
Other infinite series do not have a finite sum, as with

The sum of the first few terms gets larger and larger as we add more and more terms. Tak-
ing enough terms makes these sums larger than any prechosen constant.

With some infinite series, such as the harmonic series

it is not obvious whether a finite sum exists. It is unclear whether adding more and more
terms gets us closer to some sum, or gives sums that grow without bound.

As we develop the theory of infinite sequences and series, an important application
gives a method of representing a differentiable function ƒ(x) as an infinite sum of powers
of x. With this method we can extend our knowledge of how to evaluate, differentiate, and
integrate polynomials to a class of functions much more general than polynomials. We
also investigate a method of representing a function as an infinite sum of sine and cosine
functions. This method will yield a powerful tool to study functions.

1 + 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + Á

1 + 2 + 3 + 4 + 5 + Á .

INFINITE SEQUENCES

AND SERIES

OVERVIEW While everyone knows how to add together two numbers, or even several,
how to add together infinitely many numbers is not so clear. In this chapter we study such
questions, the subject of the theory of infinite series. Infinite series sometimes have a finite
sum, as in

This sum is represented geometrically by the areas of the repeatedly halved unit square
shown here. The areas of the small rectangles add together to give the area of the unit square,
which they fill. Adding together more and more terms gets us closer and closer to the total.

1
2 + 1

4 + 1
8 + 1

16 + Á = 1.
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DEFINITION Infinite Sequence
An infinite sequence of numbers is a function whose domain is the set of positive
integers.

The function associated to the sequence

sends 1 to 2 to and so on. The general behavior of this sequence is de-
scribed by the formula

We can equally well make the domain the integers larger than a given number and
we allow sequences of this type also.

The sequence

is described by the formula It can also be described by the simpler formula
where the index n starts at 6 and increases. To allow such simpler formulas, we

let the first index of the sequence be any integer. In the sequence above, starts with 
while starts with Order is important. The sequence is not the same as
the sequence 

Sequences can be described by writing rules that specify their terms, such as

dn = s-1dn+1

cn = n - 1
n ,

bn = s-1dn+1 1
n ,

an = 2n ,

2, 1, 3, 4 Á .
1, 2, 3, 4 Áb6 .5bn6

a15an6
bn = 2n ,

an = 10 + 2n .

12, 14, 16, 18, 20, 22 Á

n0 ,

an = 2n .

a2 = 4,a1 = 2,

2, 4, 6, 8, 10, 12, Á , 2n, Á

Sequences

A sequence is a list of numbers

in a given order. Each of and so on represents a number. These are the terms of
the sequence. For example the sequence

has first term second term and nth term The integer n is called
the index of and indicates where occurs in the list. We can think of the sequence

as a function that sends 1 to 2 to 3 to and in general sends the positive integer n
to the nth term This leads to the formal definition of a sequence.an .

a3 ,a2 ,a1 ,

a1, a2, a3, Á , an, Á

anan ,
an = 2n .a2 = 4a1 = 2,

2, 4, 6, 8, 10, 12, Á , 2n, Á

a1, a2, a3

a1, a2, a3, Á , an, Á

11.1

HISTORICAL ESSAY

Sequences and Series
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or by listing terms,

We also sometimes write

Figure 11.1 shows two ways to represent sequences graphically. The first marks the
first few points from on the real axis. The second method shows the
graph of the function defining the sequence. The function is defined only on integer
inputs, and the graph consists of some points in the xy-plane, located at 
s2, a2d, Á , sn, and, Á .

s1, a1d,

a1, a2, a3, Á , an, Á

5an6 = E2n Fn=1
q

. .

5dn6 = 51, -1, 1, -1, 1, -1, Á , s-1dn+1, Á 6 .

