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CHAPTER 2

Stresses and Strains
in Flexible Pavements

HOMOGENEOUS MASS

The simplest way to characterize the behavior of a flexible pavement under wheel
loads is to consider it as a homogeneous half-space. A half-space has an infinitely large
area and an infinite depth with a top plane on which the loads are applied. The original
Boussinesq (1885) theory was based on a concentrated load applied on an elastic half-
space. The stresses, strains, and deflections due to a concentrated load can be integrat-
ed to obtain those due to a circular loaded area. Before the development of layered
theory by Burmister (1943), much attention was paid to Boussinesq solutions because
they were the only ones available. The theory can be used to determine the stresses,
strains, and deflections in the subgrade if the modulus ratio between the pavement and
the subgrade is close to unity, as exemplified by a thin asphalt surface and a thin gran-
ular base. If the modulus ratio is much greater than unity, the equation must be modi-
fied, as demonstrated by the earlier Kansas design method (Kansas State Highway
Commission, 1947).

Figure 2.1 shows a homogeneous half-space subjected to a circular load with a ra-
dius @ and a uniform pressure g. The half-space has an elastic modulus £ and a Poisson
ratio v. A small cylindrical element with center at a distance z below the surface and r
from the axis of symmetry is shown. Because of axisymmetry, there are only three nor-
mal stresses, o,, 0, and o, and one shear stress, 7,,, which is equal to 7. These stress-
es are functions of ¢, r/a, and z/a.

Solutions by Charts

Foster and Ahlvin (1954) presented charts for determining vertical stress o, radial
stress o,, tangential stress o, shear stress 7,., and vertical deflection w, as shown in
Figures 2.2 through 2.6. The load is applied over a circular arca with a radius a—and an
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FIGURE 2.1

Component of siresses under
axtsymmeiric loading.

s W)
E woAl (r'o)
00.1 02 0304 060810 2 4 56 381

0 20 30 405060 80 100

1751

e e

e
T

2

Numbers on Curves |

Indicate rla

i
£ )

10

FIGURE 2.2

‘ertical stresses due (o circular loading. {After Faster and Abivin {1954}.)

intensity g. Because Poisson ratio has a rclatively small eficct on stresses and deilec-
tions, Foster and Ahlvin assumed the half-space to be incompressible with a Poisson
ratio of €1.5, so only one set of charts is needed instead of onc for each Poisson ratio.
This work was later refined by Ahlvin and Ulery (1962} who prescnted a series of
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Tangenual stresses due to circular loading. {After Foster and Abbvin (1954}.)

equations and tables so that the stresses, strains, and deflections for any given Poisson
ratio can be computed. These equations and tables are not presented here because the
solutions can be casily obtained from KENLAYER by assuming the homogeneous
hali-space t0 be a two-layer systern, one of any thickness, but having the same elastic
modulus and Poisson ratio for both layers.
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Shear stresses due to circular loading. {After Foster and Ahlvin {1954).)
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After the stresses are obtained from the charts, the strains can be obtained from

1

€ = E[(‘.rz - (o, + 0y)] (2.1a)
1

& = 1lo, ~ vlo; + )] (2.1b)
1

€ = E[U—r - TJ(U’Z + 6"r)] (216)

If the contact area consists of two circles, the stresses and strains can be computed by
superposition.

Example 2.1:

Figure 2.7 shows a homogeneous half-space subjected to two circular loads, each 10 in. (254 mm)
in diameter and spaced at 20 in. (508 mm) on centers. The pressure on the circular area is 50 psi
(345 kPa). The half-space has elastic modulus 10,000 psi (69 MPa) and Poisson ratio 0.5. Deter-
mine the vertical stress, strain, and deflection at point A, which is located 10 in. (254 mm) below
the center of one circle.

o e

‘ =10000psi  v=05

10 in.

‘ ‘4 50, FIGURE 2.7
oA

9 Example 2.1 (1 in. = 25.4 mm,
Ty Ep W= psi = 6.9 kPa).

Solution: Given a = 5in. (127 mm), ¢ = 50 psi (345kPa), and z = 10in. (254 mm), from
Figures 2.2, 2.3, and 2.4, the stresses at point A due to the left load with r/fa = 0 and
zla=10/5=2 are o,= 028 X 50 = 14.0psi (96.6kPa) and o, = o, = 0.016 X 50 = 0.8
psi (5.5kPa); and those due to the right load with r/fa =20/5 =4 and zla =2 are
o, = 0.0076 X 50 = (.38 psi (2.6 kPa), o, = 0.026 X 50 = 1.3 psi (9.0kPa), and o, = 0. By
superposition, o. = 14.0 + 0.38 = 14.38 psi (99.2kPa), o, = 0.8 + 1.3 = 2.10 psi (14.5 kPa),
and o, = 0.8 psi (5.5 kPa). From Eq. 2.1a, €. = [14.38 — 0.5(2.10 + 0.8)]/10,000 = 0.00129.
From Figure 2.6, the deflection factor at point A due to the left load is 0.68 and that due to
the right load is 0.21. The total deflection w = (0.68 + 0.21) X 50 X 5/10,000 = 0.022 in.
(0.56 mm). The final answer is o, = 14.38 psi (99.2 kPa), €, = 0.00129, and w = 0.022 in.
(0.56 mm). The results obtained from KENLAYER are o, = 14.6 psi (100.7 kPa), e, = 0.00132,
and w = 0.0218 in. (0.554 mm), which check closely with those from the charts.
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In applying Boussinesq’s solutions, it is usually assumed that the pavement
above the subgrade has no deformation, so the deflection on the pavement surface
is equal to that on the top of the subgrade. In the above example, if the pavement
thickness is 10 in. (254 mm) and point A is located on the surface of the subgrade,
the deflection on the pavement surface is 0.022 in. (0.56 mm).

Solutions at Axis of Symmetry

When the load is applied over a single circular loaded area, the most critical stress,
strain, and deflection occur under the center of the circular area on the axis of symme-
try, where 7,, = 0 and o, = o, so o, and o, are the principal stresses.

Flexible Plate The load applied from tire to pavement is similar to a flexible plate
with a radius a and a uniform pressure g. The stresses beneath the center of the plate
can be determined from

3
- _— "z
i q[l (a® + zz}l's] -
g 2(1 + v)z ’
o, = 5{1 + 20 — @+ 2% (@ “:zz.)ﬁ} (2.3)

Note that o, is independent of E and v, and o, is independent of E. From Eq. 2.1,

_Gtwep o 2w 2
€. = E [1 20 + (ajz S ZZ)D_S (02 + 22)1'5] (24)
_ (At 201 —w)z 2 _}
o 2E {1 2 (a?' + z2)0.5 + (02 + ZZ)].S (25)

The vertical deflection w can be determined from

w = 1+ v)qa{ o 1-2 [(a2 25 - Z)]} 26)

E (ﬂ'?' + 22)05 a

When v = 0.5, Eq. 2.6 can be simplified to

3qa®
= - - 2.7
YT 2E@ + 23 @)
On the surface of the half-space, z = 0; from Eq. 2.6,
2(1 — v¥)qa
wy = 2LV 2.8)

E
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Example 2.2:

Same as Example 2.1, except that only the left loaded area exists and the Poisson ratio is 0.3, as
shown in Figure 2.8. Determine the stresses, strains, and deflection at point A.

10 in.

50|psi
E = 10,000 psi |
v=03 | 10in.
X % _ FIGURE 2.8
I ~ Example 2.2 (1 in. = 25.4 mm,
IS = 1psi = 6.9 kPa).

Solution: Given a = 5in. (127 mm), ¢ = 50 psi (345 kPa), and z = 10in. (254 mm), from
Egq. 2.2, o, = 50[1 — 1000/(25 + 100)"] = 14.2 psi (98.0 kPa). With v = 0.3, from Eq. 2.3,
o, = 25[1 + 0.6 — 2.6 X 10/(125)* + 1000/(125)"°} = —0.25 psi (—1.7kPa). The negative
sign indicates tension, which is in contrast to a compressive stress of 0.8 psi (5.5 kPa) when
v = 0.5. From Eq. 2.4, €, = 1.3 X 50/10,000 [1 — 0.6 + 0.6 x 10/(125)%5 — 1000/(125)"] =
0.00144. From Eq. 2.5, €, = 1.3 X 50/20,000 [1 — 0.6 — 1.4 x 10/(125)%3 + 1000/(125)"] =
—0.00044. From Eq. 2.6, w = 1.3 X 50 X 5/10,000 {5/(125)*° + 0.4/5[(125)%5 — 10]} = 0.0176
in. (0.447 mm). The results obtained from KENLAYER are o, = 142 psi (98.0 kPa),
o, = —0.249 psi (=1.72 kPa), €, = 0.00144, €, = —0.000444, and w = 0.0176 in. (0.447 mm),
which are nearly the same as those derived from the formulas.

Rigid Plate All the above analyses are based on the assumption that the load is ap-
plied on a flexible plate, such as a rubber tire. If the load is applied on a rigid plate, such
as that used in a plate loading test, the deflection is the same at all points on the plate,
but the pressure distribution under the plate is not uniform. The differences between a
flexible and a rigid plate are shown in Figure 2.9.

