based on Sd = 24 in. (610 mm), it can be applied to any given Sd by simply changing a
and h t in proportion to the change in S d , so that the ratios h l / a and Sd/a remain the
same. The procedure can be summarized as follows :

1. From the given Sd, h i , and a, determine the modified radius a' and the modifie d
thickness hi :

24
a '= S-a

d
(2 .18a)

24
h l = S h l

d
(2 .18b)

2. Using hi as the pavement thickness, find conversion factors Ci and C2 from
Figure 2.23 .



2 .2 Layered Systems 6 7

3. Determine the conversion factor for a' by a straight-line interpolation between 3
and 8 in . (76 and 203 mm), or

C=C1 +0.2X(a'—3)X(C 2 —C 1 )

	

(2 .19)

Example 2.9 :

For the same pavement as in Example 2 .8, if the 9000-lb (40-kN) load is applied over a set of dua l
tires with a center-to-center spacing of 11 .5 in. (292 mm) and a contact pressure of 67 .7 psi (467
kPa), as shown in Figure 2 .24, determine the critical tensile strain in the asphalt layer .

45001b ~

	

11 .5 in.

	

4500 l b

67 .7 psi

El = 150,000 psi

	

8 in.
e ?— -

E2 = 15,000 psi

FIGURE 2 .2 4

Example 2 .9 (1 in . = 25 .4 mm, 1 psi = 6 .9 kPa, 1 lb = 4 .45 N) .

Solution: Given a = V/4500/(7r x 67 .7) = 4 .6 in . (117 mm), Sd = 11 .5 in . (292 mm), and
hi = 8 in. (203 mm), from Eq. 2.18, a' = 24 x 4.6/11 .5 = 9 .6 in . (244 mm) and hi = 24 x 8/
11 .5 = 16 .7 in. (424 mm) . With El /E2 = 10 and an asphalt layer thickness of 16 .7 in. (424 mm), from
Figure 2.23, CI = 1 .35 and C2 = 1 .46 . From Eq. 2.19, C = 1 .35 + 0 .2 (9 .6 – 3) (1 .46 – 1 .35) =
1 .50. From Figure 2 .21, the strain factor for a single wheel = 0 .47 and that for dua l
wheels = 1 .50 x 0 .47 = 0 .705, so the critical tensile strain e = 67 .7 X 0.705/150,000 =
3 .18 x 10-4 , which checks closely with the 3 .21 x 10-4 obtained by KENLAYER .

By comparing the results of Examples 2 .8 and 2.9, it can be seen that, in thi s
particular case (when the asphalt layer is thick and the dual spacing is small), a loa d
applied on a set of dual tires yields a critical strain that is not very different from tha t
on a single wheel . However, this is not true when thin asphalt layers or large dua l
spacings are involved .

Huang (1972) also presented a simple chart for determining directly the maxi -
mum tensile strain in a two-layer system subjected to a set of dual tires spaced at a dis-
tance of 3a on center . A series of charts relating tensile strains to curvatures was als o
developed, so that the tensile strain under a design dual-wheel load can be evaluated in
the field by simply measuring the curvature on the surface (Huang, 1971) .

Dual-Tandem Wheels Charts similar to Figure 2 .23 with dual spacing Sd of 24
in. (610 mm) and tandem spacings S t of 24 in . (610 mm), 48 in. (1220 mm), and 72 in .
(1830 mm) were developed for determining the conversion factor due to dual-tande m
wheels, as shown in Figures 2 .25, 2 .26, and 2 .27 . The use of these charts is similar to the
use of Figure 2 .23 . Because the conversion factor for dual-tandem wheels depends o n
h 1 /a, Sd /a, and Sr/a, and because the actual Sd may not be equal to 24 in . (610 mm), it is
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C t

FIGURE 2 .2 5
Conversion factor for dual-tandem wheel s
with 24-in . tandem spacing (1 in . = 25 .4 mm) .
(After Huang (1973a) .)
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FIGURE 2 .2 6
Conversion factor for dual-tandem wheel s
with 48-in . tandem spacing (1 in . = 25 .4 mm) .
(After Huang (1973a) . )

necessary to change Sd to 24 in . (610 mm) and then change the contact radius a pro -
portionately according to Eq . 2 .18a, thus keeping the ratio Sd /a unchanged .

The values of h 1 and St must also be changed accordingly to keep h t/a and St / a
unchanged . Therefore, the original problem is changed to a new problem with
Sd = 24 in. (610 mm) and a new S t. The conversion factor for St = 24, 48, and 72 in .
(0 .61, 1 .22, and 1 .83 m) can be obtained from the charts ; that for other values of St can
be determined by interpolation .
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Conversion factor for dual-tandem wheel s
with 72-in . tandem spacing (1 in. = 25 .4 mm) .
(After Huang (1973a) . )
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If the new values of S t are greater than 72 in. (1 .83 m), Figure 2 .23, based on dual
wheels can be used for interpolation . In fact, Figure 2 .23 is a special case of dual -
tandem wheels when the tandem spacing approaches infinity. It was found that, when
St = 120 in . (3 .05 m) the conversion factor due to dual-tandem wheels does not diffe r
significantly from that due to dual wheels alone, so Figure 2 .23 can be considered to
have a tandem spacing of 120 in. (3 .05 m) .

A comparison of Figure 2 .23 with Figures 2 .25 through 2 .27 clearly indicates that ,
in many cases, the addition of tandem wheels reduces the conversion factor, thus de -
creasing the critical tensile strain . This is due to the compensative effect caused by the
additional wheels . The interaction among these wheels is quite unpredictable, as indi -
cated by the irregular shape of the curves in the lower part of Figures 2 .26 and 2 .27 .

Example 2 .10 :
Same as example 2 .9, except that an identical set of duals is added to form dual-tandem wheels
having the tandem spacing 49 in. (1 .25 m), as shown in Figure 2 .28 .

FIGURE 2 .28
Example 2.10 (1 in. = 25.4 mm, 1 psi =
6.9 kPa, 1 lb = 4 .45 N) .



70

	

Chapter 2

	

Stresses and Strains in Flexible Pavement s

Solution: Given S d = 11 .5 in . (292 mm) and S t = 49 in . (1 .25 m), modified tandem spacing =
49 x 24/11 .5 = 102 .3 in . (2 .60 m) . Values of a' and h' are the same as in Example 2 .8 . When
S r = 72 in . (1 .83 m), a' = 9 .6 in . (244 mm), and hi = 16 .7 in . (424 mm), from Figure 2.27 ,
C = 1 .23 + 0 .2 (9 .6 - 3) (1 .30 - 1 .23) = 1 .32, which is smaller than the 1 .5 for the dual wheels
alone . With a conversion factor of 1 .32 for Sr = 72 in . (1 .83 m) and 1 .50 for Sr = 120 in . (3 .05 m) ,
by straight-line interpolation, C = 1 .32 + (1 .50 - 1 .32)(102 .3 - 72)/(120 - 72) = 1 .43 . The
strain factor due to dual-tandem wheels = 1 .43 X 0 .47 = 0.672 . Critical tensile strain =
67 .7 x 0 .672/150,000 = 3 .03 x 10 -4, which checks closely with the 3 .05 X 10-4 obtained from
KENLAYER .

2.2 .2 Three-Layer System s

Figure 2 .29 shows a three-layer system and the stresses at the interfaces on the axis o f
symmetry. These stresses include vertical stress at interface 1, azi , vertical stress at in-
terface 2, 0 z2 , radial stress at bottom of layer 1, radial stress at top of layer 2, o ,
radial stress at bottom of layer 2, (7r2, and radial stress at top of layer 3, u 2 . Note that,
on the axis of symmetry, tangential and radial stresses are identical and the sheer stress
is equal to 0 .