5cn6 = e 0, 1
2, 2

3, 3
4, 4

5, Á , n - 1
n , Á f

5bn6 = e 1, - 1
2, 1

3, - 1
4, Á , s-1dn+1 1

n, Á f
5an6 = E21, 22, 23, Á , 2n, Á F
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0
an � �n

1 2

0

Diverges

1 32 4 5

1

3
2

1

Converges to 0

0 1 32 4 5

0

an �

1

0

1
Converges to 0

0

a2 a4 a5 a3 a1

1

1
n

n

an

n

an

n

an

a1 a2 a3 a4 a5

a3 a2 a1

an � (�1)n�1 1
n

FIGURE 11.1 Sequences can be represented as points on the real line or as
points in the plane where the horizontal axis n is the index number of the
term and the vertical axis is its value.an

Convergence and Divergence

Sometimes the numbers in a sequence approach a single value as the index n increases.
This happens in the sequence

whose terms approach 0 as n gets large, and in the sequence

e 0, 1
2, 2

3, 3
4, 4

5, Á , 1 - 1
n, Á f

e 1, 1
2, 1

3, 1
4, Á , 1

n, Á f
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The definition is very similar to the definition of the limit of a function ƒ(x) as x tends
to ( in Section 2.4). We will exploit this connection to calculate limits of
sequences.

EXAMPLE 1 Applying the Definition

Show that

(a) (b)

Solution

(a) Let be given. We must show that there exists an integer N such that for all n,

This implication will hold if or If N is any integer greater than
the implication will hold for all This proves that 

(b) Let be given. We must show that there exists an integer N such that for all n,

Since we can use any positive integer for N and the implication will hold.
This proves that for any constant k.limn:q k = k

k - k = 0,

n 7 N Q ƒ k - k ƒ 6 P .

P 7 0
limn:q s1>nd = 0.n 7 N .1>P ,

n 7 1>P .s1>nd 6 P

n 7 N Q ` 1n - 0 ` 6 P .

P 7 0

lim
n:q

k = k sany constant kdlim
n:q

1
n = 0

limx:q ƒsxdq

whose terms approach 1. On the other hand, sequences like

have terms that get larger than any number as n increases, and sequences like

bounce back and forth between 1 and never converging to a single value. The follow-
ing definition captures the meaning of having a sequence converge to a limiting value. It
says that if we go far enough out in the sequence, by taking the index n to be larger then
some value N, the difference between and the limit of the sequence becomes less than
any preselected number P 7 0.

an

-1,

51, -1, 1, -1, 1, -1, Á , s-1dn+1, Á 6

E21, 22, 23, Á , 2n, Á F

DEFINITIONS Converges, Diverges, Limit
The sequence converges to the number L if to every positive number there
corresponds an integer N such that for all n,

If no such number L exists, we say that diverges.
If converges to L, we write or simply and call

L the limit of the sequence (Figure 11.2).
an: L ,limn:q an = L ,5an6

5an6
n 7 N Q ƒ an - L ƒ 6 P .

P5an6

aN

(N, aN)

0 1 32 N n

L
L � �

L � � L � �L

L � �

(n, an)

0 a2 a3 a1 an

n

an

FIGURE 11.2 if is a
horizontal asymptote of the sequence of
points In this figure, all the 
after lie within of L.PaN

an’s5sn, and6 .

y = Lan: L

HISTORICAL BIOGRAPHY

Nicole Oresme
(ca. 1320–1382)



EXAMPLE 2 A Divergent Sequence

Show that the sequence diverges.

Solution Suppose the sequence converges to some number L. By choosing in
the definition of the limit, all terms of the sequence with index n larger than some N
must lie within of L. Since the number 1 appears repeatedly as every other term
of the sequence, we must have that the number 1 lies within the distance of L. It
follows that or equivalently, Likewise, the number 
appears repeatedly in the sequence with arbitrarily high index. So we must also have that

or equivalently, But the number L cannot lie in
both of the intervals (1 2, 3 2) and because they have no overlap. There-
fore, no such limit L exists and so the sequence diverges.

Note that the same argument works for any positive number smaller than 1, not
just 1 2.

The sequence also diverges, but for a different reason. As n increases, its
terms become larger than any fixed number. We describe the behavior of this sequence
by writing

In writing infinity as the limit of a sequence, we are not saying that the differences between
the terms and become small as n increases. Nor are we asserting that there is some
number infinity that the sequence approaches. We are merely using a notation that captures
the idea that eventually gets and stays larger than any fixed number as n gets large.an

qan

lim
n:q

2n = q .

{1n}

> P

s-3>2, -1>2d>> -3>2 6 L 6 -1>2.ƒ L - s-1d ƒ 6 1>2,

-11>2 6 L 6 3>2.ƒ L - 1 ƒ 6 1>2,
P = 1>2P = 1>2 an

P = 1>2
51, -1, 1, -1, 1, -1, Á , s-1dn+1, Á 6
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DEFINITION Diverges to Infinity
The sequence diverges to infinity if for every number M there is an integer
N such that for all n larger than If this condition holds we write

Similarly if for every number m there is an integer N such that for all we
have then we say diverges to negative infinity and write

lim
n:q

an = -q or an: -q .