The pressure distribution under a rigid plate can be expressed as (Ullidtz, 1987)

qa

q(r) = AP - P)S

— 2 )0.5 (29)

Uniform Pressure q Nonuniform Pressure q(r)

HH

Pressure ,
s e j |
Distribution ‘

Deflection

Basin — “H““Jlf”:d _____ J[ _____

(a) Flexible Plate (b) Rigid Plate

FIGURE 2.9

Differences between flexible and rigid plates.
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2.1.3

in which r is the distance from center to the point where pressure is to be determined
and g is the average pressure, which is equal to the total load divided by the area. The
smallest pressure is at the center and equal to one-half of the average pressure. The
pressure at the edge of the plate is infinity. By integrating the point load over the area,
it can be shown that the deflection of the plate is

w(1 — v*)qa

o5 (2.10)

Wy =

A comparison of Eq.2.10 with Eq. 2.8 indicates that the surface deflection under

a rigid plate is only 79% of that under the center of a uniformly distributed load. This

is reasonable because the pressure under the rigid plate is smaller near the center of

the loaded area but greater near the edge. The pressure near the center has a greater

effect on the surface deflection at the center. Although Eqgs. 2.8 and 2.10 are based on a

homogeneous half-space, the same factor, 0.79, can be applied if the plates are placed
on a layer system, as indicated by Yoder and Witczak (1975).

Example 2.3:

A plate loading test using a plate of 12-in. (305-mm) diameter was performed on the surface of
the subgrade, as shown in Figure 2.10. A total load of 8000 Ib (35.6 kN) was applied to the plate,
and a deflection of 0.1 in. (2.54 mm) was measured. Assuming that the subgrade has Poisson
ratio 0.4, determine the elastic modulus of the subgrade.

7 12 .
I S
8000 1b "
FIGURE 2.10

Rigid Plate
1 | Deflects 0.1 in.
Example 23 (1 = 254 mm, — —— - O

11b = 445N). v=04 E=7?

Solution: The average pressure on the plate is g = 8000/(367) = 70.74 psi (488 kPa). From
Eq.2.10,E = @(1 — 0.16) X 70.74 X 6/(2 X 0.1) = 5600 psi (38.6 MPa).

Nonlinear Mass

Boussinesq’s solutions are based on the assumption that the material that constitutes
the half-space is linear elastic. It is well known that subgrade soils are not elastic and
undergo permanent deformation under stationary loads. However, under the repeated
application of moving traffic loads, most of the deformations are recoverable and can
be considered elastic. It is therefore possible to select a reasonable elastic modulus
commensurate with the speed of moving loads. Linearity implies the applicability of
the superposition principle, so the elastic constant must not vary with the state of
stresses. In other words, the axial deformation of a linear elastic material under an axial
stress should be independent of the confining pressure. This is evidently not true for
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soils, because their axial deformation depends strongly on the magnitude of confining
pressures. Consequently, the effect of nonlinearity on Boussinesq’s solution is of prac-
tical interest.

Iterative Method To show the effect of nonlinearity of granular materials on vertical
stresses and deflections, Huang (1968a) divided the half-space into seven layers, as
shown in Figure 2.11, and applied Burmister’s layered theory to determine the stresses
at the midheight of each layer. Note that the lowest layer is a rigid base with a very
large elastic modulus.

After the stresses are obtained, the elastic modulus of each layer is determined
from

E = E,(1 + B6) (2.11)

in which 6 is the stress invariant, or the sum of three normal stresses; E is the elastic
modulus under the given stress invariant; Ej is the initial elastic modulus, or the modu-
lus when the stress invariant is zero; and B is a soil constant indicating the increase in
elastic modulus per unit increase in stress invariant. Note that the stress invariant
should include both the effects of the applied load and the geostatic stresses; it can be
expressed as

06 =0, +o + 0o +yz(1 + 2K)) (2.12)

in which o, ,, and o, are the vertical, radial, and tangential stresses due to loading; y
is the unit weight of soil; z is the distance below ground surface at which the stress
invariant is computed; and K is the coefficient of earth pressure at rest. The problem
can be solved by a method of successive approximations. First, an elastic modulus is
assumed for each layer and the stresses are obtained from the layered theory. Given
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the stresses thus obtained, a new set of moduli is determined from Eq. 2.11 and a new
set of stresses is then computed. The process is repeated until the moduli between two
consecutive iterations converge to a specified tolerance.

In applying the layered theory for nonlinear analysis, a question immediately
arises: Which radial distance r should be used to determine the stresses and the
moduli? Huang (1968a) showed that the vertical stresses are not affected signifi-
cantly by whether the stresses at r = 0 or r = o0 are used to determine the elastic
modulus, but the vertical displacements are tremendously affected. He later used
the finite-element method and found that the nonlinear behavior of soils has a large
effect on vertical and radial displacements, an intermediate effect on radial and tan-
gential stresses, and a very small effect on vertical and shear stresses (Huang,
1969a). Depending on the depth of the point in question, the vertical stresses based
on nonlinear theory may be greater or smaller than those based on linear theory
and, at a certain depth, both theories could yield the same stresses. This may explain
why Boussinesq’s solutions for vertical stress based on linear theory have been ap-
plied to soils with varying degrees of success, even though soils themselves are basi-
cally nonlinear.

Approximate Method One approximate method to analyze a nonlinear half-space is
to divide it into a number of layers and determine the stresses at the midheight of each
layer by Boussinesq’s equations based on linear theory. From the stresses thus ob-
tained, the elastic modulus E for each layer is determined from Eq. 2.11. The deforma-
tion of each layer, which is the difference in deflection between the top and bottom of
each layer based on the given E, can then be obtained. Starting from the rigid base, or
a depth far from the surface where the vertical displacement can be assumed zero, the
deformations are added to obtain the deflections at various depths. The assumption of
Boussinesq’s stress distribution was used by Vesic and Domaschuk (1964) to predict
the shape of deflection basins on highway pavements, and satisfactory agreements
were reported.

It should be noted that Eq. 2.11 is one of the many constitutive equations for
sands. Uzan (1985), Pezo er al. (1992), and Pezo (1993) assumed that the modulus
of granular materials depended not only on the stress invariant, 6, but also on the
deviator stress, which is the difference between major and minor principal stresses.
This concept has been used in the 2002 Design Guide, as presented in Appendix F.
Other constitutive relationships for sands or clays can also be used, as discussed in
Section 3.1.4.

Example 2.4:

A circular load having radius 6 in. (152 mm) and contact pressure 80 psi (552 kPa) is applied on
the surface of a subgrade. The subgrade soil is a sand with the relationship between the elastic
modulus and the stress invariant shown in Figure 2.12a. The soil has Poisson ratio 0.3, the mass
unit weight is 110 pef (17.3 kN/m?), and the coefficient of earth pressure at rest is 0.5. The soil
is divided into six layers, as shown in Figure 2.12b. Determine the vertical surface displacement
at the axis of symmetry.
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Example 2.4 (1in. = 25.4 mm, 1 psi = 6.9 kPa, 1 pcf = 157.1 N/m?).

Solution: At the midheight of layer 1, z = 6 in. (152 mm). From Eq. 2.2, o, = 80[1 — 216/
(36 + 36)"%] = 51.7 psi (357 kPa).From Eq.2.3,0, = o, = 40[1 + 2 X 0.3 — 2.6 X 6/(72)°° +
216/(72)'] = 460 psi (31.7 kPa). From Eq. 212, 6 =517 + 46 + 46 + 110 X 6 (1 +
2 X 0.5)/(12)° = 61.7 psi (426 kPa). From Eq. 2.11 with E; = 18,800 psi (130 MPa) and
B = 0.0104, as shown in Figure 2.12a, E = 18,800 (1 + 0.0104 X 61.7) = 30,900 psi (213 MPa).
From Eq. 2.6, the deflection at top, when z = 0,w = 1.3 X 80 X 6 (1 + 1 — 0.6)/30,900 =
0.0283 in. (0.719 mm), and the deflection at bottom, when z = 12 in. (305 mm), w = 1.3 X 80 X
6 {6/(36 + 144)%5 + 0.4[(180)*° — 12]/6}/30,900 = 0.0109 in. (0.277 mm). The deformation for
layer 1is 0.0283 — 0.0109 = 0.0174 in. (0.442 mm), The deformations for other layers can be de-
termined similarly, and the results are tabulated in Table 2.1.
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TABLE 2.1 Computation of Deformation for Each Layer
z at mid- . Deform-
Layer Thickness height o a, 8 (psi) E wE ation
no. (in.) (in.) (psi) (psi) Loading Geostatic (psi) (Ibfin.) (in.)
873.6
1 12 6 51.72 4.60 60.92 0.76 30,860 0.0174
338.0
2 12 18 11.69 -0.51 10.67 2.29 21,330 0.0073
182.1
3 12 30 4.57 -0.27 4.03 3.82 20,330 0.0029
1232
4 12 42 2.39 =015 2.09 5.35 20,250 0.0015
92.9
5 12 54 1.46 ~0.09 1.28 6.88 20,400 0.0009
74.5
6 540 330 0.04 0.00 0.04 42.01 27,020 0.0025
7.5
Total 0.0325

Note.1in. = 254 mm, 1 psi = 6.9 kPa, 1 Ib/in. = 175 N/m.