When the Poisson ratio is 0 .5, we have, from Eq . 2 .1 ,

E (0-z - '7 Y )

1
Er =

2E
(Qr — Uz)

(2 .20a )

(2 .20b)

Equation 2 .20 indicates that the radial strain equals one-half of the vertical strain an d
is opposite in sign, or

E z = -2E r

	

(2 .21 )

Equation 2 .21 can be visualized physically from the fact that, when a material i s
incompressible and has the Poisson ratio 0 .5, the horizontal strain is equal to one-half
of the vertical strain and the sum of E z , Er , and E t must be equal to O .

2a

q

v l = 0 .5, E l

Interface 1

h2v2 = 0 .5, E 2 10-z 2

	 -► ur2

-w
.- 0 r2

y r

FIGURE 2 .29 Interface 2

Stresses at interfaces of a three -
layer system .

v3 = 0 .5, E 3
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Jones' Tables The stresses in a three-layer system depend on the ratios k1 , k2, A, and

H, defined as

E1

	

E2
ki =

	

k2 = —
E2

	

E3

a

	

h 1
A=— H=

h2

	

h2

Jones (1962) presented a series of tables for determining o- Zc, 0 z1 – art, 0- z2, and
o-z2 – o- r2• His tables also include values of 0 z1 – dr1 at the top of layer 2 an d
0-z2 – O-r2 at the top of layer 3, but these tabulations are actually not necessar y
because they can be easily determined from those at the bottom of layers 1 and 2 .
The continuity of horizontal displacement at the interface implies that the radia l
strains at the bottom of one layer are equal to that at the top of the next layer, or ,
from Eq . 2 .20b ,

_~z1 -0-r1
(2 .23a)0-z1 — 0-rl

_

k1

0- z2 -0-r2 (2.23b)
o z2 — Crr2 k2

The tables presented by Jones consist of four values of k1 and k2 (0 .2, 2, 20, and
200), so solutions for intermediate values of k 1 and k2 can be obtained by interpolation .
In view of the fact that solutions for three-layer systems can be easily obtained b y
KENLAYER and the interpolation from the tables is impractical and requires a larg e
amount of time and effort, only the more realistic cases (k 1 = 2, 20, and 200, an d
k2 = 2 and 20) are presented, to conserve space.

Table 2 .3 presents the stress factors for three-layer systems . The sign conventio n
is positive in compression and negative in tension . Four sets of stress factors,ZZ1,

ZZ2, ZZ1 – RR1, and ZZ2 – RR2—are shown . The product of the contact pressure
and the stress factors gives the stresses :

o-zi = q (ZZ1) (2 .24a)

6a = q (ZZ2) (2 .24b)

o z1 – 0 r1 = q (ZZ1 – RR1) (2.24c)

o- z2 – o- r2 = q (ZZ2 – RR2) (2.24d)

Example 2 .11 :

Given the three-layer system shown in Figure 2 .30 with a = 4 .8 in. (122 mm), q = 120 psi (828
kPa), h1 = 6 in . (152 mm), h2 = 6 in . (203 mm), E1 = 400,000 psi (2.8 GPa), E2 = 20,000 psi
(138 MPa), and E3 = 10,000 psi (69 MPa), determine all the stresses and strains at the tw o
interfaces on the axis of symmetry .

(2 .22a)

(2 .22b)



VD 7 CVO O 0C VC
C' 00 N N 00C 7
O O --0 7 0V, C
O C O C O CC

C)1 N V 00 700

N 7
N N 'cc, ON N 7 N 00 N

O O VD N m 00
M 0o N N 7

7 VD N C b VCV1 N C00 N VC N CC N M NO O O N VC 1C C C C C C
,c

	

0C V M OC U',00 CT O N7 00 N 0 0M 00 M N O OO 00 M N O C

C N oC a M aa x x VC M. x
O C N CC 07 x0
C CC C 0-, N 7J-

cc, N ^ N: N C,VC C1i V'. ,C 0CN O N CT x M 0,C N VD.N• N 7 0C
M 00 CC C CT r-CA M 7 V

CC CT N

	

N: oC
N VOt "C, CC a a0.

	

C
C ON CD m N C N CC C,7C C C C C C

VC 00 7 7 C'M N^ N M C
M CD Ct N N00 v0; V x C
C C C C C C

C 7 7 7 N 4D VC
CC 737 VCO C

N 00VC

	

.--I VCA C, 000 7E MO. C O NCC CC
V
O

x
O

O OO O

M M N 7 CT O x x
V VDVI N V Mx V C CD M,N 0T
VD CC' N VM D, 00-- 0001, C M
C M OC 00 M N

- . N ;

M N C 0 0C 00 VC
7 0: 00

V
V

N_ O CC V C0 V O N
c

O
.7-7

00 7 CC O O
C C O C C O O

a a 7 N VD C C 00C 4D
N

x NVC 7 CCr - N NO MO O O CM V CVC xCT E OC O C C O O C O

V, V M 7
M M CTN C CCM O

7 V VD
C O -- M

M N C, 7N 7 O MCT 7r 7 C
N 7 7 N
C , C N C 1iN V, C'

7 00 00 N700O_ x M0.:O -

	

M
6 .6 ;6 6
7 N V M
'C < 00CC CC 00C`C N 7 NO C' C C

x C, 'C
00 VC CT
C O OC
O O C

7 x 00
7 on 00,C N VCCC CC CC

O N CN N CC M V CTh ,.0 N'C C0 Vt C0 N NN CC v r V N
O O N x 0 7N M

7 N 7 N x NC0 N NO M. 7 N
4,

V 00
00C xJ O 4,O

M C V00 Vt
O C O O O O
V, vC VD 00 V, CT

Nxa Vt
C .M- MO O NC C O 3C N NN VD

C C C C C C'

N V N N VD C'

N
0C N

O CD 7 CCC 7O 7 V M VD
O O C

im
, V V

CC O O O C 00

N 00 N V x M7 CT M x N 7x V N 00 C C'00 3 N O N NM CC O N V0
CC 7 - y N N hM hcc,

M 7 N M CTCV 0, O O pp M V M O
0 0 0 0 0 7

00 VC 00

C C C C C C

CT 7 ~--~ 7 'D r-

;

:ti 00 CT V a NO C V, 0 C00 O C C O MC O C CC O O

N M C M VD 007r CC

N O VD
Cn 0,

M00 O C N VD C OCOiC C C C C C

00 4D N

	

-- 7N 00 M D\ 00 C NVD N CC
x N 7 7 0 C
-y

	

V ; N ; --M

	

O

O C VC 00 7 CC
00

	

O 7O N 00 CT 7 0, MO C -N M V CTC C C C C C
CT C

	

00 O MN

	

00 VC 3VC N VD N O 000
00 00 00 N T CTM N O CT CTC O O -0 C O

00 N M N C 0
0 NV70 00 O N OD M M N 7O O N VD D, CC

O O C C C C

N VC C CT N VCCV vC C0 00 cC
N c N NN ti NO C O C C

VD M N N N 0C
0000 V C

	

7C, 00 7O M N V N VO O M N CTO O O C C C
C 7 7 7 7 NV N 7 M VC NCT 7 C M aN 0C 00 00 0, C'7 h a C, C\ CTC C C C C C
-, N 7 x ,D N

O CC C O 00 M
N

V N M V V ax CT V M xN VD NNN Is CVCC CC' .7cO -0 M C,C C C 00 N Vj

X70 N x N C' x
C
VD VC 7 V7 N N VtCC h 01 N Ni-y N', V: N -- N

NC 7 .0C

	