5an6an 6 m ,
n 7 N

lim
n:q

an = q or an: q .

N, an 7 M .
5an6

A sequence may diverge without diverging to infinity or negative infinity. We saw
this in Example 2, and the sequences and

are also examples of such divergence.

Calculating Limits of Sequences

If we always had to use the formal definition of the limit of a sequence, calculating with 
and N’s, then computing limits of sequences would be a formidable task. Fortunately we can
derive a few basic examples, and then use these to quickly analyze the limits of many more
sequences. We will need to understand how to combine and compare sequences. Since se-
quences are functions with domain restricted to the positive integers, it is not too surprising
that the theorems on limits of functions given in Chapter 2 have versions for sequences.

P’s

51, 0, 2, 0, 3, 0, Á 6 51, -2, 3, -4, 5, -6, 7, -8, Á 6
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The proof is similar to that of Theorem 1 of Section 2.2, and is omitted.

EXAMPLE 3 Applying Theorem 1

By combining Theorem 1 with the limits of Example 1, we have:

(a)

(b)

(c)

(d)

Be cautious in applying Theorem 1. It does not say, for example, that each of the
sequences and have limits if their sum has a limit. For instance,

and both diverge, but their sum
clearly converges to 0.

One consequence of Theorem 1 is that every nonzero multiple of a divergent sequence
diverges. For suppose, to the contrary, that converges for some number 

Then, by taking in the Constant Multiple Rule in Theorem 1, we see that the
sequence

converges. Thus, cannot converge unless also converges. If does not con-
verge, then does not converge.

The next theorem is the sequence version of the Sandwich Theorem in Section 2.2.
You are asked to prove the theorem in Exercise 95.

5can6
5an65an65can6

e 1
c # can f = 5an6

k = 1>c c Z 0.5can65an6
5an + bn6 = 50, 0, 0, Á 6 5bn6 = 5-1, -2, -3, Á 65an6 = 51, 2, 3, Á 6 5an + bn65bn65an6

lim
n:q

4 - 7n6

n6 + 3
= lim

n:q

s4>n6d - 7
1 + s3>n6d

= 0 - 7
1 + 0 = -7.

lim
n:q

5
n2 = 5 # lim

n:q
1
n # lim

n:q
1
n = 5 # 0 # 0 = 0

lim
n:q

an - 1
n b = lim

n:q
a1 - 1

n b = lim
n:q

1 - lim
n:q

1
n = 1 - 0 = 1

lim
n:q

a- 1
n b = -1 # lim

n:q
1
n = -1 # 0 = 0

THEOREM 1
Let and be sequences of real numbers and let A and B be real numbers.
The following rules hold if and 

1. Sum Rule:
2. Difference Rule:
3. Product Rule:
4. Constant Multiple Rule:

5. Quotient Rule: limn:q
an
bn

= A
B if B Z 0

limn:q sk # bnd = k # B sAny number kd
limn:q san # bnd = A # B
limn:q san - bnd = A - B
limn:q san + bnd = A + B

limn:q bn = B .limn:q an = A
5bn65an6

Constant Multiple Rule and Example 1a

Difference Rule
and Example 1a

Product Rule

Sum and Quotient Rules

THEOREM 2 The Sandwich Theorem for Sequences
Let and be sequences of real numbers. If holds
for all n beyond some index N, and if then

also.limn:q bn = L
limn:q an = limn:q cn = L ,

an … bn … cn5cn65an6, 5bn6 ,



An immediate consequence of Theorem 2 is that, if and then
because We use this fact in the next example.

EXAMPLE 4 Applying the Sandwich Theorem

Since we know that

(a)

(b)

(c)

The application of Theorems 1 and 2 is broadened by a theorem stating that applying
a continuous function to a convergent sequence produces a convergent sequence. We state
the theorem without proof (Exercise 96).