To compute the deformation of each layer, the product of w and E at each
layer interface is first determined from Eq. 2.6. The difference in wE between the
two interfaces divided by E gives the deformation of the layer. The surface deflec-
tion is the sum of all layer deformations and equals to 0.0325 in. (0.826 mm). It is in-
teresting to note that the stress invariant 8 due to the applied load decreases with
depth, while that due to geostatic stresses increases with depth. As a result, the ¢las-
tic moduli for all layers, except layers 1 and 6, become nearly the same. Note also
that more than 50% of the surface deflections are contributed by the deformation in
the top 12 in. (305 mm).

The same problem was solved by KENLAYER after the incorporation of
Eq. 2.11 into the program. The differences in stress distribution between Boussinesq
and Burmister theory and the resulting moduli are shown in Table 2.2. It can be seen
that the two solutions correspond well. The surface deflection based on layered theory

TABLE 2.2 Differences in Stresses and Moduli between Boussinesq and Burmister Solutions

Boussinesq Burmister
z at midheight (in.) o (psi) o, (psi) E (psi) o, (psi) o, (psi) E (psi)
6 51.72 4.60 30.860 50.46 4.50 30,580
18 11.69 -0.51 21,330 10.61 —0.65 21,070
30 4.57 —0.27 20,330 4.26 -0.27 20,280
42 2.39 =015 20,250 2.31 =011 20,260
54 1.46 -0.09 20,400 1.47 0.01 20,440
330 0.04 0.00 27,020 0.04 0.00 27,020

Note.1in. = 254 mm, 1 psi = 6.9 kPa.
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is 0.0310 in. (0.787 mm), which also agrees with the 0.0325 in. (0.826 mm) from Boussi-
nesq theory.

LAYERED SYSTEMS

Flexible pavements are layered systems with better materials on top and cannot be
represented by a homogeneous mass, so the use of Burmister’s layered theory is more
appropriate. Burmister (1943) first developed solutions for a two-layer system and
then extended them to a three-layer system (Burmister, 1945). With the advent of com-
puters, the theory can be applied to a multilayer system with any number of layers
(Huang, 1967, 1968a).

Figure 2.13 shows an n-layer system. The basic assumptions to be satisfied are:

1. Each layer is homogeneous, isotropic, and linearly elastic with an elastic modulus
E and a Poisson ratio v.

2. The material is weightless and infinite in areal extent.

3. Each layer has a finite thickness h, except that the lowest layer is infinite in
thickness.

4. A uniform pressure q is applied on the surface over a circular area of radius a.

5. Continuity conditions are satisfied at the layer interfaces, as indicated by the
same vertical stress, shear stress, vertical displacement, and radial displacement.
For frictionless interface, the continuity of shear stress and radial displacement is
replaced by zero shear stress at each side of the interface.

In this section, only some of the solutions on two- and three-layer systems with
bonded interfaces are presented. The theoretical development of multilayer systems is
discussed in Appendix B.

Two-Layer Systems

The exact case of a two-layer system is the full-depth construction in which a thick
layer of HMA is placed directly on the subgrade. If a pavement is composed of three

.
pyeey

Layer 1 E] sV hl

Layer 2 E; vz h,
FIGURE 2.13

Layern E,.v, lw An n-layer system subjected to
a circular load.
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FIGURE 2.14

Vertical stress distribution in a two- /
layer system. (After Burmister (1958).) 3
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layers (e.g., an asphalt surface course, a granular base course, and a subgrade), it is nec-
essary to combine the base course and the subgrade into a single layer for computing
the stresses and strains in the asphalt layer or to combine the asphalt surface course
and base course for computing the stresses and strains in the subgrade.

Vertical Stress The vertical stress on the top of subgrade is an important factor in
pavement design. The function of a pavement is to reduce the vertical stress on the
subgrade so that detrimental pavement deformations will not occur. The allowable
vertical stress on a given subgrade depends on the strength or modulus of the sub-
grade. To combine the effect of stress and strength, the vertical compressive strain has
been used most frequently as a design criterion. This simplification is valid for highway
and airport pavements because the vertical strain is caused primarily by the vertical
stress and the effect of horizontal stress is relatively small. As pointed out in
Section 1.5.2, the design of railroad trackbeds should be based on vertical stress
instead of vertical strain, because the large horizontal stress caused by the distribution
of wheel loads through rails and ties over a large area makes the vertical strain a poor
indicator of the vertical stress.

The stresses in a two-layer system depend on the modulus ratio E,/E, and the
thickness—radius ratio h,/a. Figure 2.14 shows the effect of a pavement layer on the dis-
tribution of vertical stresses under the center of a circular loaded area. The chart is ap-
plicable to the case when the thickness /1; of layer 1 is equal to the radius of contact
area, or hi/a = 1. As in all charts presented in this section, a Poisson ratio of 0.5 is as-
sumed for all layers. It can be seen that the vertical stresses decrease significantly with
the increase in modulus ratio. At the pavement-subgrade interface, the vertical stress is
about 68% of the applied pressure if E;/E, = 1, as indicated by Boussinesq’s stress
distribution, and reduces to about 8% of the applied pressure if E/E, = 100.

Figure 2.15 shows the effect of pavement thickness and modulus ratio on the ver-
tical stress o at the pavement-subgrade interface under the center of a circular loaded
area. For a given applied pressure g, the vertical stress increases with the increase in
contact radius and decreases with the increase in thickness. The reason that the ratio
alh, instead of h;/a was used is for the purpose of preparing influence charts (Huang,
1969b) for two-layer elastic foundations.
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Example 2.5:

A circular load having radius 6 in. (152 mm) and uniform pressure 80 psi (552 kPa) is applied on
a two-layer system, as shown in Figure 2.16. The subgrade has elastic modulus 5000 psi (35 MPa)
and can support a maximum vertical stress of 8 psi (55 kPa). If the HMA has elastic modulus
500,000 psi (3.45 GPa), what is the required thickness of a full-depth pavement? If a thin surface
treatment is applied on a granular base with elastic modulus 25,000 psi (173 MPa), what is the
thickness of base course required?

6in
80psi | |
E, = 500,000 psi
= 8 psi =7
or 25,000 psi =R b= HGURE 2.16
E, = 5000 psi ! Example 2.5 (1 in. = 25.4 mm,

1psi = 6.9 kPa).

Solution: Given E/E, = 500,000/5000 = 100 and oJ/q = 8/80 = 0.1, from Figure 2.15,
alhy = 115, or h) = 6/1.15 = 5.2 in. (132 mm), which is the minimum thickness for full depth.
Given E/E, = 25,000/5000 = 5 and o/q = 0.1, from Figure 2.15, alh, = 04, or hy = 6/
0.4 = 15in. (381 mm), which is the minimum thickness of granular base required.

In this example, an allowable vertical stress of 8 psi (55 kPa) is arbitrarily selected to
show the effect of the modulus of the reinforced layer on the thickness required. The al-
lowable vertical stress should depend on the number of load repetitions. Using the Shell de-
sign criterion and the AASHTO equation, Huang et al. (1984b) developed the relationship

Ny = 4873 X 1075 6 37 E3% (2.13)

in which N, is the allowable number of stress repetitions to limit permanent deforma-
tion, o is the vertical compressive stress on the surface of the subgrade in psi, and E, is
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Vertical surface deflections for two-layer systems. (After Burmister (1943).)

the elastic modulus of the subgrade in psi. For a stress of 8 psi (5 kPa) and an elastic
modulus of 5000 psi (35 MPa), the allowable number of repetitions is 3.7 X 10°,

Vertical Surface Deflection Vertical surface deflections have been used as a criterion
of pavement design. Figure 2.17 can be used to determine the surface deflections for
two-layer systems. The deflection is expressed in terms of the deflection factor F, by

1.5ga

Wy (2.14)
The deflection factor is a function of E,/E; and h/a. For a homogeneous half-space
with hi/a = 0, F, = 1, so Eq. 2.14 is identical to Eq. 2.8 when v = 0.5. If the load is
applied by a rigid plate, then, from Eq 2.10,

_ 118qa

wy == h (2.15)

Example 2.6:

A total load of 20,000 Ib (89 kN) was applied on the surface of a two-layer system through a rigid
plate 12 in. (305 mm) in diameter, as shown in Figure 2.18. Layer 1 has a thickness of 8 in. (203
mm) and layer 2 has an elastic modulus of 6400 psi (44.2 MPa). Both layers are incompressible
with a Poisson ratio of 0.5. If the deflection of the plate is 0.1 in. (2.54 mm), determine the elastic
modulus of layer 1.
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1_2 in.

20,000 1b ..
Rigid Plate
{ - Deflects 0.1 in.

E =? v, =05 8in.
FIGURE 2.18
; Example 2.6 (in. = 25.4 mm, 1 psi = 6.9 kPa,
Ez = 6400psi V2 =03 11b = 445 N).

Solution: The average pressure on the plate is ¢ = 20,000/(367) = 176.8 psi (1.22 MPa).
From Eq. 2.15, F; = 0.1 X 6400/(1.18 X 176.8 X 6) = 0.511. Given h;/a = 8/6 = 1.333, from
Figure 2.17, E|\/E; = 5, 0or E; = 5 X 6400 = 32,000 psi (221 MPa).