C N OaN N O V 700 C O N 3 7 VO O O O N V,0 0 0 0 0 C]
N 0, 7 C N O

7 NN C N00 VCMx N x M V0– M N 0, C0 C0O C C O C

000NNN V
7 V V C VC C 1
0 c 7 7 N C'
CD CC CC 0, CC VC

CV

	

0, ,CCV CDomCC OCN, VC M O VV x aT N 0C 00 N NVC C' 7 VC x NO O C C N V

00 0, N O M 0C
N 000 M C, VC N
O

	

N 7
O O -J M,O C O C C

C VD 00 cc,N 00 a C N CTC 7 7 00 G1 V
7 N C a CC C'
C C C C C C
--~ N 7 x 'C NO O C C --i M

O

N C0 O V 7
VD 00 V1

	

-- V
G0 C0 00 C0

	

N

o ^ 00 a a
C O C O O O

V VC a V0D N 0, 00 70,N C0 N N N 7N: M VC C 7 r-NC x 00 V, N C.`C -, Ni V 7 --~

M C1 7,

	

00M N N VVC C C' N V N
OCC CV O C N 'C CTC C C O O
00 N N 7 M 7
C x x 0 7 0DM N CC C0 N O
C 7 N N VC CC

000 O
C C O C O --

M x x 7 O CV, N. N 00 CT 00 N N 00 N O MCT V V C'O VO V CT x
O O O O O

N V 7 V 00 00VC N M x M CTM N VC 00 M VC
CC O VD VC N VN N C' VD C
C O C O O C

00 0000 C N VVCC CC
N N N N N
O

	

N
O 7 M C a

0 0 0 0 0 0

N O M 0 V 7V; x a N x 00 VC N N V DO a''Cl' N CT CT a
C C C C C C
--~ N 7 x ,DC C O C --i M

N

N N N VC M Cc,CT .0N OC` Vx N NV00 VO
Cam. CD

N
C

CT
C

V, N
N 7

M M VC x C0 7
VC C C' VC CCo

'C C 00 7V C VC
CC -- 7 .0 V' .0

N 00C C'0 7 00 7
- 7 x N -+ VC

O O C N NC C C C C C

cc', O V 7 3 NN N N CT 7 MY N v; 00 V; OO M VC CC C\0
0 O O O C C

N
C'0

7
3 VC 4D 'C N

N C N 3 VC VC CC 007 CC'O M N 3 x
0- N 7

O VC N -- 00 C
CC 7 a 00 N
N'C CC N N OO O C C --~ M

a V N V 7 7N C a 0C V V
O C N N VC CO C C C N V 0
0 0 0 0 0 0
'C N N N M MM 0C 7 V C' 7
7 7 'D N M NV N VC N VC7 N CT C C0
C C C C C C'

N 7 x 'D N

C'

N

7 00 N N 7 M7 N N 7 0 xOO VC M N M00 O O O N VD C'
C C C C C C

.0 N N 00 N N0, N 00 V CC x
0 7t xCN 7-- 7 'CCC O

	

V

N N C' 7 C VCN C C\ 7 N 0
0 OO00 O 7 7 00

O O O O C C

N N
pCD

V 00 0

7 00 7 7 N V
71- m VC Cc hCC 00 M C0 a,

C C C C C C

x 7 7 N O M
x 7 a 700 a N
C N 7 CC CC 3O O C C C O

O x - x N N
CCC CC CC C C CN0,C N N C0 N MO O C O O C

V VC 7 VC 00 V'C M N Vt C\ V7 00 C, N N VC
O

	

'D 00C O ^ M N V x
O C C C O O
C V N M N
M M C VD 00 C

o,0 7 N a C
C O O C O C

N 7 x 'D NC C O O N ;
N

,C

	

0,C 00 7 ON
C NN 0 V a Cco O VC V VD
CCC0 -: N

N 7 O 'D N ON CV N N N
CC' N C' 7 O CCCN N M MC O N V$ C .o

M x 7 N
C N V

; 0
0 C' N VD CCC

O O O CC 0, Nc^,C C C C O O
O 00 x 7 0 M
C' VD 0T 00 N C0O M N O OO C 00 N V hO C C C C C

00 N N 00 N N
N O x 0. 00 O
O C N C xM 7C O O C N 7

N N C\ 0x0 NO V .-0 V CCC N N 'D CT -yO N VC C0 M 7
C C O O CC

N 7 C' V M x00 'D CT N O M-0 7 N x N7~p
O O O C 00 VCCD 0 0 0 C
M x VC 00 00 OC0 O 00 CT M 7x O O M C0
O ti 7'0 N CCC C C CC 0 CC

N 7 x ,.0 NO O O C M

N

N

N

N

N
N

P4
G4'

N
N

N
N

N

N
Q~i
Pi

N
N
N

N

N

fx

N
N

N
N

N

N

72



M
00 M Vn CA VC 00

Cn 71'
G M CCC 0. 00 C M N

C O C O O N
q C C C O C

00 VD M T Nq 00
0C C '-I C1 7 M1D `D V N Mq N C N Cl 00
C O -I M CC 0N

01 VD C r ,, rN 0, VD C T 7
q .--i 7 r VD Cop ,-
O C O C O N
C C C C C C

ON 40 1D r 10 1D
7 C1 V C 00 CO
q 00 r VD 40C C C N 00 .nq O O O O N
C C C C C C

N• d' 00 N 00 d-CD N C, 00 ON 00
q 0 O M M V;
q O 0 .ti
q C O C C C

• N 00
VD ,, C C O CCC M C ., OO N
cO cn v-I .D c,
q M N C
C O .--i C N VD-I M,

C- 00 C VD M T-
q N .--~ M c0 ccq O .--i C 10
C O O O

	

O O
C O O C C O
C- C C 1D C1 C1N C 0C M r 00q - M N M 0C
C O C C O O
C C C C C C

C1 1D N M M 0 0
O C- M O VD
q O C O N \D
C C O C C O
C C C O C O

M .0-1
O VC .0 CD 00

C D\ C0
T 01 -I 00 cc - I
- cc r C T Nq O N C N C
C C C .ti M C.

00 M -I C M. ccC M M N C 71-CD O V, O N
C C C C CA 0
C C C C C C
.-- 00 C0 01 ,, ,r

7 r 00 C cD
C C O O 7N 000
q O O C O C
C C C C C C

001 N O 001 VDC C N C1 M 1 D
q 0 0 0 M 001C C C C C -I
C O O O C C

°Cccc0,00-I 1D 00 00 M 0 0N 00 M r 00 1DC C M N M N
q C C - . C M

N r C C r CC C M 0D OC
CD C, CD ,-. 0r
C C C C C C
C C C C C C

V? 00 T .--I C .--Io r `D - CC O O N 00 M
q C C C C Nq C C C O C
C O C C O O

N VD M C 00 ,,
q O 00 00C C C -I 00 D\0 0 0 0 0C C C C C C
q O C O C O

M C C N C -
8.