- 1
n … s-1dn 1

n … 1
n .becauses-1dn 1

n: 0

0 … 1
2n … 1

n ;because1
2n : 0

- 1
n … cos n

n … 1
n ;becausecos n

n : 0

1>n: 0,

-cn … bn … cn .bn: 0
cn: 0,ƒ bn ƒ … cn

752 Chapter 11: Infinite Sequences and Series

THEOREM 3 The Continuous Function Theorem for Sequences
Let be a sequence of real numbers. If and if ƒ is a function that is
continuous at L and defined at all then ƒsand: ƒsLd .an ,

an: L5an6

EXAMPLE 5 Applying Theorem 3

Show that 

Solution We know that Taking and in Theorem 3
gives 

EXAMPLE 6 The Sequence 

The sequence converges to 0. By taking and in
Theorem 3, we see that The sequence converges
to 1 (Figure 11.3).

Using l’Hôpital’s Rule

The next theorem enables us to use l’Hôpital’s Rule to find the limits of some sequences.
It formalizes the connection between and limx:q ƒsxd .limn:q an

521>n621>n = ƒs1>nd: ƒsLd = 20 = 1.
L = 0an = 1>n, ƒsxd = 2x ,51>n6

521>n6
1sn + 1d>n: 11 = 1.

L = 1ƒsxd = 1xsn + 1d>n: 1.

2sn + 1d>n: 1.

1
3

0

1

(1, 2)

y � 2x

1

2

, 21/3⎛
⎝

⎛
⎝

, 21/2⎛
⎝

⎛
⎝

1
3

1
2

1
2

x

y

FIGURE 11.3 As and
(Example 6).21>n: 20

n: q , 1>n: 0

THEOREM 4
Suppose that ƒ(x) is a function defined for all and that is a sequence
of real numbers such that for Then

lim
x:q

ƒsxd = L Q lim
n:q

an = L .

n Ú n0 .an = ƒsnd
5an6x Ú n0

Proof Suppose that Then for each positive number there is a num-
ber M such that for all x,

x 7 M Q ƒ ƒsxd - L ƒ 6 P .

Plimx:q ƒsxd = L .
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Let N be an integer greater than M and greater than or equal to Then

EXAMPLE 7 Applying L’Hôpital’s Rule

Show that

Solution The function is defined for all and agrees with the given
sequence at positive integers. Therefore, by Theorem 5, will equal

if the latter exists. A single application of l’Hôpital’s Rule shows that

We conclude that 

When we use l’Hôpital’s Rule to find the limit of a sequence, we often treat n as a
continuous real variable and differentiate directly with respect to n. This saves us from
having to rewrite the formula for as we did in Example 7.

EXAMPLE 8 Applying L’Hôpital’s Rule

Find

Solution By l’Hôpital’s Rule (differentiating with respect to n),

EXAMPLE 9 Applying L’Hôpital’s Rule to Determine Convergence

Does the sequence whose nth term is

converge? If so, find 

Solution The limit leads to the indeterminate form We can apply l’Hôpital’s Rule if
we first change the form to by taking the natural logarithm of 

= n ln an + 1
n - 1 b .

ln an = ln an + 1
n - 1 b

n

an :q # 0
1q .

limn:q an .

an = an + 1
n - 1 b

n

= q .

lim
n:q

2n

5n = lim
n:q

2n # ln 2
5

lim
n:q

2n

5n .

an

limn:q sln nd>n = 0.

lim
x:q

ln x
x = lim

x:q

1>x
1 = 0

1 = 0.

limx:q sln xd>x limn:q sln nd>nx Ú 1sln xd>x

lim
n:q

ln n
n = 0.

n 7 N Q an = ƒsnd and ƒ an - L ƒ = ƒ ƒsnd - L ƒ 6 P .

n0 .



Then,

Since and is continuous, Theorem 4 tells us that

The sequence converges to  

Commonly Occurring Limits

The next theorem gives some limits that arise frequently.

e2 .5an6
an = e ln an: e2 .

ƒsxd = exln an: 2

= lim
n:q

2n2

n2 - 1
= 2 .

= lim
n:q

-2>sn2 - 1d
-1>n2

= lim
n:q

ln an + 1
n - 1 b
1>n

lim
n:q

ln an = lim
n:q

n ln an + 1
n - 1 b
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l’Hôpital’s Rule

q # 0

0
0

THEOREM 5
The following six sequences converge to the limits listed below:

1.

2.

3.

4.

5.

6.

