
377

INTRODUCTION

A microprocessor is great at solving problems, but if it can’t communicate with the outside
world, it is of little worth. This chapter outlines some of the basic methods of communications,
both serial and parallel, between humans or machines and the microprocessor.

In this chapter, we first introduce the basic I/O interface and discuss decoding for I/O
devices. Then, we provide detail on parallel and serial interfacing, both of which have a variety
of applications. To study applications, we connect analog-to-digital and digital-to-analog
converters, as well as both DC and stepper motors to the microprocessor.

CHAPTER OBJECTIVES

Upon completion of this chapter, you will be able to:

1. Explain the operation of the basic input and output interfaces.
2. Decode an 8-, 16-, and 32-bit I/O device so that they can be used at any I/O port address.
3. Define handshaking and explain how to use it with I/O devices.
4. Interface and program the 82C55 programmable parallel interface.
5. Interface LCD displays, LED displays, keyboards, ADC, DAC, and various other devices

to the 82C55.
6. Interface and program the 16550 serial communications interface adapter.
7. Interface and program the 8254 programmable interval timer.
8. Interface an analog-to-digital converter and a digital-to-analog converter to the microprocessor.
9. Interface both DC and stepper motors to the microprocessor.

11–1 INTRODUCTION TO I/O INTERFACE

In this section of the text I/O instructions (IN, INS, OUT, and OUTS) are explained and used in
example applications. Also explained here is the concept of isolated (sometimes called direct or
I/O mapped I/O) and memory-mapped I/O, the basic input and output interfaces, and hand-
shaking. A working knowledge of these topics makes it easier to understand the connection and

Basic I/O Interface

CHAPTER 11

378 CHAPTER 11

TABLE 11–1 Input/Output instructions.

Instruction Data Width Function

IN AL, p8 8 A byte is input into AL from port p8

IN AX, p8 16 A word is input into AX from port p8

IN EAX, p8 32 A doubleword is input into EAX from port p8

IN AL, DX 8 A byte is input into AL from the port addressed by DX

IN AX, DX 16 A word is input into AX from the port addressed by DX

IN EAX, DX 32 A doubleword is input into EAX from the port addressed by DX

INSB 8 A byte is input from the port addressed by DI and stored into the extra segment
memory location addressed by DI, then DI = DI ± 1

INSW 16 A word is input from the port addressed by DI and stored into the extra segment
memory location addressed by DI, then DI = DI ± 2

INSD 32 A doubleword is input from the port addressed by DI and stored into the extra segment
memory location addressed by DI, then DI = DI ± 4

OUT p8, AL 8 A byte is output from AL into port p8

OUT p8, AX 16 A word is output from AL into port p8

OUT p8, EAX 32 A doubleword is output from EAX into port p8

OUT DX, AL 8 A byte is output from AL into the port addressed by DX

OUT DX, AX 16 A word is output from AX into the port addressed by DX

OUT DX, EAX 32 A doubleword is output from EAX into the port addressed by DX

OUTSB 8 A byte is output from the data segment memory location addressed by SI into the port
addressed by DX, then SI = SI ± 1

OUTSW 16 A word is output from the data segment memory location addressed by SI into the
port addressed by DX, then SI = SI ± 2

OUTSD 32 A doubleword is output from the data segment memory location addressed by SI into
the port addressed by DX, then SI = SI ± 4

operation of the programmable interface components and I/O techniques presented in the
remainder of this chapter and text.

The I/O Instructions
The instruction set contains one type of instruction that transfers information to an I/O device
(OUT) and another to read information from an I/O device (IN). Instructions (INS and OUTS,
found on all versions except the 8086/8088) are also provided to transfer strings of data between
the memory and an I/O device. Table 11–1 lists all versions of each instruction found in the
microprocessor’s instruction set.

Instructions that transfer data between an I/O device and the microprocessor’s accumulator
(AL, AX, or EAX) are called IN and OUT. The I/O address is stored in register DX as a 16-bit
I/O address or in the byte (p8) immediately following the opcode as an 8-bit I/O address. Intel
calls the 8-bit form (p8) a fixed address because it is stored with the instruction, usually in a
ROM. The 16-bit I/O address in DX is called a variable address because it is stored in a DX,
and then used to address the I/O device. Other instructions that use DX to address I/O are the INS
and OUTS instructions. I/O ports are 8 bits in width so whenever a 16-bit port is accessed two
consecutive 8-bit ports are actually addressed. A 32-bit I/O port is actually four 8-bit ports. For
example, port 100H is accessed as a word, then 100H and 101H are actually accessed. Port 100H
contains the least significant part of the data and port 101H the most significant part.