	

0,.r-I 1D N ,r 000C C C N C N
C C C C .-I M

q o cCC C 100 Nq O O -I V) - I
C C C O C O
C C C C C C
M - N 00 1D NC C 0D C M CD CD0C 0C C O CD NC C O O C C
C C C C C C

cn C 7 00 M O
C O O N 000 O
q O O O O M
q O O O O C
C O C O C C

V1 00 M - M CC r r M r r00 -I 1D -I r 41
q Cl 00 C CD 00C C C cc N cc 1
q 0 0 C 0. C

q o o m NO

	

00C C C O C
C C C C C C
C C C C C C
- M M C VD NC 0

	

4'1 00 .--~
q C O C -I 1 D
C C C C C C
q 0 0 0 0 0
C. C C C C C

q r 00 00 M c O1D M 01 1D 00 RV- 'V C N N
O C O N O

N 0, VC100
C C C C C C

T 00 r V )0 000 N N O C.
3 C T C C 1D
O 0. VD CT M CC C C -i 7 \O

C C0 40 00 00 00q C 1D M C. C1.-I M 00 ON O Mq O 001 00 C MC O C O N cn
C O O C C C

M C1 C M 00 .--I1D N .--I r r C
O O M N - VDC Cq M 1D
C C C C C C

401 CC c00 cc M Oq C N 1D 00C
q C O N VVC Ori
C C C C C C

N M M IT 1D CCV 00 VZ VCcc N O N M cc
O O O

00 C, VD 000
C. C C C C .--

rn•

	

rn

	

0. 00r C C \C C N
O N CC 00 r N
q C C N 1D 00

C 00 r r C0N C 00 O CC O M 00 V ; MC C C .-I 00 00
q O O C 0 .-- i
C C O O C C

0001 00 . . N .D 00- r r O C MC C N 00 r Cq C O C .--I M
C C C C C C

N
CD 7

r 00 C
0.
00

0C NC, cV OO 00 ,,
CD 00 7h 7, 00 ,,CD 0 ,r 40 00 .0
C C C C .--1 M

- M M M C ON00 O C C. .D C
C N O OM O OC CCC,, M
C C C C C C

C0 C-
• rC

40 CC 00 N
00C C- VD O C

q O C O N C

M N - 00 M. ,t C0N O MC -1 V1 O C 00C C O N CT M
q 0 0 C N
C C C C C C

cc• M N N-I -00 00C N C1 C 0
C O C O NC C C C C C

0C C C C V~ C
r ON O V1 C

O - M.0 07T
C O O O O C

C C cD C C N
C0

	

01 M,
C M C N -I r
O C O ,, 00 O N V0
C C C C C C

q VC 00 C C1D M N O. 01000-0 N C C - ccC C N C1 C\ C
C0 C0 N 00

00 .--I M 41 N cOq M N 00 .D N
C C O O -00 ccC O C O O C
0 C 0 C O C

M cc O CC .-+ M
q .--I V] T O M
q O O -I V1 -q O O C C
q O O O O C

0C r 00 00 r 00r O Vc C1 VM 00 01 C- M N
C O O N N 0-
C C C C C Ti

.- N M N
C C O OC C C CC C C C

- C C CM N C. N
C O CD C,
C O C O

q C C O- M 00 -I
C C .--i VD
C C C O
q O O C
C C C C

M C C C0V .--I M
q O C OC C C C
C C C C

00 C N 001VD VD M M.
O N O OC C O O
q O• O C

000
M0
C

CrC,
O

VC
~-.
C

CC
CD
N

N Obi OC1
C C Oq

	

O O
C C C

M .--~ G1-I 00 1D
C cc V;
CD 0, 00
C C C
q

	

0 0

0 C O
,r 00 OC O N
C C C

C N CM N 00r 00 C0
00 00 0N CT
C C M

cc N a1 00 CO NV)M C O M
C

M. C 10
O O NNO cCC C O

q

	

O O O C C
O O C C C C C C

C C 000 N M 00C C q

	

N
q

	

O C cc -i NMC C.--I C C C C O O
C C C C O C O C

V) N CC CDN ,r ,r
r 10D MO C01 O OC, C1 C-00C C.mac C NO C0 C1 C-C N C.q

	

C
C C C C O C O O

r M 01 C 00 ONOM C M 10 CN OC 00 -I N CC O N T 0 C ,
C C C C -I C

• 00 C N O 001 ON 01 r C 1D a0q C M M 00 000 C O .ti M T.
C C C C C C

00 N VD C N N
-

I
q VD ON O -IV C C1 0r NC O -I M C- C1
C C C C C C

.t N V 00 1D N
O O C C -I M

N

C1 00 C N 00 M
NccVOcl VD C0

O
CO

N N N N
C O C C - 0,

-I O 00 r C1VD C 00 r O 1DC N C1 V1 O 10
O O C O

M, Ncc M
C O O C C C

10D Or1 C 10 OD N MC VD 00 N CT V1
C O ., M 40N cc
C C C C C C

- N C 00 4? N
0 0 0 0 M

CN

V1 C1 00 00 r C
V] C, cD 10 CO C100 -I C M C N
q N 00 01 00 C-q C C N r
q 0 0 C O -

q r 0. C cc 1D
q O, .D T C ccM- Vl C
q O .-I V; O
q O O O N V;
C C C C C C

40 C N C ccN a 00 00 cD M
C CC O r M, VD
0 0 0 O C O

• NCc cD N
q O C

N

N

N 1D T -I 00 M
31 00 -I C 00 M1D
O

VN C VD r OC 00 C cCC -I M O 0,
q C C C -I N

00 C1 C 00 C1 MN C C1 M C Cq O M VC 00 00C. C C O O N
C C C C C C

D 1D 1D 00 ,-1
00, r M O CO C0O N C1 M C0C C C C N M
C C C C C C

.--i N V 00 4? N
C O C C -I M

CN

C 00 N 0 ,,00
O-I Vt M D\ N 01C O N 00 - 1C C C C cc; 00

C C• C C C C

C C0 C 00 N ,,M M M C0 C
C O O N N V1q C C C C N
q O C C C C

3 00 00 C C .--IM N O C 40 Nq N C 00 M
q C C M. N VC C O O M
q O• C C C C.
- N C CO \D N
C C C C M

N

C

q O 01 N C NN 00 .--i C c Cq C M N 00 .DC C O cc C M
C C C C C cc

00 C C N C1 C
q cc1 M cn C CO O .-1 00 O N
q C O C N N
q O C C C C
q O C C CO C

q C1 C1 C 00 C 100 -I 1D C1 C rq -I C C- O ON
q C C -I 1D C
C C C C C
C C C C C C

.-~ N C 00 1D N
q O C C -, M

CN

7 3



74 Chapter 2

	

Stresses and Strains in Flexible Pavements

120 ps i

E l = 400,000 psi

	

6 in .

E 2 = 20,000 psi

	

j allcr,e=?

	

6in .

E 3 = 10,000 ps i

FIGURE 2 .3 0
Example 2 .11 (1 in . = 25.4 mm, 1 psi = 6.9 kPa) .

Solution: Given k l = 400,000/20,000 = 20, k 2 = 20,000/10,000 = 2, A = 4 .8/6 = 0 .8, and
H = 6/6 = 1 .0, from Table 2 .3, ZZ1 = 0 .12173, ZZ2 = 0 .05938, ZZ1 - RR1 = 1 .97428, and
ZZ2 - RR2 = 0.09268 . From Eq. 2 .24, o-zi = 120 X 0.12173 = 14.61 psi (101 kPa), Q Z2 = 120 x
0 .05938 = 7 .12 psi (49.1 kPa), uzl - 0 r1 = 120 X 1 .97428 = 236 .91 psi (1 .63 MPa), and Qom, -
Q r2 = 120 X 0 .09268 = 11 .12 psi (76.7 kPa) . From Eq. 2 .23, uzi - ~rl = 236.91/20 = 11 .85 psi
(81 .8 kPa) and cr Z 2 - dr2 = 11.12/2 = 5 .56 psi (38 .4 kPa) . At bottom of layer 1 :
a rt = 14.61 - 236.91 = -222.3 psi (-1 .53 MPa), from Eq. 2.20, E Z = 236 .91/400,000 =
5 .92 x 10 -4 and E r = -2 .96 X 10-4 . At top of layer 2 : o = 14.61 - 11 .85 = 2.76 psi (19 .0
kPa), EZ = 11.85/20,000 = 5.92 x 10 -4, and or = -2.96 X 10-4 . At bottom of layer 2 :
Ur2 = 7.12 - 11 .12 = -4.0 psi (-28 kPa), EZ = 11 .12/20,000 = 5 .56 x 10 -4 , and E r = -2 .78 x
10 -4 . At top of layer 3 : o. 2 = 7 .12 - 5 .56 = 1 .56 psi (10.8 kPa), E, = 5.56/10,000 = 5 .56 X 10-4
and E r = -2 .78 X 10-4.