In Formulas (3) through (6), x remains fixed as n: q .

lim
n:q

xn

n! = 0 sany xd

lim
n:q

a1 + x
n b

n
= ex sany xd

lim
n:q

xn = 0 s ƒ x ƒ 6 1d

lim
n:q

x1>n = 1 sx 7 0d

lim
n:q

2n n = 1

lim
n:q

ln n
n = 0

Proof The first limit was computed in Example 7. The next two can be proved by taking
logarithms and applying Theorem 4 (Exercises 93 and 94). The remaining proofs are given
in Appendix 3.

EXAMPLE 10 Applying Theorem 5

(a) Formula 1

(b) Formula 2

(c) Formula 3 with and Formula 2x = 32n 3n = 31>nsn1/nd: 1 # 1 = 1

2n n2 = n2>n = sn1/nd2: s1d2 = 1

ln sn2d
n = 2 ln n

n : 2 # 0 = 0

Factorial Notation
The notation n! (“n factorial”) means 
the product of the integers
from 1 to n. Notice that

Thus,
and

We
define 0! to be 1. Factorials grow even
faster than exponentials, as the table
suggests.

5! = 1 # 2 # 3 # 4 # 5 = 5 # 4! = 120.
4! = 1 # 2 # 3 # 4 = 24
sn + 1d! = sn + 1d # n! .

1 # 2 # 3 Á n

n (rounded) n!

1 3 1
5 148 120

10 22,026 3,628,800
20 2.4 * 10184.9 * 108

en
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(d) Formula 4 with

(e) Formula 5 with

(f) Formula 6 with

Recursive Definitions

So far, we have calculated each directly from the value of n. But sequences are often
defined recursively by giving

1. The value(s) of the initial term or terms, and
2. A rule, called a recursion formula, for calculating any later term from terms that pre-

cede it.

EXAMPLE 11 Sequences Constructed Recursively

(a) The statements and define the sequence of
positive integers. With we have and
so on.

(b) The statements and define the sequence 
of factorials. With we have 

and so on.
(c) The statements and define the sequence

of Fibonacci numbers. With and we have
and so on.

(d) As we can see by applying Newton’s method, the statements and
define a sequence that converges to a

solution of the equation 

Bounded Nondecreasing Sequences

The terms of a general sequence can bounce around, sometimes getting larger, sometimes
smaller. An important special kind of sequence is one for which each term is at least as
large as its predecessor.

sin x - x2 = 0.
xn+1 = xn - [ssin xn - xn

2d>scos xn - 2xnd]
x0 = 1

a3 = 1 + 1 = 2, a4 = 2 + 1 = 3, a5 = 3 + 2 = 5,
a2 = 1,a1 = 11, 1, 2, 3, 5, Á

an+1 = an + an-1a1 = 1, a2 = 1,
4 # a3 = 24,

a2 = 2 # a1 = 2, a3 = 3 # a2 = 6, a4 =a1 = 1,
1, 2, 6, 24, Á , n!, Áan = n # an-1a1 = 1

a2 = a1 + 1 = 2, a3 = a2 + 1 = 3,a1 = 1,
1, 2, 3, Á , n, Áan = an-1 + 1a1 = 1

an

x = 100
100n

n! : 0

x = -2an - 2
n bn

= a1 + -2
n b

n
: e-2

x = - 1
2a- 1

2 b
n
: 0

DEFINITION Nondecreasing Sequence
A sequence with the property that for all n is called a
nondecreasing sequence.

an … an+15an6

EXAMPLE 12 Nondecreasing Sequences

(a) The sequence of natural numbers

(b) The sequence 

(c) The constant sequence 536
1
2, 2

3, 3
4, Á , n

n + 1, Á

1, 2, 3, Á , n, Á



There are two kinds of nondecreasing sequences—those whose terms increase beyond any
finite bound and those whose terms do not.
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DEFINITIONS Bounded, Upper Bound, Least Upper Bound
A sequence is bounded from above if there exists a number M such that

for all n. The number M is an upper bound for If M is an upper
bound for but no number less than M is an upper bound for then M is
the least upper bound for 5an6 .

5an6 ,5an6
5an6 .an … M

5an6

EXAMPLE 13 Applying the Definition for Boundedness

(a) The sequence has no upper bound.

(b) The sequence is bounded above by 

No number less than 1 is an upper bound for the sequence, so 1 is the least upper
bound (Exercise 113).

A nondecreasing sequence that is bounded from above always has a least upper
bound. This is the completeness property of the real numbers, discussed in Appendix 4.
We will prove that if L is the least upper bound then the sequence converges to L.