Vertical Interface Deflection The vertical interface deflection has also been used as a
design criterion. Figure 2.19 can be used to determine the vertical interface deflection
in a two-layer system (Huang, 1969¢c). The deflection is expressed in terms of the de-
flection factor F by

w="—F (2.16)

0 010203040506070809 101112131415
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E;  at this point to be hy
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i I-q— r— F-T
Deflection = i 3 i)
T E,
; i -
FIGURE 2.19

Vertical interface deflections for two-layer systems. (After Huang (1969c).)
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Note that Fin Eq. 2.16 is different from F in Eq. 2.14 by the factor 1.5. The deflection
factor is a function of Ey/E,, hy/a, and r/a, where r is the radial distance from the center
of loaded area. Seven sets of charts for the modulus ratios 1, 2.5, 5, 10, 25, 50, and 100,
are shown; the deflection for any intermediate modulus ratio can be obtained by inter-
polation. The case of E;/E, = 1 is Boussinesq’s solution.

Example 2.7:

Figure 2.20 shows a set of dual tires, each having contact radius 4.52 in. (115 mm) and contact
pressure 70 psi (483 kPa). The center-to-center spacing of the dual is 13.5 in. (343 mm). Layer 1
has thickness 6 in. (152 mm) and elastic modulus 100,000 psi (690 MPa); layer 2 has elastic mod-
ulus 10,000 psi (69 MPa). Determine the vertical deflection at point A, which is on the interface
beneath the center of one loaded arca.

452 1n. 4.521n.

e T
i

E, = 100,000 psi
— 6 FIGURE 2.20

Example 2.7 (1 in. = 25.4 mm,
1psi = 6.9 kPa).

A E, = 10,000 psi
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Solution: Given E,/E, = 100,000/10,000 = 10 and h;/a = 6/4.52 = 1.33, from Figure 2.19,
the deflection factor at point A due to the left load with r/a = 0is 0.56 and that due to the right
load with r/a = 13.5/4.52 = 2.99 is 0.28. By superposition, F = 0.56 + 0.28 = 0.84. From
Eq.2.16,w = 70 X 4.52/10,000 X 0.84 = 0.027 in. (0.69 mm). The interface deflection obtained
from KENLAYER is 0.0281 in. (0.714 mm), which checks well with the chart solution.

It should be pointed out that the maximum interface deflection under dual tires might not
occur at point A. To determine the maximum interface deflection, it is necessary to compute the
deflection at several points, say one under the center of one tire, one at the center between two
tires, and the other under the edge of one tire, and find out which is maximum.

Critical Tensile Strain The tensile strains at the bottom of asphalt layer have been
used as a design criterion to prevent fatigue cracking. Two types of principal strains
could be considered. One is the overall principal strain based on all six components of
normal and shear stresses. The other, which is more popular and was used in KEN-
LAYER, is the horizontal principal strain based on the horizontal normal and shear
stresses only. The overall principal strain is slightly greater than the horizontal princi-
pal strain, so the use of overall principal strain is on the safe side.

Huang (1973a) developed charts for determining the critical tensile strain at the
bottom of layer 1 for a two-layer system. The critical tensile strain is the overall strain
and can be determined from

=q
E,

e F, (2.17)

in which e is the critical tensile strain and F, is the strain factor, which can be deter-
mined from the charts.

Single Wheel Figure 2.21 presents the strain factor for a two-layer system under
a circular loaded area. In most cases, the critical tensile strain occurs under the center
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Strain factor for single wheel.
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of the loaded area, where the shear stress is zero. However, when both h/a and E|/E,
are small, the critical tensile strain occurs at some distance from the center, as the pre-
dominant effect of the shear stress. Under such situations, the principal tensile strains
at the radial distances 0, 0.54, a, and 1.5a from the center were computed, and the
critical value was obtained and plotted in Figure 2.21.

Example 2.8:

Figure 2.22 shows a full-depth asphalt pavement 8 in. (203 mm) thick subjected to a single-wheel
load of 9000 1b (40 kN) having contact pressure 67.7 psi (467 kPa). If the elastic modulus of the
asphalt layer is 150,000 psi (1.04 GPa) and that of the subgrade is 15,000 psi (104 MPa), deter-
mine the critical tensile strain in the asphalt layer.

9000 1b
67.7 psi |
YYYYYY
1
E; = 150,000 psi 8in.
la=19
e
E, = 15,000 psi
FIGURE 2.22

Example 2.8 (1 in. = 254 mm, 1 psi =6.9kPa,11b = 445N).

Solution: Givena = V9000/(7 X 67.7) = 6.5in. (165mm),h)/a = 8/6.5 = 1.23,and E\/E; =
150,000/15,000 = 10, from Figure 2.21, F, = 0.72. From Eq. 2.17, the critical tensile strain
e = 67.7 X 0.72/150,000 = 3.25 x 107, which checks well with the 3.36 X 10™* obtained by
KENLAYER.

It is interesting to note that the bonded interface makes the horizontal tensile
strain at the bottom of layer 1 equal to the horizontal tensile strain at the top of layer
2. If layer 2 is incompressible and the critical tensile strain occurs on the axis of sym-
metry, then the vertical compressive strain is equal to twice the horizontal strain, as
shown by Eq. 2.21 (as is discussed later). Therefore, Figure 2.21 can be used to deter-
mine the vertical compressive strain on the surface of the subgrade as well.

Dual Wheels Because the strain factor for dual wheels with a contact radius a
and a dual spacing Sy depends on Sy/a in addition to Ey/E, and h,/a, the most direct
method is to present charts similar to Figure 2.21, one for each value of Sy/a. However,
this approach requires a series of charts, and the interpolation could be quite time-
consuming. To avoid these difficulties, a unique method was developed that requires
only one chart, as shown in Figure 2.23.

In this method, the dual wheels are replaced by a single wheel with the same
contact radius a, so that Figure 2.21 can still be used. Because the strain factor for dual
wheels is generally greater than that for a single wheel, a conversion factor C, which is the
ratio between dual- and single-wheel strain factors, must be determined. Multiplication of
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the conversion factor by the strain factor obtained from Figure 2.21 will yield the strain
factor for dual wheels.

The two-layer theory indicates that the strain factor for dual wheels depends on
hy/a, Sy4la, and E,/E,. As long as the ratios hj/a and Sy/a remain the same, the strain fac-
tor will be the same, no matter how large or small the contact radius @ may be. Consid-
er a set of dual wheels with §4 = 24 in. (610 mm) and @ = 3 in. (76 mm). The strain
factors for various values of h; and E|/E, were calculated and the conversion factors
were obtained and plotted as a set of curves on the upper part of Figure 2.23. Another
set of curves based on the same Sy but with @ = 8 in. (203 mm) is plotted at the bot-
tom. It can be seen that, for the same dual spacing, the larger the contact radius, the
larger the conversion factor. However, the change in conversion factor due to the
change in contact radius is not very large, so a straight-line interpolation should give a
fairly accurate conversion factor for any other contact radii. Although Figure 2.23 is
based on §4 = 24 in. (610 mm), it can be applied to any given Sy by simply changing a
and Ay in proportion to the change in Sy, so that the ratios h;/a and Sy/a remain the
same, The procedure can be summarized as follows:

1. From the given Sy, by, and a, determine the modified radius a’ and the modified

thickness hj:
a = ﬁa (2.18a)
Sa
24
hi = —h (2.18b)
Sa

2. Using h] as the pavement thickness, find conversion factors C; and C, from
Figure 2.23.
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3. Determine the conversion factor for a’ by a straight-line interpolation between 3
and 8 in. (76 and 203 mm), or

C=C+02x(a" =3)X(C, - Cy) (2.19)

Example 2.9:

For the same pavement as in Example 2.8, if the 9000-1b (40-kN) load is applied over a set of dual
tires with a center-to-center spacing of 11.5 in. (292 mm) and a contact pressure of 67.7 psi (467
kPa), as shown in Figure 2.24, determine the critical tensile strain in the asphalt layer.

45001b; 11.5in. 45001b

67.7 psi
1L\rxL1l’\rL‘r\r Ll
E; = 150,000 psi 8 in.
e="7
-~ —
E, = 15,000 psi
FIGURE 2.24

Example 2.9 (1in. = 254 mm, 1 psi = 6.9kPa,11b = 445N).

Solution: Given a = V4500/(w X 67.7) = 4.6in. (117 mm), Sy = 11.5in. (292 mm), and
hy = 8in. (203 mm), from Eq. 2.18, @’ = 24 X 4.6/11.5 = 9.6in. (244 mm) and k] = 24 X 8/
11.5 = 16.7 in. (424 mm). With E|/E; = 10 and an asphalt layer thickness of 16.7 in. (424 mm), from
Figure 2.23, C; = 1.35 and C; = 1.46. From Eq. 219, C = 1.35 + 0.2 (9.6 — 3)(1.46 — 1.35) =
1.50. From Figure 2.21, the strain factor for a single wheel = 0.47 and that for dual
wheels = 1.50 X 047 = 0,705, so the critical tensile strain e = 67.7 X 0.705/150,000 =
3.18 x 10°*, which checks closely with the 3.21 X 10™* obtained by KENLAYER.

By comparing the results of Examples 2.8 and 2.9, it can be seen that, in this
particular case (when the asphalt layer is thick and the dual spacing is small), a load
applied on a set of dual tires yields a critical strain that is not very different from that
on a single wheel. However, this is not true when thin asphalt layers or large dual
spacings are involved.