In the foregoing example, the parameters k 1 , k2 , A, and H are exactly the same a s
those shown in the table, so no interpolation is needed . Because each interpolation re -
quires three points, the interpolation of only one parameter requires at least thre e
times the effort . If all four parameters are different from those in the table, the total ef-
fort required will be 3 X 3 X 3 X 3, or 81 times .

Peattie's Charts Peattie (1962) plotted Jones' table in graphical forms . Figure 2 .3 1
shows one set of charts for radial strain factors, (RR1 - ZZ1)/2, at the bottom of layer
1 . As indicated by Eq . 2 .20b, the radial strain can be determined fro m

= q
(RR12ZZ1 1

Er	 	 l

	

(2 .25)

The radial strains at the bottom of layer 1 should be in tension . Although the solutions
obtained from the charts are not as accurate as those from the table, the chart has the
advantage that interpolation for A and H can be easily done . However, interpolatio n
for kl and k2 is still cumbersome .
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FIGURE 2 .31 (Continued )

120 ps i

4 4
E 1 = 400,000 ps i

E 2 = 20,000 ps i

FIGURE 2 .3 2
Example 2 .12 (1 in = 25 .5 mm, E 3 = 10,000 ps i
1 psi = 6 .9 kPa) .

Solution : Given k1 = 20, k2 = 2, A = 0 .8, and H = 1 .0, from Figure 2 .31c, (RR1 — ZZ1) /
2 = 1 . From Eq. 2 .25, Er = 120/400,000 = 3 X 10 -4 (tension), which checks closely with th e
2.96 x 10 -4 from the table. Given h2 = 8 in . (203 mm), A = 4 .8/8 = 0 .6, and H = 6/8 = 0.75 ,
from Figure 2 .31c, the strain factor is still close to 1, indicating that the thickness of layer 2 ha s
very little effect on the tensile strain due to the predominant effect of layer 1 . The radial strain
obtained from KENLAYER is 2 .91 x 10 -4 .

2.3

	

VISCOELASTIC SOLUTION S

A viscoelastic material possesses both the elastic property of a solid and the viscous
behavior of a liquid. Suppose that a material is formed into a ball . If the ball is thrown o n
the floor and rebounds, it is said to be elastic . If the ball is left on the table and begins t o
flow and flatten gradually under its own weight, it is said to be viscous . The viscous com-
ponent makes the behavior of viscoelastic materials time dependent : the longer the time ,

100	 	 100

0 .001

	

—~ 0 .001A=0 .1 H= 8
(e)k 1 =200,k2 =2

A=0.1 H= 8
(f)k 1 =200,k2 = 2

4 .8 in.

4 4
6 in .

6 in . or 8 in .



2 .3 Viscoelastic Solutions

	

7 7

the more the material flows. HMA is a viscoelastic material whose behavior depends o n
the time of loading, so it is natural to apply the theory of viscoelasticity to the analysis o f
layered systems. The general procedure is based on the elastic–viscoelastic correspon-
dence principle by applying the Laplace transform to remove the time variable t with a
transformed variable p, thus changing a viscoelastic problem to an associated elastic prob -
lem. The Laplace inversion of the associated elastic problem from the transformed vari-
able p to the time variable tresults in the viscoelastic solutions . Details about the theory of
viscoelasticity are presented in Appendix A . A simple collocation method to obtain the
viscoelastic solutions from the elastic solutions is presented in this section .

2.3 .1

	

Material Characterizatio n

There are two general methods for characterizing viscoelastic materials : one by a me-
chanical model, the other by a creep-compliance curve . The latter is used in KENLAY-
ER because of its simplicity. Because Poisson ratio v has a relatively small effect on
pavement behavior, it is assumed to be elastic independent of time . Therefore, only
modulus E is considered to be viscoelastic and time dependent .

Mechanical Models Figure 2 .33 shows various mechanical models for characterizing vis -
coelastic materials . The models are formed of two basic elements : a spring and a dashpot .

0-

	

0-

	

0-

	

if

(a) Elastic

	

(b) Viscou s

a

0-

(d) Kelvin

(c) Maxwell

if
(f) Generalized Mode l

if

(e) Burgers

FIGURE 2 .3 3

Mechanical models for viscoelastic materials .
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Basic Models An elastic material is characterized by a spring, as indicated i n
Figure 2 .33a, and obeys Hooke's law, which asserts that stress is proportional to strain :

Q = EE

	

(2 .26 )

Here, o- is stress, E is strain, and E is the elastic modulus .
A viscous material is characterized by a dashpot, as indicated in Figure 2 .33b, and

obeys Newton's law, according to which stress is proportional to the time rate of strain :

(2 .27 )

In this equation, A is viscosity and t is time . Under a constant stress, Eq . 2 .27 can easil y
be integrated to become

o- t
E _

A

Maxwell Model A Maxwell model is a combination of spring and dashpot in
series, as indicated in Figure 2 .33c. Under a constant stress, the total strain is the sum of
the strains of both spring and dashpot, or, from Eqs . 2 .26 and 2 .28 ,

	

E = o- +
~ t

=
cr 11 + t

	

(2 .29 )
E0 A0 Eo

	

To

in which To = .1o/Eo = relaxation time . A subscript 0 is used to indicate a Maxwel l
model . If a stress Qo is applied instantaneously to the model, the spring will experience
an instantaneous strain, o- 0/Eo . If this strain is kept constant, the stress will graduall y
relax and, after a long period of time, will become zero . This can be shown by solving
the differential equation

1

3~
+

	

(2 .30 )
at

	

E0 a

	

0

The first term on the right side of Eq . 2.30 is the rate of strain due to the spring, the secon d
term that due to the dashpot. If strain is kept constant, a€/at = 0, or, after integration,

o- = ifoexpl —

It can be seen from Eq. 2.31 that when t = 0,o- = moo; when t = cc, a- = 0 ; and when
t = To, a- = 0.368 a-o . Consequently, the relaxation time To of a Maxwell model is th e
time required for the stress to reduce to 36 .8% of the original value . It is more convenien t
to specify relaxation time than viscosity, because of its physical meaning . A relaxation time
of 10 min gives an idea that the stress will relax to 36 .8% of the original value in 10 min .

Kelvin Model A Kelvin model is a combination of spring and dashpot in parallel, a s
indicated in Figure 2 .33d. Both the spring and the dashpot have the same strain, but th e
total stress is the sum of the two stresses, or, using subscript 1 to indicate a Kelvin model ,

o- = E1E + Al
a E

at

(2 .28 )

t l

TO
(2 .31)



2 .3 Viscoelastic Solutions

	

79

If a constant stress is applied, then

de

	

_

	

t d t

fQ — E1e — Jo A l

or

	

e = E11 — exp( Ti)]

	

(2 .32)

in which T1 = A l/E1 = retardation time . It can be seen from Eq. 2.32 that when
t = 0, e = 0 ; when t = co, e = o-/E, or the spring is fully stretched to its total retard-
ed strain ; and when t = T1 , e = 0 .632o-/E 1 . Thus, the retardation time T1 of a Kelvin
model is the time to reach 63 .2% of the total retarded strain .