BASIC I/O INTERFACE 379

Whenever data are transferred by using the IN or OUT instructions, the I/O address, often
called a port number (or simply port), appears on the address bus. The external I/O interface
decodes the port number in the same manner that it decodes a memory address. The 8-bit fixed port
number (p8) appears on address bus connections A7–A0 with bits A15–A8 equal to 000000002. The
address connections above A15 are undefined for an I/O instruction. The 16-bit variable port number
(DX) appears on address connections A15–A0. This means that the first 256 I/O port addresses
(00H–FFH) are accessed by both the fixed and variable I/O instructions, but any I/O address from
0100H to FFFFH is only accessed by the variable I/O address. In many dedicated systems, only the
rightmost 8 bits of the address are decoded, thus reducing the amount of circuitry required for decod-
ing. In a PC computer, all 16 address bus bits are decoded with locations 0000H–03FFH, which are
the I/O addresses used for I/O inside the PC on the ISA (industry standard architecture) bus.

The INS and OUTS instructions address an I/O device by using the DX register, but do not
transfer data between the accumulator and the I/O device as do the IN and OUT instructions.
Instead, these instructions transfer data between memory and the I/O device. The memory address
is located by ES:DI for the INS instruction and by DS:SI for the OUTS instruction. As with other
string instructions, the contents of the pointers are incremented or decremented, as dictated by the
state of the direction flag (DF). Both INS and OUTS can be prefixed with the REP prefix, allow-
ing more than one byte, word, or doubleword to be transferred between I/O and memory.

The Pentium 4 and Core2 operating in the 64-bit mode have the same I/O instructions.
There are no 64-bit I/O instructions in the 64-bit mode. The main reason is that most I/O is still
8 bits and likely will remain so for an indefinite time.

Isolated and Memory-Mapped I/O
There are two different methods of interfacing I/O to the microprocessor: isolated I/O and
memory-mapped I/O. In the isolated I/O scheme, the IN, INS, OUT, and OUTS instructions
transfer data between the microprocessor’s accumulator or memory and the I/O device. In the
memory-mapped I/O scheme, any instruction that references memory can accomplish the trans-
fer. Both isolated and memory-mapped I/O are in use, so both are discussed in this text. The PC
does not use memory-mapped I/O.

Isolated I/O. The most common I/O transfer technique used in the Intel microprocessor-based
system is isolated I/O. The term isolated describes how the I/O locations are isolated from the
memory system in a separate I/O address space. (Figure 11–1 illustrates both the isolated and
memory-mapped address spaces for any Intel 80X86 or Pentium–Core2 microprocessor.) The
addresses for isolated I/O devices, called ports, are separate from the memory. Because the ports
are separate, the user can expand the memory to its full size without using any of memory space
for I/O devices. A disadvantage of isolated I/O is that the data transferred between I/O and the
microprocessor must be accessed by the IN, INS, OUT, and OUTS instructions. Separate control
signals for the I/O space are developed (using and), which indicate an I/O read
() or an I/O write () operation. These signals indicate that an I/O port address, which
appears on the address bus, is used to select the I/O device. In the personal computer, isolated I/O
ports are used for controlling peripheral devices. An 8-bit port address is used to access devices
located on the system board, such as the timer and keyboard interface, while a 16-bit port is used
to access serial and parallel ports as well as video and disk drive systems.

Memory-Mapped I/O. Unlike isolated I/O, memory-mapped I/O does not use the IN, INS,
OUT, or OUTS instructions. Instead, it uses any instruction that transfers data between the
microprocessor and memory. A memory-mapped I/O device is treated as a memory location in
the memory map. The main advantage of memory-mapped I/O is that any memory transfer
instruction can be used to access the I/O device. The main disadvantage is that a portion of the
memory system is used as the I/O map. This reduces the amount of memory available to appli-
cations. Another advantage is that the and signals have no function in a memory-
mapped I/O system and may reduce the amount of circuitry required for decoding.

IOWCIORC

IOWCIORC
W>RM>IO

380 CHAPTER 11

FIGURE 11–1 The memory
and I/O maps for the 8086/
8088 microprocessors.
(a) Isolated I/O. (b) Memory-
mapped I/O.

Personal Computer I/O Map
The personal computer uses part of the I/O map for dedicated functions. Figure 11–2 shows the
I/O map for the PC. Note that I/O space between ports 0000H and 03FFH is normally reserved
for the computer system and the ISA bus. The I/O ports located at 0400H–FFFFH are generally
available for user applications, main-board functions, and the PCI bus. Note that the 80287 arith-
metic coprocessor uses I/O address 00F8H–00FFH for communications. For this reason, Intel
reserves I/O ports 00F0H–00FFH. The 80386–Core2 use I/O ports 800000F8–800000FFH for
communications to their coprocessors. The I/O ports located between 0000H and 00FFH are
accessed via the fixed port I/O instructions; the ports located above 00FFH are accessed via the
variable I/O port instructions.

Basic Input and Output Interfaces
The basic input device is a set of three-state buffers. The basic output device is a set of data
latches. The term IN refers to moving data from the I/O device into the microprocessor and the
term OUT refers to moving data out of the microprocessor to the I/O device.