Huang (1972) also presented a simple chart for determining directly the maxi-
mum tensile strain in a two-layer system subjected to a set of dual tires spaced at a dis-
tance of 3a on center. A series of charts relating tensile strains to curvatures was also
developed, so that the tensile strain under a design dual-wheel load can be evaluated in
the field by simply measuring the curvature on the surface (Huang, 1971).

Dual-Tandem Wheels Charts similar to Figure 2.23 with dual spacing Sy of 24
in. (610 mm) and tandem spacings S, of 24 in. (610 mm), 48 in. (1220 mm), and 72 in.
(1830 mm) were developed for determining the conversion factor due to dual-tandem
wheels, as shown in Figures 2.25,2.26, and 2.27. The use of these charts is similar to the
use of Figure 2.23. Because the conversion factor for dual-tandem wheels depends on
hyla, S4/a, and S/a, and because the actual S3 may not be equal to 24 in. (610 mm), it is
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necessary to change S, to 24 in. (610 mm) and then change the contact radius a pro-
portionately according to Eq. 2.18a, thus keeping the ratio Sy/a unchanged.

The values of h; and S; must also be changed accordingly to keep #/a and S,/a
unchanged. Therefore, the original problem is changed to a new problem with
S4 = 24 in. (610 mm) and a new S,. The conversion factor for S, = 24, 48, and 72 in.
(0.61,1.22, and 1.83 m) can be obtained from the charts; that for other values of S; can
be determined by interpolation.
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If the new values of S; are greater than 72 in. (1.83 m), Figure 2.23, based on dual
wheels can be used for interpolation. In fact, Figure 2.23 is a special case of dual-
tandem wheels when the tandem spacing approaches infinity. It was found that, when
S, = 120 in. (3.05 m) the conversion factor due to dual-tandem wheels does not differ
significantly from that due to dual wheels alone, so Figure 2.23 can be considered to
have a tandem spacing of 120 in. (3.05 m).

A comparison of Figure 2.23 with Figures 2.25 through 2.27 clearly indicates that,
in many cases, the addition of tandem wheels reduces the conversion factor, thus de-
creasing the critical tensile strain. This is due to the compensative effect caused by the
additional wheels. The interaction among these wheels is quite unpredictable, as indi-
cated by the irregular shape of the curves in the lower part of Figures 2.26 and 2.27.

Example 2.10:

Same as example 2.9, except that an identical set of duals is added to form dual-tandem wheels
having the tandem spacing 49 in. (1.25 m), as shown in Figure 2.28.

4500 1b 4500 1b
11.5 in.

FIGURE 2.28

Example 2.10 (1in. = 254 mm, 1 psi =
6.9kPa, 11b = 445N).

E, = 15,000 psi
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Solution: Given Sy = 11.5in. (292 mm) and S, = 49 in. (1.25 m), modified tandem spacing =
49 % 24/11.5 = 102.3 in. (2.60 m). Values of a’ and h' are the same as in Example 2.8. When
S, =72in. (1.83 m), a’ = 9.6in. (244 mm), and A = 16.7in. (424 mm), from Figure 2.27,
C =123 +02(9.6 — 3)(1.30 — 1.23) = 1.32, which is smaller than the 1.5 for the dual wheels
alone. With a conversion factor of 1.32 for §; = 72 in. (1.83 m) and 1.50 for §;, = 120 in. (3.05 m),
by straight-line interpolation, C = 1.32 + (1.50 — 1.32)(102.3 — 72)/(120 — 72) = 1.43. The
strain factor due to dual-tandem wheels = 1.43 X 0.47 = 0.672. Critical tensile strain =
67.7 X 0.672/150,000 = 3.03 X 10°*, which checks closely with the 3.05 X 10™* obtained from
KENLAYER.

Three-Layer Systems

Figure 2.29 shows a three-layer system and the stresses at the interfaces on the axis of
symmetry. These stresses include vertical stress at interface 1, o, vertical stress at in-
terface 2, o, radial stress at bottom of layer 1, o, radial stress at top of layer 2, 4,
radial stress at bottom of layer 2, o,,, and radial stress at top of layer 3, o,,. Note that,
on the axis of symmetry, tangential and radial stresses are identical and the sheer stress
is equal to 0.

When the Poisson ratio is 0.5, we have, from Eq. 2.1,

e.= (0.~ ) (2.20a)
& =>-(0, - o) (2.20)

Equation 2.20 indicates that the radial strain equals one-half of the vertical strain and
is opposite in sign, or

€, = —2€, (2.21)

Equation 2.21 can be visualized physically from the fact that, when a material is
incompressible and has the Poisson ratio 0.5, the horizontal strain is equal to one-half
of the vertical strain and the sum of €, €,, and €, must be equal to 0.

]
o

i = 0.5,E| lu‘zl hl
— o1 Interface 1
1 Tl
1
v, = 0.5, E, I hy
lcrz!
FIGURE 2.29 = Interface 2
] r2
Stresses at interfaces of a three- vy =05E; : ¥ ”

layer system.
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Jones’ Tables The stresses in a three-layer system depend on the ratios kq, k», A, and
H, defined as

E E
= =2 2
kl E2 k2 E3 ( 22“)
a=2 g (2.22b)
T hy T hy '

Jones (1962) presented a series of tables for determining oy, 0, — 7,1, 05, and
o, — op. His tables also include values of o,; — o, at the top of layer 2 and
o, — oy, at the top of layer 3, but these tabulations are actually not necessary
because they can be easily determined from those at the bottom of layers 1 and 2.
The continuity of horizontal displacement at the interface implies that the radial
strains at the bottom of one layer are equal to that at the top of the next layer, or,
from Eq. 2.20b,

Ta = 0n

ky

r —
g2 oy =

(2.23a)

92 ~ In2
ks

(2.23b)

r —
Oxn — 0 =

The tables presented by Jones consist of four values of k; and k; (0.2, 2, 20, and
200), so solutions for intermediate values of k; and k, can be obtained by interpolation.
In view of the fact that solutions for three-layer systems can be easily obtained by
KENLAYER and the interpolation from the tables is impractical and requires a large
amount of time and effort, only the more realistic cases (k; = 2, 20, and 200, and
k, = 2 and 20) are presented, to conserve space.

Table 2.3 presents the stress factors for three-layer systems. The sign convention
is positive in compression and negative in tension. Four sets of stress factors,—ZZ1,
772,771 — RR1, and ZZ2 — RR2—are shown. The product of the contact pressure
and the stress factors gives the stresses:

o =q(Z721) (2.24a)
o= q(Z272) (2.24D)
o4 — 0, =q(ZZ1 — RR1) (2.24¢)
o — 0p =q(ZZ2 — RR2) (2.24d)

Example 2.11:

Given the three-layer system shown in Figure 2.30 with @ = 4.8 in. (122 mm), ¢ = 120 psi (828
kPa),h; = 6 in. (152 mm),h, = 6 in. (203 mm), E; = 400,000 psi (2.8 GPa), E; = 20,000 psi
(138 MPa), and E; = 10,000 psi (69 MPa), determine all the stresses and strains at the two
interfaces on the axis of symmetry.
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4.8in.
l-‘—'—
120 psi
L
h
E, = 400,000 psi J 6in.
*
E, = 20,000 psi l allo,e="7 6in.
hd 4
E, = 10,000 psi %
FIGURE 2.30

Example 2.11 (1in. = 254 mm, 1 psi = 6.9 kPa).

Solution: Given k; = 400,000/20,000 = 20, k, = 20,000/10,000 = 2, A = 4.8/6 = 0.8, and
H = 6/6 = 1.0, from Table 2.3, ZZ1 = 0.12173, ZZ2 = 0.05938, ZZ1 — RR1 = 1.97428, and
ZZ2 - RR2 = 0.09268. From Eq.2.24,0,; = 120 X 0.12173 = 14.61 psi (101 kPa),o,, = 120 %
0.05938 = 7.12 psi (49.1 kPa), o;; — o,; = 120 X 1.97428 = 236.91 psi (1.63 MPa), and o, —
o = 120 X 0.09268 = 11.12 psi (76.7 kPa). From Eq. 2.23, o,; — o, = 236.91/20 = 11.85 psi
(81.8 kPa) and o, — o), = 11.12/2 = 556 psi (384 kPa). At bottom of layer 1:
oy = 14.61 — 23691 = —2223 psi (—1.53 MPa), from Eq. 220, e, = 236.91/400,000 =
592 x 10* and €, = —2.96 X 107*, At top of layer 2: o = 14.61 — 11.85 = 2.76 psi (19.0
kPa), €, = 11.85/20,000 = 592 X 10, and o, = —2.96 X 10°*. At bottom of layer 2:
o, =712 = 11.12 = —4.0 psi (—28 kPa), e, = 11.12/20,000 = 5.56 X 107%, and €, = —2.78 X
107, At top of layer 3: 0}, = 7.12 — 5.56 = 1.56 psi (10.8 kPa), €, = 5.56/10,000 = 5.56 x 107
ande, = —2.78 X 107

In the foregoing example, the parameters k;, ky, A, and H are exactly the same as
those shown in the table, so no interpolation is needed. Because each interpolation re-
quires three points, the interpolation of only one parameter requires at least three
times the effort. If all four parameters are different from those in the table, the total ef-
fort required willbe 3 X 3 X 3 X 3, or 81 times.