Burgers Model A Burgers model is a combination of Maxwell and Kelvin model s
in series, as indicated in Figure 2.33e . Under a constant stress, from Eqs. 2.29 and 2.32,

e
= Eo ~ 1 + Tot

+
E 1

~1 – exp~

	

(2 .33)

The total strain is composed of three parts : an instantaneous elastic strain, a viscous
strain, and a retarded elastic strain, as shown in Figure 2 .34 . Qualitatively, a Burgers
model well represents the behavior of a viscoelastic material . Quantitatively, a single
Kelvin model is usually not sufficient to cover the long period of time over which the
retarded strain takes place, and a number of Kelvin models could be needed .

Generalized Model Figure 2.33f shows a generalized model that can be used to
characterize any viscoelastic material . Under a constant stress, the strain of a general -
ized model can be written a s

e= -(1+ t) +

	

0-[1–exp(–t)]

	

(2 .34)
Eo

	

To

	

i=1 Ei

	

Tt

Instantaneous StrainEo
FIGURE 2 .34

Three components of strain for
t

	

a Burgers model.

a
E t
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in which n is the number of Kelvin models . This model explains the effect of load dura -
tion on pavement responses. Under a single load application, the instantaneous and th e
retarded elastic strains predominate, and the viscous strain is negligible . However ,
under a large number of load repetitions, the accumulation of viscous strains is th e
cause of permanent deformation .

Creep Compliance Another method to characterize viscoelastic materials is the
creep compliance at various times, D(t), defined a s

D(t) = E(t)

	

(2 .35 )

in which e(t) is the time-dependent strain under a constant stress.
Under a constant stress, the creep compliance is the reciprocal of Young's modu -

lus . For the generalized model, the creep compliance can be expressed a s
l

	

n
[1

	

/ D(t)= 1 1+ t
+1 1 —expl--) I

	

(2 .36 )
Eo

	

To/

	

i _ i E;

	

\ Tt J

Given the various viscoelastic constants, E0 , To, Ei , and

	

for a generalized
model, the creep compliances at various times can be computed from Eq . 2.36 .

Example 2 .13 :
A viscoelastic material is characterized by one Maxwell model and three Kelvin models con-
nected in series with the viscoelastic constants shown in Figure 2 .35a . Determine the creep com-
pliance at various times, and plot the creep-compliance curve .

5 10

	

20

	

30

	

40

	

5 0

E 2 =5

	

+T2 = 1

(a)
0	

0

	

1

	

2

	

3

	

4

	

5

	

6
Time, t

(b )

2

1
= 0 . 1

FIGURE 2 .35

Example 2 .13 .
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TABLE 2 .4 Creep Compliance at Various Time s

Creep

	

Cree p
Time

	

compliance

	

Time

	

compliance

0 0 .500 2 1 .89 1
0.05 0 .909 3 2.01 6
0.1 1 .162 4 2 .129
0.2 1 .423 5 2.23 8
0.4 1 .592 10 2 .76 3
0.6 1 .654 20 3 .78 6
0.8 1 .697 30 4 .79 5
1 .0 1 .736 40 5 .79 8
1 .5 1 .819 50 6 .799

Solution : In Figure 2 .35a, no units are given for the viscoelastic constants . If E is in lb/in2,
then the creep compliance is in in .2 /lb . If E is in kN/m2 , then the creep compliance is in m2/kN.
If T is in seconds, then the actual time t is also in seconds . From Eq. 2.36, when
t=0,D=1/E°==0.5 ; and when t=0.1,D=0.5(1+0.1/5)+0.1(1–e°.01)+0.2
(1 — e° 1 ) + (1 — e ') = 1 .162 . The creep compliances at various times are tabulated in Table
2.4 and plotted in Figure 2 .35b . It can be seen that, after t = 5, all the retarded strains have near -
ly completed and only the viscous strains exist, as indicated by a straight line . If the retarde d
strain lasts much longer, more Kelvin models with longer retardation times will be needed .

If a creep compliance curve is given, the viscoelastic constants of a generalize d
model can be determined by the method of successive residuals, as described in
Appendix A . However, it is more convenient to use an approximate method of collo-
cation, as described below.

2.3.2 Collocation Method

The collocation method is an approximate method to collocate the computed and ac-
tual responses at a predetermined number of time durations . Instead of determinin g
both Ei and Ti by the method of successive residuals, several values of Ti are arbitraril y
assumed, and the corresponding E i values are determined by solving a system o f
simultaneous equations. The method can also be used to obtain the viscoelastic solu-
tions from the elastic solutions .

Elastic Solutions Given the creep compliance of each viscoelastic material at a given
time, the viscoelastic solutions at that time can be easily obtained from the elastic solu-
tions, as is illustrated by the following example .

Example 2 .14 :

Figure 2 .36 shows a viscoelastic two-layer system under a circular loaded area having radius 1 0
in . (254 mm) and uniform pressure 100 psi (690 kPa) . The thickness of layer 1 is 10 in . (254 mm) ,
and both layers are incompressible, with Poisson ratio 0 .5 . The creep compliances of the two ma-
terials at five different times are tabulated in Table 2.5 . Determine the surface deflection unde r
the center of the loaded area at the given times .
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10 in .
100 ps i

Layer 1
Creep

	

wo
compliances

	

vi = 0 . 5
shown in
Table 2 .5

10 in.

FIGURE 2 .3 6

Example 2.14 (1 in . = 25.4 mm ,
1 psi = 6 .9 kPa) .

Layer 2

Cree p
compliances

	

V 2 = 0 . 5
shown in
Table 2.5

cc

Solution : If the modulus ratio is greater than 1, the surface deflection wo at any given tim e
can be determined from Figure 2 .17 . Take t = 1 s, for example . The elastic modulus is the recip-
rocal of creep compliance . For layer 1, El = 1/(2 .683 X 10-6 ) = 3 .727 X 105 psi (2 .57 GPa) and
for layer 2, E2 = 1/(19 .52 X 10-6) = 5 .123 X 10 4 psi (353 MPa), so Ei1E2 = 3 .727 X 105 /
(5 .123 X 10 4 ) = 7 .27. From Figure 2 .17, F2 = 0.54, so w 0 = 1 .5 X 100 X 10 X 0 .54/(5 .123 X
104) = 0 .016 in . (4 .1 mm) . The same procedure can be applied to other time durations and th e
results are shown in Table 2 .5 .

TABLE 2 .5

	

Creep Compliances and Surface Deflection s

Time (s)

	

0.01

	

0 .1 1 10

	

10 0

Layer 1 D(t) (10 -6/psi)

	

1 .021

	

1 .205 2 .683 9 .273

	

18 .32 0
Layer 2 D(t) (10-6/psi)

	

1 .052

	

7 .316 19 .520 73 .210

	

110 .00 0
Deflection wo (in .)

	

0.0016

	

0 .0064 0 .016 0 .059

	

0 .096

Note . 1 psi = 6 .9 kPa, 1 in . = 25 .4 mm .

It should be noted that the above procedure is not the exact viscoelastic solution .
It is a quasi-elastic solution that provides a close approximation to the viscoelastic
solution .

Dirichlet Series Pavement design is based on moving loads with a short duration . The
creep compliance D(t) caused by the viscous strain is negligible, so Eq . 2 .36 can b e
written as

n

	

D(t) = 1+
E

1 1— exp~—
t

	

(2 .37 )
E0

	

i=1 Ei

	

Ti

It is therefore convenient to express the creep compliance as a Dirichlet series, o r

n

	

t
D(t) = EGi exp(--

i=1

	

Tl
(2 .38)
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A comparison of Eqs . 2 .37 and 2 .38 with T, = oo shows tha t

— +
Eo

	

i=1 Ei

In KENLAYER, the collocation method is applied at two occasions . First, th e
creep compliances at a reference temperature are specified at a number of time dura -
tions and fitted with a Dirichlet series, so that the compliances at any other tempera -
ture can be obtained by the time—temperature superposition principle . Second, th e
elastic solutions obtained at these durations are fitted with a Dirichlet series to be use d
later for analyzing moving loads .