Suppose we plot the points in the xy-plane. If M is an up-
per bound of the sequence, all these points will lie on or below the line (Figure 11.4).
The line is the lowest such line. None of the points lies above but some
do lie above any lower line if is a positive number. The sequence converges to
L because

(a) for all values of n and
(b) given any there exists at least one integer N for which 

The fact that is nondecreasing tells us further that

Thus, all the numbers beyond the Nth number lie within of L. This is precisely the
condition for L to be the limit of the sequence 

The facts for nondecreasing sequences are summarized in the following theorem. A
similar result holds for nonincreasing sequences (Exercise 107).

{an}.
Pan

an Ú aN 7 L - P for all n Ú N .

5an6
aN 7 L - P .P 7 0,

an … L

Py = L - P ,
y = L ,sn, andy = L

y = M
s1, a1d, s2, a2d, Á , sn, and, Á

M = 1.1
2, 2

3, 3
4, Á , n

n + 1, Á

1, 2, 3, Á , n, Á

0 1 2 3 4

L

M

5

y � L

(8, a8)

6 7 8

y � M

(5, a5)
(1, a1)

x

y

FIGURE 11.4 If the terms of a
nondecreasing sequence have an upper
bound M, they have a limit L … M .

THEOREM 6 The Nondecreasing Sequence Theorem
A nondecreasing sequence of real numbers converges if and only if it is bounded
from above. If a nondecreasing sequence converges, it converges to its least
upper bound.

Theorem 6 implies that a nondecreasing sequence converges when it is bounded from
above. It diverges to infinity if it is not bounded from above.
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EXERCISES 11.1

Finding Terms of a Sequence
Each of Exercises 1–6 gives a formula for the nth term of a se-
quence Find the values of and 

1. 2.

3. 4.

5. 6.

Each of Exercises 7–12 gives the first term or two of a sequence along
with a recursion formula for the remaining terms. Write out the first
ten terms of the sequence.

7.
8.
9.

10.
11.
12.

Finding a Sequence’s Formula
In Exercises 13–22, find a formula for the nth term of the sequence.
13. The sequence 
14. The sequence 

15. The sequence 

16. The sequence 

17. The sequence 

18. The sequence 

19. The sequence 

20. The sequence 

21. The sequence 

22. The sequence 

Finding Limits
Which of the sequences in Exercises 23–84 converge, and which
diverge? Find the limit of each convergent sequence.

5an6

0, 1, 1, 2, 2, 3, 3, 4, Á

1, 0, 1, 0, 1, Á

2, 6, 10, 14, 18, Á

1, 5, 9, 13, 17, Á

-3, -2, -1, 0, 1, Á

0, 3, 8, 15, 24, Á

1, - 1
4, 1

9, - 1
16, 1

25, Á

1, -4, 9, -16, 25, Á

-1, 1, -1, 1, -1, Á
1, -1, 1, -1, 1, Á

a1 = 2, a2 = -1, an+2 = an+1>an

a1 = a2 = 1, an+2 = an+1 + an

a1 = -2, an+1 = nan>sn + 1d
a1 = 2, an+1 = s-1dn+1an>2
a1 = 1, an+1 = an>sn + 1d
a1 = 1, an+1 = an + s1>2nd

an = 2n - 1
2nan = 2n

2n+1

an = 2 + s-1dnan =
s-1dn+1

2n - 1

an = 1
n!an = 1 - n

n2

a4 .a1, a2, a3 ,5an6 .
an

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. (Hint: Compare with 1 n.)>an = n!
nn