Peattie’s Charts Peattic (1962) plotted Jones’ table in graphical forms. Figure 2.31
shows one set of charts for radial strain factors, (RR1 — ZZ1)/2, at the bottom of layer
1. As indicated by Eq. 2.20b, the radial strain can be determined from

q (RRl - 221)
«=g\" 2

- (2.25)

The radial strains at the bottom of layer 1 should be in tension. Although the solutions
obtained from the charts are not as accurate as those from the table, the chart has the
advantage that interpolation for A and H can be easily done. However, interpolation
for k; and k; is still cuambersome.
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Example 2.12:

For the same case as Example 2.11, dcicrminc the radial strain at the botiom ol layer 1, as shown
in Figure 2.32. If /i; = 8 in. (203 mm), what is the radial strain at the bottom of laver 17
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(e) k; =200k, =2

(f)k, = 200,k, = 2

FIGURE 2.31 (Continued)

4.8 in.

120 psi

Y vid

E, = 400,000 psi |, = 6in.
& =1
- | —
E, = 20,000 psi ‘ 6in. or 8in.
FIGURE 2.32 T
Example 212 (1in = 255 mm, E, = 10,000 psi ‘
1psi = 6.9 kPa).

Solution: Given k; = 20,k; = 2, A = 0.8, and H = 1.0, from Figure 2.31c, (RR1 — ZZ1)/
2 = 1. From Eq. 2.25, €, = 120/400,000 = 3 X 107* (tension), which checks closely with the
2.96 X 107 from the table. Given h, = 8in. (203 mm), A = 4.8/8 = 0.6, and H = 6/8 = 0.75,
from Figure 2.31c, the strain factor is still close to 1, indicating that the thickness of layer 2 has
very little effect on the tensile strain due to the predominant effect of layer 1. The radial strain
obtained from KENLAYER is 2.91 X 1074,

VISCOELASTIC SOLUTIONS

A viscoelastic material possesses both the elastic property of a solid and the viscous
behavior of a liquid. Suppose that a material is formed into a ball. If the ball is thrown on
the floor and rebounds, it is said to be elastic. If the ball is left on the table and begins to
flow and flatten gradually under its own weight, it is said to be viscous. The viscous com-
ponent makes the behavior of viscoelastic materials time dependent: the longer the time,
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the more the material flows. HMA is a viscoelastic material whose behavior depends on
the time of loading, so it is natural to apply the theory of viscoelasticity to the analysis of
layered systems. The general procedure is based on the elastic—viscoelastic correspon-
dence principle by applying the Laplace transform to remove the time variable  with a
transformed variable p, thus changing a viscoelastic problem to an associated elastic prob-
lem. The Laplace inversion of the associated elastic problem from the transformed vari-
able p to the time variable f results in the viscoelastic solutions. Details about the theory of
viscoelasticity are presented in Appendix A. A simple collocation method to obtain the
viscoelastic solutions from the elastic solutions is presented in this section.

Material Characterization

There are two general methods for characterizing viscoelastic materials: one by a me-
chanical model, the other by a creep-compliance curve. The latter is used in KENLAY-
ER because of its simplicity. Because Poisson ratio v has a relatively small effect on
pavement behavior, it is assumed to be elastic independent of time. Therefore, only
modulus E is considered to be viscoelastic and time dependent.

Mechanical Models Figure 2.33 shows various mechanical models for characterizing vis-
coelastic materials. The models are formed of two basic elements: a spring and a dashpot.

a a o o

1 E, Ey
E A
l_r| X
o a

(a) Elastic (b) Viscous (c) Maxwell

(d) Kelvin

T
(e) Burgers (f) Generalized Model

FIGURE 2.33

Mechanical models for viscoelastic materials.
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Basic Models An elastic material is characterized by a spring, as indicated in
Figure 2.334, and obeys Hooke’s law, which asserts that stress is proportional to strain:

o = Ee (2.26)

Here, o is stress, € is strain, and E is the elastic modulus.
A viscous material is characterized by a dashpot, as indicated in Figure 2.33b, and
obeys Newton's law, according to which stress is proportional to the time rate of strain:

de
=\ 2.27
o =A 227)
In this equation, A is viscosity and ¢ is time. Under a constant stress, Eq. 2.27 can easily
be integrated to become

€=— (2.28)

Maxwell Model A Maxwell model is a combination of spring and dashpot in
series, as indicated in Figure 2.33¢. Under a constant stress, the total strain is the sum of
the strains of both spring and dashpot, or, from Egs. 2.26 and 2.28,

o ot a t
T L ot_o 1+—) 2.29)
Ey X Eg ( Ty (

in which 7y = A¢/E, = relaxation time. A subscript 0 is used to indicate a Maxwell
model. If a stress o7 is applied instantaneously to the model, the spring will experience
an instantaneous strain, o/ Ey. If this strain is kept constant, the stress will gradually
relax and, after a long period of time, will become zero. This can be shown by solving
the differential equation

1
LN L4 (2.30)
at f_‘.[) dat )t.[]
The first term on the right side of Eq. 2.30 is the rate of strain due to the spring, the second

term that due to the dashpot. If strain is kept constant, de/ar = 0, or, after integration,

o =0y exp(— i ) (2.31)
Ty

It can be seen from Eq. 2.31 that when t = 0,0 = o, when t = 00, ¢ = 0; and when

t = Ty, 0 = 0.368 0. Consequently, the relaxation time Tj of a Maxwell model is the

time required for the stress to reduce to 36.8% of the original value. It is more convenient

to specify relaxation time than viscosity, because of its physical meaning. A relaxation time

of 10 min gives an idea that the stress will relax to 36.8% of the original value in 10 min.

Kelvin Model A Kelvin model is a combination of spring and dashpot in parallel, as
indicated in Figure 2.33d. Both the spring and the dashpot have the same strain, but the
total stress is the sum of the two stresses, or, using subscript 1 to indicate a Kelvin model,

i3
o = Elf + )tl_
at
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If a constant stress is applied, then

ffdif_ dt
o o — Ee 0 AL

€= %1[1 - exp(—%ﬂ (2.32)

in which 7} = A/E; = retardation time. It can be seen from Eq. 2.32 that when
t =0,e = 0;whent = 00, ¢ = g/Ej, or the spring is fully stretched to its total retard-
ed strain; and when ¢t = 77, € = 0.632¢/E,. Thus, the retardation time 7} of a Kelvin
model is the time to reach 63.2% of the total retarded strain.

or

Burgers Model A Burgers model is a combination of Maxwell and Kelvin models
in series, as indicated in Figure 2.33e. Under a constant stress, from Eqgs. 2.29 and 2.32,

o t [og i
€= EU (1 + f_n) + ﬁ_l {1 - exp(—i)] (2.33)

The total strain is composed of three parts: an instantaneous elastic strain, a viscous
strain, and a retarded elastic strain, as shown in Figure 2.34. Qualitatively, a Burgers
model well represents the behavior of a viscoelastic material. Quantitatively, a single
Kelvin model is usually not sufficient to cover the long period of time over which the
retarded strain takes place, and a number of Kelvin models could be needed.

Generalized Model Figure 2.33f shows a generalized model that can be used to
characterize any viscoelastic material. Under a constant stress, the strain of a general-
ized model can be written as

o t "o t
={14— )4 ¥ol{~ — 2.34
¢ Eu(l Tu) Y E,-[ e"p( Tﬂ (234)

an
- a S“ a
Ty rew®
—~C
o Q

B

ol
- Viscous Strain
E;Ty

s

oA

E. Instantaneous Strain FIGURE 2.34
0

Three components of strain for
t a Burgers model.
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in which n is the number of Kelvin models. This model explains the effect of load dura-
tion on pavement responses. Under a single load application, the instantaneous and the
retarded elastic strains predominate, and the viscous strain is negligible. However,
under a large number of load repetitions, the accumulation of viscous strains is the
cause of permanent deformation.

Creep Compliance Another method to characterize viscoelastic materials is the
creep compliance at various times, D(t), defined as

D(t) = E‘Er—’) (2.35)

in which €(¢) is the time-dependent strain under a constant stress.
Under a constant stress, the creep compliance is the reciprocal of Young’s modu-
lus. For the generalized model, the creep compliance can be expressed as

D(1) = ELU(1 + Tiﬂ) ] ;1%[1 ~ exp(—%)] (2.36)

Given the various viscoelastic constants, Ey, Ty, E;, and T, for a generalized
model, the creep compliances at various times can be computed from Eq. 2.36.

Example 2.13:

A viscoelastic material is characterized by one Maxwell model and three Kelvin models con-
nected in series with the viscoelastic constants shown in Figure 2.35a. Determine the creep com-
pliance at various times, and plot the creep-compliance curve.