Collocation of Creep Compliances The creep compliances of viscoelastic material s
are determined from creep tests . A 1000-s creep test with compliances measured at 1 1
different time durations (0 .001, 0 .003, 0 .01, 0 .03, 0 .1, 0 .3, 1, 3, 10, 30 and 100 s) is recom -
mended (FHWA, 1978) to cover all possible range of interest . This range from 0 .001 t o
100 s should be able to take care of moving loads with both short and long duration a s
well as the change in creep compliances with temperature .

Because moving loads usually have a very short duration, retardation times Ti of
0 .01, 0 .03, 0 .1,1,10, 30, and oo seconds are specified in KENLAYER. If creep compli -
ances are specified at seven durations, the coefficients G 1 through G7 can be deter-
mined from Eq . 2 .38 by solving 7 simultaneous equations . If the creep compliances ar e
specified at 11 time durations, there are 11 equations but 7 unknowns, so the 11 equa -
tions must be reduced to 7 equations by multiplying both sides with a 7 X 11 matrix ,
which is the transpose of the 11 x 7 matrix, or

1
G .

	

Gn1n 1

(2 .39a )

(2 .39b)

exp( -- I . .
.exp\–Ti /

7 X /11 matrix

exp`
-TI

I . . . exp
T7

11 X 7 matrix

exp–T . . .exp~--
tit )

_
—exp(–T7) . . .exp(–T)-

-

exp(–T) . . .exp(–Ti)

	

D1
7 x 11 matrix :

	

(2 .40 )

exp(–ti) . . .exp(–tll)

	

Di l
T7

	

\\\\ T7

After coefficients G1 through G7 are obtained, the creep compliance at any time t ca n
be computed by Eq. 2 .38 . The use of 7 equations and 7 unknowns, instead of 11 equa-
tions and 11 unknowns, not only saves the computer time but also smooths out th e
results of creep tests .
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Example 2 .15 :
It is assumed that the creep compliance of a viscoelastic material is represented b y

D(t) = Gt exp(-lOt) + G2

	

(2 .41 )

If the creep compliances at t = 0 .01, 0 .07, and 0 .4 s are 9 .516 x 10-5 , 5 .034 x 10 -4 and
9.817 x 10-4 in . 2/lb (13 .8, 72 .9, and 142 .3 mm 2/kN), respectively, determine the coeffi-
cients GI and G2 .

Solution: With

	

t i = 0.01, t2 = 0 .07, t3 = 0 .4, Ti = 0 .1, T2 = oo , Di = 9.516 x 10-5 , D2 =
5 .034 x 10-4 , and D3 = 9.817 x 10 -4 . From Eq . 2 .40 ,

[e-°- 1 e -03 e 4

1

	

1

	

1 ]

e-o .i

e-a 7
e -4 Le

o.i e -o. 7

1

	

1

9 .516 x 10- 5e_41
5 .034 x 10 - 4

1

	

9 .817 x 10- 4

1
1
1

or
[1 .066

1 .420 3 .000,1G2

1 - { 1 .580 x 10-3 }

The solution of Eq . 2 .42 is GI = -0 .001 in . 2/lb (-145 mm2/kN) and G2 = 0 .001 in. 2/lb
(145 mm 2/kN), which is as expected because the given creep compliances are actually compute d
from a Kelvin model with

D(t) = 0 .001 (1 - e -l°')

	

(2 .43 )

Time-Temperature Superposition It has been demonstrated that asphalt mixes sub-
jected to a temperature increase experience an accelerated deformation as if the tim e
scale were compressed . Figure 2 .37 shows the plot of creep compliance D versus time t

t
log T

tTo

(2 .42 )

log Time

FIGURE 2 .3 7
Creep compliance at different temperatures .
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on log scales . At a given time, the creep compliance at a lower temperature is smalle r
than that at a higher temperature . There is a parallel shift between the curves at various
temperatures.

If the creep compliances under a reference temperature To are known, thos e
under any given temperature T can be obtained by using a time—temperature shif t
factor aT , defined (Pagen, 1965) as

aT = tT

	

(2 .44)
To

in which tT is the time to obtain a creep compliance at temperature T and tTo is the time
to obtain a creep compliance at reference temperature To .

Various laboratory tests on asphalt mixes have shown that a plot of log aT versus
temperature results in a straight line, as shown in Figure 2 .38 . The slope of the straight
line f3 varies from 0 .061 to 0 .170, with an average about 0 .113 (FHWA, 1978) . From
Figure 2 .38,

log(tTltTo )
(2 .45 )

T — To

or

	

tT = tT0 exp[2.3026/3(T — To)] (2 .46 )

If the creep compliance based on the reference temperature To is

(2 .47 )nD(t) = lGi exp — t7 a

t=1 Ti

then the creep compliance based on temperature T is

8

6

4

2

o0
a 0
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Temperature (°F )

FIGURE 2 .3 8
Shift factor versus temperature.
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n

	

tT
D(t) = lG, expl —

\ Ti

The relationship between tT and tTo is indicated by Eq . 2 .46 .

Example 2 .16 :

The expression for the creep compliance at 70°F (21 .1°C) is represented by Eq . 2 .43 . What is th e
expression for creep compliance at 50°F (10°C) if the time—temperature shift factor /3 is 0 .113 ?

Solution: From Eq.2 .46, tT = tro exp[2 .3026 x 0 .113 x (50 — 70)] = 0 .0055tT0 . From Eq. 2 .43 ,
D(t) = 0 .001[1 — exp(—0.055t)] . It can be seen that the creep compliance at 50°F (10°C) i s
much smaller than that at 70°F (21 .1°C) .

Collocation for Viscoelastic Solutions Even though the exact viscoelastic solutions i s
not known, the viscoelastic response R can always be expressed approximately as a

Dirichlet series :

7

	

t
R = E ci exp ( --

	

(2 .49 )
=1

	

Ti

If elastic solutions at 11 time durations are obtained, Eq . 2.40 can be applied to reduc e
the number of equations to seven, which is the number of unknowns to be solved . If the
responses at seven time durations are obtained from the elastic solutions, the coeffi-
cients c l through c7 can be solved directly by

—
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0.01

	

0.01

	

00l

	

0.0 1

e 0.01 e 0.03 e 0.1 e

	

e10 e 30 1
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(R )0 .0 1
0.03

	

00=03

	

0.03

	

0 .03

	

0.03

	

0.03

e 0.01 e 0.03 e 0.1 e

	

e 10 e 30 1

	

c2

	

(R )0.03
0 .1

	

0 .1

	

0_1

	

0.1

	

0.1

	

0. 1e

	

o .ol e o.03 e o.l e l e to e 30 1 c3 ( R )0. 1

	

e°°1 Qo.o3 Bail e e e 30 1

	

C4

	

(R)1

	

(2 .50)
10

	

10

	

10

	

10

	

10

	

10

	

gaol eo.o3 eal e 1 e 10 e 30 1

	

C5

	

( R )1 0
30

	

30

	

30

	

30

	

30

	

30e- 0 .01 eo.os e0.1 e

	

e to e 3o 1

	

C6

	

( R )3 0
_ 1

	

1

	

1

	

1

	

1

	

1

	

1_ ' c7 (R) ~

After the coefficients c 1 are obtained, the viscoelastic response can be determined by

Eq. 2 .49 .

Example 2 .17 :

The creep compliance of a homogeneous half-space is expressed as a Dirichlet series shown b y
Eq. 2 .41 with GI = -0 .001 in . 2 /lb (—145 m m2/kN), G2 = 0 .001 in .2 /lb (145 mm2 /kN), Ti = 0 .1 s ,
and T2 = Do. Assuming that the half-space has Poisson ratio 0 .5 and is subjected to a circular
load with contact radius 6 in . (152 mm) and contact pressure 80 psi (552 kPa), as shown in
Figure 2.39, determine the maximum surface deflection after a loading time of 0 .1 s by th e
collocation method .