an = 2n 32n+1an = 2n 4nn

an = ln n - ln sn + 1dan = ln n
n1>n

an = sn + 4d1>sn+4dan = a3n b
1>n

an = 2n n2an = 2n 10n

an = a1 - 1
n b

n
an = a1 + 7

n b
n

an = s0.03d1>nan = 81>n

an = ln n
ln 2nan =

ln sn + 1d

2n

an = 3n

n3an = n
2n

an = sin2 n
2nan = sin n

n

an = np cos snpdan = sin ap2 + 1
n b

an = 1
s0.9dn

an = A
2n

n + 1

an = a- 1
2 b

n
an =

s-1dn+1

2n - 1

an = a2 - 1
2n b a3 + 1

2n ban = an + 1
2n b a1 - 1

n b

an = s-1dn a1 - 1
n ban = 1 + s-1dn

an = 1 - n3

70 - 4n2an = n2 - 2n + 1
n - 1

an = n + 3
n2 + 5n + 6

an = 1 - 5n4

n4 + 8n3

an = 2n + 1
1 - 32n

an = 1 - 2n
1 + 2n

an =
n + s-1dn

nan = 2 + s0.1dn

Reciprocals of squares
of the positive integers,
with alternating signs

1’s with alternating signs

1’s with alternating signs

Squares of the positive
integers; with
alternating signs

Squares of the positive
integers diminished by 1

Integers beginning with
-3

Every other odd positive
integer

Every other even positive
integer

Alternating 1’s and 0’s

Each positive integer
repeated



60. 61.

62. 63.

64. 65.

66. 67.

68. 69.

70. 71.

72. 73.

74. 75.

76. 77.

78. 79.

80. 81.

82.

83. 84.

Theory and Examples
85. The first term of a sequence is Each succeeding term is

the sum of all those that come before it:

Write out enough early terms of the sequence to deduce a general
formula for that holds for 

86. A sequence of rational numbers is described as follows:

.

Here the numerators form one sequence, the denominators form a
second sequence, and their ratios form a third sequence. Let 
and be, respectively, the numerator and the denominator of the
nth fraction 
a. Verify that and, more

generally, that if or then

respectively.

sa + 2bd2 - 2sa + bd2 = +1 or -1,

+1,a2 - 2b2 = -1
x1

2 - 2y1
2 = -1, x2

2 - 2y2
2 = +1

rn = xn>yn .
yn

xn

1
1, 3

2, 7
5, 17

12, Á , a
b, a + 2b

a + b , Á

n Ú 2.xn

xn+1 = x1 + x2 + Á + xn .

x1 = 1.

an = L
n

1

1
xp dx, p 7 1an = 1

nL
n

1

1
x dx

an = 1
2n2 - 1 - 2n2 + n

an = n - 2n2 - nan =
sln nd5

2n

an =
sln nd200

nan = 2n n2 + n

an = a13 b
n
+ 1
22n

an = 1
2n

tan-1 n

an = tan-1 nan = n a1 - cos 1
n b

an = n2

2n - 1 sin 1
nan = sinh sln nd

an = tanh nan =
s10>11dn

s9/10dn + s11/12dn

an = 3n # 6n

2-n # n!an = a1 - 1
n2 b

n

an = a xn

2n + 1 b
1>n

, x 7 0an = a n
n + 1 b

n

an = a3n + 1
3n - 1 b

n
an = ln a1 + 1

n b
n

an = a1n b
1>sln nd

an = n!
2n # 3n

an = n!
106nan =

s-4dn

n!
b. The fractions approach a limit as n increases.

What is that limit? (Hint: Use part (a) to show that
and that is not less than n.)

87. Newton’s method The following sequences come from the re-
cursion formula for Newton’s method,

Do the sequences converge? If so, to what value? In each case,
begin by identifying the function ƒ that generates the sequence.

a.

b.

c.
88. a. Suppose that ƒ(x) is differentiable for all x in [0, 1] and that

Define the sequence by the rule 
Show that 

Use the result in part (a) to find the limits of the following
sequences

b. c.

d.

89. Pythagorean triples A triple of positive integers a, b, and c is
called a Pythagorean triple if Let a be an odd
positive integer and let

be, respectively, the integer floor and ceiling for 

a. Show that (Hint: Let and express
b and c in terms of n.)

a = 2n + 1a2 + b2 = c2 .

a

⎡⎢⎢ a2

2
⎢⎢⎣

⎢⎢⎣

⎡⎢⎢
a2

2

�

a2>2.

b = j a2

2 k and c = l a2

2 m

a2 + b2 = c2 .

an = n ln a1 + 2
n b

an = nse1>n - 1dan = n tan-1 1
n

5an6 .

lim n:q an = ƒ¿s0d .nƒs1>nd .
an =5an6ƒs0d = 0.

x0 = 1, xn+1 = xn - 1

x0 = 1, xn+1 = xn -
tan xn - 1

sec2 xn

x0 = 1, xn+1 = xn -
xn

2 - 2
2xn

=
xn

2 + 1
xn

xn+1 = xn -
ƒsxnd
ƒ¿sxnd

.

ynrn
2 - 2 = ; s1>ynd2

rn = xn>yn
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