% 8
-
Eo =2 6 -
a /
Ty=S5 41— —
3 —2

E;=10 T,=10 5 10 20 30 40 50

a |

g L

s 2
E2 =5 T‘z =1 % P____.-----4.,...--—-———

E /“

=]

o

e 1 =
E3— 1 T'\‘:‘DI 8 -‘__'_-...--—-'--‘__

G b =T

(a) {]U 1 2 3 4 3 6
Time, t
(b)

FIGURE 2.35

Example 2.13.
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TABLE 2.4 Creep Compliance at Various Times

Creep Creep
Time compliance Time compliance
0 0.500 2 1.891
0.05 0.909 3 2.016
0.1 1.162 4 2.129
0.2 1.423 <] 2.238
0.4 1.592 10 2.763
0.6 1.654 20 3.786
0.8 1.697 30 4.795
1.0 1.736 40 5.798
18 1.819 50 6.799

Solution: In Figure 2.35a, no units are given for the viscoelastic constants. If E is in Ib/in’,
then the creep compliance is in in./Ib. If E is in kN/m?, then the creep compliance is in m*/kN.
If T is in seconds, then the actual time ¢ is also in seconds. From Eq. 2.36, when
t=0,D=1E=1=05 and when r=01,D=05(1+01/5) +01(1 - ¢ ") +02
(1 —e ) + (1 — 7'y = 1.162. The creep compliances at various times are tabulated in Table
2.4 and plotted in Figure 2.35b. It can be seen that, after ¢t = 5, all the retarded strains have near-
ly completed and only the viscous strains exist, as indicated by a straight line. If the retarded

strain lasts much longer, more Kelvin models with longer retardation times will be needed.

If a creep compliance curve is given, the viscoelastic constants of a generalized
model can be determined by the method of successive residuals, as described in
Appendix A. However, it is more convenient to use an approximate method of collo-
cation, as described below.

Collocation Method

The collocation method is an approximate method to collocate the computed and ac-
tual responses at a predetermined number of time durations. Instead of determining
both E; and T by the method of successive residuals, several values of T; are arbitrarily
assumed, and the corresponding E; values are determined by solving a system of
simultaneous equations. The method can also be used to obtain the viscoelastic solu-
tions from the elastic solutions.

Elastic Solutions Given the creep compliance of each viscoelastic material at a given
time, the viscoelastic solutions at that time can be easily obtained from the elastic solu-
tions, as is illustrated by the following example.

Example 2.14:

Figure 2.36 shows a viscoelastic two-layer system under a circular loaded area having radius 10
in. (254 mm) and uniform pressure 100 psi (690 kPa). The thickness of layer 1 is 10 in. (254 mm),
and both layers are incompressible, with Poisson ratio 0.5. The creep compliances of the two ma-
terials at five different times are tabulated in Table 2.5. Determine the surface deflection under
the center of the loaded area at the given times.
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1 psi = 6.9 kPa). Table 2.5

Solution: 1f the modulus ratio is greater than 1, the surface deflection wy at any given time
can be determined from Figure 2.17. Take t = 1 s, for example. The elastic modulus is the recip-
rocal of creep compliance. For layer 1, E; = 1/(2.683 X 107°) = 3.727 X 10° psi (2.57 GPa) and
for layer 2, E, = 1/(19.52 x 'i{]"ﬁ) = 5123 x 10* psi (353 MPa), so EJ/E, = 3.727 X 10%
(5.123 x 10*) = 7.27. From Figure 2.17, F, = 0.54, so wy = 1.5 X 100 X 10 X 0.54/(5.123 X
10%) = 0.016 in. (4.1 mm). The same procedure can be applied to other time durations and the
results are shown in Table 2.5.

TABLE 2.5 Creep Compliances and Surface Deflections

Time (s) 0.01 0.1 1 10 100
Layer 1 D(r) (10 %psi) 1.021 1.205 2.683 9.273 18.320
Layer 2 D(r) (10 %/psi) 1.052 7.316 19.520 73.210 110.000
Deflection wj (in.) 0.0016 0.0064 0.016 0.059 0.096
Note.1psi = 6.9kPa, 1in. = 254 mm.

It should be noted that the above procedure is not the exact viscoelastic solution.
It is a quasi-elastic solution that provides a close approximation to the viscoelastic
solution.

Dirichlet Series Pavement design is based on moving loads with a short duration. The
creep compliance D(f) caused by the viscous strain is negligible, so Eq. 2.36 can be
written as

i | t
D(ty=—+ > —|1- - 2:37
0=+ Zxlt-oo(-7)] 237
It is therefore convenient to express the creep compliance as a Dirichlet series, or

D(t) = :Elc exp(—:-:,_) (2.38)

{
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A comparison of Eqgs. 2.37 and 2,38 with T,, = o0 shows that

(2.39a)

1 |
G,=—+ S — 2.39b)
Ey :21 E; (

In KENLAYER, the collocation method is applied at two occasions. First, the
creep compliances at a reference temperature are specified at a number of time dura-
tions and fitted with a Dirichlet series, so that the compliances at any other tempera-
ture can be obtained by the time-temperature superposition principle. Second, the
elastic solutions obtained at these durations are fitted with a Dirichlet series to be used
later for analyzing moving loads.

Collocation of Creep Compliances The creep compliances of viscoelastic materials
are determined from creep tests. A 1000-s creep test with compliances measured at 11
different time durations (0.001, 0.003,0.01,0.03,0.1,0.3,1, 3, 10, 30 and 100 s) is recom-
mended (FHWA, 1978) to cover all possible range of interest. This range from 0.001 to
100 s should be able to take care of moving loads with both short and long duration as
well as the change in creep compliances with temperature.

Because moving loads usually have a very short duration, retardation times 7; of
0.01,0.03,0.1,1, 10, 30, and o¢ seconds are specified in KENLAYER. If creep compli-
ances are specified at seven durations, the coefficients G; through G, can be deter-
mined from Eq. 2.38 by solving 7 simultaneous equations. If the creep compliances are
specified at 11 time durations, there are 11 equations but 7 unknowns, so the 11 equa-
tions must be reduced to 7 equations by multiplying both sides with a 7 X 11 matrix,
which is the transpose of the 11 X 7 matrix, or

ex (—il—) ex (—t]—l) ex (-Ll) ex (—r—l)
S M T ")\ G

: 7 X 11 matrix : i 11 X 7 matrix :

h I r11 r11 GT
exp __7 ... EXP —_.?' exp —'_1' ... EXP ‘—_?’
CXD(_LI ) CX[)( ——r” )
11 o 1 1 Dl

= : 7 X 11 matrix : : (2.40)
() )
) P\

After coefficients G, through G; are obtained, the creep compliance at any time ¢ can
be computed by Eq. 2.38. The use of 7 equations and 7 unknowns, instead of 11 equa-
tions and 11 unknowns, not only saves the computer time but also smooths out the
results of creep tests.



84 Chapter2 Stresses and Strains in Flexible Pavements

Example 2.15:

It is assumed that the creep compliance of a viscoelastic material is represented by
D(t) = Gyexp(—10t) + G, (2.41)

If the creep compliances at ¢ = 0.01, 0.07, and 0.4 s are 9.516 x 107°,5.034 X 10~* and
9.817 x 107*in.%Ib (13.8, 72.9, and 1423 mm 2/kN), respectively, determme the coeffi-
cients G, and G,.

Solution: With 1, = 0.01,1, = 0.07,1; = 04,7, = 01,75 = 00, D; = 9.516 X 1075, D, =
5.034 X 107, and D; = 9.817 X 107*. From Eq. 2.40,

- a1 . - -1 9516 x 1078
{e—ﬂ.l e 0.7 e 4:| 8_0_? ] {GI} _ [e 0.1 e 0.7 e 4] 5‘034 z 10_4
1 1 L e 1|\ 1 1 9817 x 1074
or
[].066 1.420]{61} _ {3.541 X 10-“} (2.42)
1.420 3.000]1G, 1.580 x 1073 '

The solution of Eq. 242 is G; = —0.001in./lb (—145 mm%kN) and G, = 0.001in.*/Ib
(145 mm?/kN), which is as expected because the given creep compliances are actually computed
from a Kelvin model with

D(t) = 0.001 (1 — ¢ ') (2.43)

Time-Temperature Superposition It has been demonstrated that asphalt mixes sub-
jected to a temperature increase experience an accelerated deformation as if the time
scale were compressed. Figure 2.37 shows the plot of creep compliance D versus time ¢

tr
log —

log Creep compliance —

log Time —>

FIGURE 2.37
Creep compliance at different temperatures.
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on log scales. At a given time, the creep compliance at a lower temperature is smaller
than that at a higher temperature. There is a parallel shift between the curves at various
temperatures.

If the creep compliances under a reference temperature Ty are known, those
under any given temperature 7 can be obtained by using a time-temperature shift
factor ar, defined (Pagen, 1965) as

ap =L (2.44)
ITU
in which 7 is the time to obtain a creep compliance at temperature 7"and 17, is the time
to obtain a creep compliance at reference temperature 7.

Various laboratory tests on asphalt mixes have shown that a plot of log a versus
temperature results in a straight line, as shown in Figure 2.38. The slope of the straight
line B varies from 0.061 to 0.170, with an average about 0.113 (FHWA, 1978). From
Figure 2.38,

log(tr/t
_ g(tritr,) (2.45)
T-T
or tr = tr, exp[2.30263(T — Ty)] (2.46)
If the creep compliance based on the reference temperature Ty is
n tTU
D(t) = D G;exp -5 (2.47)
i=1 i

then the creep compliance based on temperature 7 is

]
1

0 20 40 60 80 100 120
Temperature (°F)

FIGURE 2.38

Shift factor versus temperature.
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D(t) = g‘Gf exp( —%T) (2.48)

The relationship between tr and t7, is indicated by Eq. 2.46.

Example 2.16:

The expression for the creep compliance at 70°F (21.1°C) is represented by Eq.2.43. What is the
expression for creep compliance at 50°F (10°C) if the time-temperature shift factor B is 0.113?