(2 .48)
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6 in .

80 ps i

D(t) = 0 .001(1-e -10t )
\w = ? at 0 .1 se

v = 0.5

FIGURE 2 .3 9
Example 2 .15 (1 in . = 25 .4 mm ,
1 psi = 6.9 kPa) .

Solution: The maximum deflection occurs under the center of the loaded area . With v = 0 .5 ,
from Eq . 2 .8,

1 .5ga
wo = E = 1.5gaD(t )

Substituting Eq. 2 .43 and the values of q and a into Eq . 2.51 yields

wo=0.72(1-elot )

When t = 0.1, from Eq . 2 .52, then wo = 0 .455 in . (11 .6 mm) .

The above solution is simple and straightforward . However, to illustrate the collocation
method, it is assumed that the surface deflections are expressed as a Dirichlet series, as shown by Eq .
2 .49 . The elastic response on the right side of Eq . 2 .53 is obtained from Eq . 2 .52 . From Eq. 2.50,

(2.51 )

(2.52)

0.368 0 .717 0.905 0 .990
0.050 0 .368 0 .741 0 .970
0 .000 0 .036 0 .368 0 .905
0 .000 0 .000 0 .000 0 .36 8
0 .000 0 .000 0 .030 0 .00 0
0.000 0 .000 0 .000 0 .000

1

	

1

	

1

	

1

0.069
0.187
0.45 5
0 .720

	

(2 .53 )
0.720
0.720
0.720

0.999 1 .000
0 .997 0 .999 1
0 .990 0 .997 1
0 .905 0 .967 1
0 .368 0 .717 1
0 .050 0 .368 1

The solution of Eq. 2 .53 is c l = 2 .186, c 2 = -3 .260, c3 = 2.214, c4 = -2 .055, c5 = 2 .446, co =
-2.229, and c 7 = 1 .418 . From Eq . 2.49, the surface deflection can be expressed a s

wo = 2 .186e-t/0 .01 — 3 .260e-tio .03 + 2 .214e -tro.i — 2 .055et
+ 2 .446e-t11 ° — 2 .229e1130 + 1 .418

	

(2.54)

When t=0.1,then w3 =0—0.116+0.814—1 .859+2 .422—2.222+1.418=0.457 in . (11 .6
mm), which checks with the exact solution of 0 .455 in . (11 .6 mm) .

2.3.3 Analysis of Moving Loads

The elastic—viscoelastic correspondence principle can be applied directly to moving loads,
as indicated by Perloff and Moavenzadeh (1967) for determining the surface deflection o f
a viscoelastic half-space, by Chou and Larew (1969) for the stresses and displacements i n
a viscoelastic two-layer system, by Elliott and Moavenzadeh (1971) in a three-layer sys-
tem, and by Huang (1973b) in a multilayer system . The complexities of the analysis and
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FIGURE 2 .40

Moving load as a function of time .

the large amount of computer time required make these methods unsuited for practica l
use. Therefore, a simplified method has been used in both VESYS and KENLAYER .

In this method, it is assumed that the intensity of load varies with time according
to a haversine function, as shown in Figure 2 .40 . With t = 0 at the peak, the load func -
tion is expressed as

L(t) = q sinnl 2 +

	

(2 .55)

in which d is the duration of load . When the load is at a considerable distance from a
given point, or t = ±d/2, the load above the point is zero, or L(t) = 0. When the loa d
is directly above the given point, or t = 0, the load intensity is q .

The duration of load depends on the vehicle speed s and the tire contact radius a .
A reasonable assumption is that the load has practically no effect when it is at a dis-
tance of 6a from the point, or

d = 12a

	

(2 .56)
s

If a = 6 in . and s = 40 mph (64 km/h) = 58 .7 ft/s (17.9 m/s), d = 0.1 s .
The response under static load can be expressed as a Dirichlet series :

7

	

t
R(t) =

1=1

	

Ti

The response under moving load can be obtained by Boltzmann's superpositio n
principle :

/ 0

R = J R(t) dL
dt

d/2

	

d t

From Eq . 2 .55,

dL

	

in d

	

= —
q~r

	

2~r t

dt

	

d s

Substituting Eqs . 2 .49 and 2 .58 into Eq. 2 .57 and integrating yields

q~2 ' 1 + exp(—d/27'i )
=

	

c

	

2 -1

	

or e +
R	 E	

(d/2Ti ) 2

(2 .49 )

(2 .57 )

(2 .58 )

(2 .59 )

q

d
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Example 2 .18 :
Same as the problem in Example 2 .17, but the load is moving at 40 mph (64 km/h) . Determin e
the maximum deflection .

Solution: According to Eq . 2 .52 in Example 2 .17, the surface deflection under a static load
can be expressed as

w=0.72(1—e 1Ot )

	

(2.52)

The first term is independent of time and therefore remains the same regardless of whether th e
load is moving. From Eq . 2 .59, the second term with T = 0 .1 and d = 0.1 s for 40 mph (64 km/h )
should be changed to 0.5 X Tr' x 0 .72 (1 + e -0.5)/(77-2 + 0.25) = 0 .564 in. (14 .3 mm), so maxi -
mum deflection = 0 .72 — 0 .564 = 0 .156 in. (3 .96 mm) .

SUMMARY

This chapter discusses the stresses and strains in flexible pavements and their determi-
nations . An understanding of this subject is indispensable for any mechanistic method s
of design .

Important Points Discussed in Chapter 2

1. Boussinesq theory can be applied only to an elastic homogeneous half-space, such as th e
analysis of a plate bearing test on a subgrade or of a wheel load on a thin pavement .

2. An approximate method to determine the deflection on the surface of a nonlinear elastic half -
space, in which the elastic modulus varies with the state of stresses, is to assume the same stres s
distribution as in the linear theory but vary the moduli according to the state of stresses .

3. The most practical mechanistic method for analyzing flexible pavements is Burmister' s
layered theory. Based on two-layer elastic systems, various charts were developed fo r
determining pavement responses. The vertical interface stress beneath the center of a cir-
cular loaded area can be determined from Figure 2 .15, the vertical interface deflection a t
various radial distances from Figure 2.19. The critical tensile strain at the bottom of layer 1
under a single wheel can be determined from Figure 2 .21, under dual wheels from Figure
2 .23, and under dual tandem wheels from Figures 2 .25, 2 .26, and 2.27 . For three-layer elas -
tic systems, the stresses and strains at the interfaces beneath the center of a circular loaded
area can be determined from Table 2.3 and Figure 2 .31 .

4. Two methods can be used to characterize viscoelastic materials : a mechanical model and a
creep-compliance curve . Both are closely related, and each can be converted to the other .
The advantage of using a mechanical model is that the stress—strain relationship can b e
visualized physically to develop the governing differential equations ; the advantage o f
using a creep-compliance curve is that it can easily be obtained by a laboratory creep test .

5. The elastic—viscoelastic correspondence principle based on Laplace transforms, describe d
in Appendix A, can be used to analyze layered systems consisting of viscoelastic materials .
However, a more convenient method is to obtain the elastic solutions at a number of tim e
durations and fit them with a Dirichlet series as a function of time .

6. Instead of using the method of successive residuals, described in Appendix A, a collocatio n
method can be applied to convert the creep compliance to a mechanical model, as indicat -
ed by a Dirichlet series. The time—temperature superposition principle, as indicated b y
Eqs. 2 .46 and 2 .48, can then be applied to convert the creep compliance from a referenc e
temperature to any given temperature .