Solution: FromEq.2.46,1; = 1y, exp[2.3026 X 0.113 X (50 — 70)] = 0.0055¢t,. From Eq.243,
D(t) = 0.001[1 — exp(—0.055¢)]. It can be seen that the creep compliance at 50°F (10°C) is
much smaller than that at 70°F (21.1°C).

Collocation for Viscoelastic Solutions Even though the exact viscoelastic solutions is
not known, the viscoelastic response R can always be expressed approximately as a
Dirichlet series:

7
R = 2(;,- exp( —L) (2.49)
=1 T;
If elastic solutions at 11 time durations are obtained, Eq. 2.40 can be applied to reduce
the number of equations to seven, which is the number of unknowns to be solved. If the
responses at seven time durations are obtained from the elastic solutions, the coeffi-
cients ¢; through c¢; can be solved directly by

_ooL o _oo1 _obl o0k 001 001 T e :
’_e 0L g 003 g D1 g 1 g W g N ]_ Cl (R)n_m 1
_003  _pm 00 003 003 00
el g i g 0l e 1 e W e ] C; ( R)(],O'_’;
_o1 _or o1 _o1 _o1 01
e Ml g 03 g0l g 1 g 1t g X 1 C3 (R)(]_]_
[ S | _.L -1 L -1
e 0l eTim g il g1 e 0 g w1 |Q Cy \ = 4 (R)l ; (250)
_0 _w  _1 1 _10  _
e ol e bl el g 1 g 10 e 3 ] Cs (R)]_g
30 o _w  _W  _30  _3 '
e il g il g 0l g 1 g I g X 1 [or3 (R ) 0
101 1 1 1 1 1dle) (R
After the coefficients c; are obtained, the viscoelastic response can be determined by
Eq. 2.49.
Example 2.17:

The creep compliance of a homogeneous half-space is expressed as a Dirichlet series shown by
Eq.2.41 with G; = —0.001 in./b (=145 mm?kN), G, = 0.001 in.%/Ib (145 mm?*/kN), T; = 0.1 s,
and T, = ©0. Assuming that the half-space has Poisson ratio 0.5 and is subjected to a circular
load with contact radius 6 in. (152 mm) and contact pressure 80 psi (552 kPa), as shown in
Figure 2.39, determine the maximum surface deflection after a loading time of 0.1 s by the
collocation method.
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Yy

w="7at0.1 sec FIGURE 2.39

Example 2.15 (1 in. = 25.4 mm,
1psi = 6.9 kPa).

D(t) = 0.001(1—e 10ty
v=05

Solution: The maximum deflection occurs under the center of the loaded area. With » = 0.5,
from Eq.2.8,

Sqa
E
Substituting Eq. 2.43 and the values of ¢ and a into Eq. 2.51 yields

wy = = 1.5gaD(t) (2.51)
wy = 0.72(1 — ¢ '%) (2.52)
When ¢ = 0.1, from Eq. 2.52, then w; = 0.455in. (11.6 mm).

The above solution is simple and straightforward. However, to illustrate the collocation
method, it is assumed that the surface deflections are expressed as a Dirichlet series, as shown by Eq.
2.49.The elastic response on the right side of Eq. 2.53 is obtained from Eq. 2.52. From Eq.2.50,

(0368 0717 0905 0990 0999 1.000 1]{c) (0.069)
0.050 0368 0741 0970 0.997 0999 1 |]c 0.187
0.000 0036 0368 0905 099 0997 1||c 0.455
0.000 0000 0000 0363 0905 0967 1|4 csp=]0720 ¢ (2.53)
0.000 0.000 0030 0000 0368 0717 1 |]cs 0.720
0.000 0.000 0.000 0000 0.050 0368 1 || cs 0.720
1 1 1 1 1 1 1)le) o720

The solution of Eq. 2.53 is ¢; = 2.186, ¢c; = —3.260, c; = 2.214, ¢; = —2.055, c5 = 2.446, c5 =
—2.229, and c¢; = 1.418. From Eq. 2.49, the surface deflection can be expressed as

wy = 2.186¢ 700 — 32607003 4+ 2214701 — 2,055¢
+ 244670 — 2.229¢70 + 1.418 (2.54)

When ¢ = 0.1, then wy = 0 — 0,116 + 0.814 — 1.859 + 2.422 — 2.222 + 1.418 = 0.457 in. (11.6
mm), which checks with the exact solution of 0.455 in. (11.6 mm).

Analysis of Moving Loads

The elastic—viscoelastic correspondence principle can be applied directly to moving loads,
as indicated by Perloff and Moavenzadeh (1967) for determining the surface deflection of
a viscoelastic half-space, by Chou and Larew (1969) for the stresses and displacements in
a viscoelastic two-layer system, by Elliott and Moavenzadeh (1971) in a three-layer sys-
tem, and by Huang (1973b) in a multilayer system. The complexities of the analysis and
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Moving load as a function of time.

the large amount of computer time required make these methods unsuited for practical
use. Therefore, a simplified method has been used in both VESYS and KENLAYER.

In this method, it is assumed that the intensity of load varies with time according
to a haversine function, as shown in Figure 2.40. With ¢ = 0 at the peak, the load func-
tion is expressed as

_ .o ™ i
L(t) = gsin (2 + P ) (2.55)
in which d is the duration of load. When the load is at a considerable distance from a
given point, or ¢t = +d/2, the load above the point is zero, or L(t) = 0. When the load
is directly above the given point, or t = 0, the load intensity is g.

The duration of load depends on the vehicle speed s and the tire contact radius a.
A reasonable assumption is that the load has practically no effect when it is at a dis-
tance of 6a from the point, or

12 ;
d= Tﬂ (2.56)
If a = 6in. and s = 40 mph (64 km/h) = 58.7 ft/s (17.9 m/s),d = 0.1 s.
The response under static load can be expressed as a Dirichlet series:
: t
R(t) = D¢ exp(—-T ) (2.49)
i=1 i
The response under moving load can be obtained by Boltzmann’s superposition
principle:
0
dL
R = [ R(t) —dt
J-an dt (2.57)
From Eq. 2.55,
dL _ _aqm Sin(gg)
dt d d (2.58)

Substituting Eqs. 2.49 and 2.58 into Eq. 2.57 and integrating yields
gr° & 1+ exp(—dI2T;)

R _— — 2
2 Z{C‘ w? + (dI2T;)?

(2.59)
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Example 2.18:

Same as the problem in Example 2.17, but the load is moving at 40 mph (64 km/h). Determine
the maximum deflection.

Solution: According to Eq. 2.52 in Example 2.17, the surface deflection under a static load
can be expressed as

w = 0.72(1 — ¢1%) (2.52)

The first term is independent of time and therefore remains the same regardless of whether the
load is moving. From Eq.2.59, the second term with T = 0.1 and d = 0.1 s for 40 mph (64 km/h)
should be changed to 0.5 X 7> X 0.72 (1 + ¢ *°)/(=* + 0.25) = 0.564 in. (14.3 mm), so maxi-
mum deflection = 0.72 — 0.564 = 0.156 in. (3.96 mm).

SUMMARY

This chapter discusses the stresses and strains in flexible pavements and their determi-
nations. An understanding of this subject is indispensable for any mechanistic methods
of design.

Important Points Discussed in Chapter 2

1. Boussinesq theory can be applied only to an elastic homogeneous half-space, such as the
analysis of a plate bearing test on a subgrade or of a wheel load on a thin pavement.

2. An approximate method to determine the deflection on the surface of a nonlinear elastic half-
space, in which the elastic modulus varies with the state of stresses, is to assume the same stress
distribution as in the linear theory but vary the moduli according to the state of stresses.

3. The most practical mechanistic method for analyzing flexible pavements is Burmister’s
layered theory. Based on two-layer elastic systems, various charts were developed for
determining pavement responses. The vertical interface stress beneath the center of a cir-
cular loaded area can be determined from Figure 2.15, the vertical interface deflection at
various radial distances from Figure 2.19. The critical tensile strain at the bottom of layer 1
under a single wheel can be determined from Figure 2.21, under dual wheels from Figure
2.23, and under dual tandem wheels from Figures 2.25,2.26, and 2.27. For three-layer elas-
tic systems, the stresses and strains at the interfaces beneath the center of a circular loaded
arca can be determined from Table 2.3 and Figure 2.31.

4. Two methods can be used to characterize viscoelastic materials: a mechanical model and a
creep-compliance curve. Both are closely related, and each can be converted to the other.
The advantage of using a mechanical model is that the siress—strain relationship can be
visualized physically to develop the governing differential equations; the advantage of
using a creep-compliance curve is that it can easily be obtained by a laboratory creep test.

5. The elastic—viscoelastic correspondence principle based on Laplace transforms, described
in Appendix A, can be used to analyze layered systems consisting of viscoelastic materials.
However, a more convenient method is to obtain the elastic solutions at a number of time
durations and fit them with a Dirichlet series as a function of time.

6. Instead of using the method of successive residuals, described in Appendix A, a collocation
method can be applied to convert the creep compliance to a mechanical model, as indicat-
ed by a Dirichlet series. The time-temperature superposition principle, as indicated by
Egs. 2.46 and 2.48, can then be applied to convert the creep compliance from a reference
temperature to any given temperature.