The Basic Input Interface. Three-state buffers are used to construct the 8-bit input port depicted in
Figure 11–3. The external TTL data (simple toggle switches in this example) are connected to the

BASIC I/O INTERFACE 381

I/O Expansion area

0400

COM 1
03FF
03F8
0357
03F0
03EF
03E0
03DF
03D0
03CF
0380
037F
0378
0377
0330
032F
0320
031F
0300
02FF
02F8
02F7
0064
0063
0060
005F
0044
0043
0040
003F
0024
0023
0020
001F
0010
000F
0000

Floppy disk

CGA adapter

LPT 1

Hard disk

COM 2

8255 (PPI)

Timer

Interrupt controller

DMA controller

FFFFFIGURE 11–2 The I/O map of
a personal computer illustrating
many of the fixed I/O areas.

inputs of the buffers. The outputs of the buffers connect to the data bus. The exact data bus connec-
tions depend on the version of the microprocessor. For example, the 8088 has data bus connections
D7–D0, the 80386/80486 has connections D31–D0, and the Pentium–Core2 have connections D63–D0.
The circuit of Figure 11–3 allows the microprocessor to read the contents of the eight switches that
connect to any 8-bit section of the data bus when the select signal becomes a logic 0. Thus,
whenever the IN instruction executes, the contents of the switches are copied into the AL register.

When the microprocessor executes an IN instruction, the I/O port address is decoded to gen-
erate the logic 0 on . A 0 placed on the output control inputs (and) of the 74ALS244
buffer causes the data input connections (A) to be connected to the data output (Y) connections. If
a logic 1 is placed on the output control inputs of the 74ALS244 buffer, the device enters the three-
state high-impedance mode that effectively disconnects the switches from the data bus.

This basic input circuit is not optional and must appear any time that input data are inter-
faced to the microprocessor. Sometimes it appears as a discrete part of the circuit, as shown in
Figure 11–3; many times it is built into a programmable I/O device.

Sixteen- or 32-bit data can also be interfaced to various versions of the microprocessor,
but this is not nearly as common as using 8-bit data. To interface 16 bits of data, the circuit in

2G1GSEL

SEL

382 CHAPTER 11

1
2
3
4
5
6
7
8 9

10
11
12
13
14
15
16 2

4
6
8

11
13
15
17 3

5
7
9

12
14
16
18

1
19

74ALS244

1A1 1Y1
1A2 1Y2
1A3 1Y3
1A4 1Y4
2A1 2Y1
2A2 2Y2
2A3 2Y3
2A4 2Y4

1G
2G

SEL

VCC

10K

87654321

91
0

1
1

1
2

1
3

1
4

1
5

1
6

U1
D
a
t
a

B
u
s

FIGURE 11–3 The basic
input interface illustrating the
connection of eight switches.
Note that the 74ALS244 is a
three-state buffer that controls
the application of the switch
data to the data bus.

Figure 11–3 is doubled to include two 74ALS244 buffers that connect 16 bits of input data to the
16-bit data bus. To interface 32 bits of data, the circuit is expanded by a factor of 4.

The Basic Output Interface. The basic output interface receives data from the microprocessor
and usually must hold it for some external device. Its latches or flip-flops, like the buffers found
in the input device, are often built into the I/O device.

Figure 11–4 shows how eight simple light-emitting diodes (LEDs) connect to the microproces-
sor through a set of eight data latches. The latch stores the number output by the microprocessor from
the data bus so that the LEDs can be lit with any 8-bit binary number. Latches are needed to hold the
data because when the microprocessor executes an OUT instruction, the data are only present on the
data bus for less than 1.0 μs. Without a latch, the viewer would never see the LEDs illuminate.

When the OUT instruction executes, the data from AL, AX, or EAX are transferred to the
latch via the data bus. Here, the D inputs of a 74ALS374 octal latch are connected to the data bus
to capture the output data, and the Q outputs of the latch are attached to the LEDs. When a Q out-
put becomes a logic 0, the LED lights. Each time that the OUT instruction executes, the sig-
nal to the latch activates, capturing the data output to the latch from any 8-bit section of the data
bus. The data are held until the next OUT instruction executes. Thus, whenever the output
instruction is executed in this circuit, the data from the AL register appear on the LEDs.

Handshaking
Many I/O devices accept or release information at a much slower rate than the microprocessor.
Another method of I/O control, called handshaking or polling, synchronizes the I/O device with
the microprocessor. An example of a device that requires handshaking is a parallel printer that
prints a few hundred characters per second (CPS). It is obvious that the microprocessor can send
more than a few hundred CPS to the printer, so a way to slow the microprocessor down to match
speeds with the printer must be developed.

Figure 11–5 illustrates the typical input and output connections found on a printer. Here,
data are transferred through a series of data connections (D7–D0). BUSY indicates that the
printer is busy. is a clock pulse used to send data to the printer for printing.STB

SEL

BASIC I/O INTERFACE 383

3
4
7
8

13
14
17
18

1
11

74ALS374

SEL

VCC

330

U1

D
a
t
a

B
u
s

2
5
6
9

12
15
16
19

D0 Q0
D1 Q1
D2 Q2
D3 Q3
D4 Q4
D5 Q5
D6 Q6
D7 Q7

OC
CLK

FIGURE 11–4 The basic
output interface connected to
a set of LED displays.

The ASCII data to be printed by the printer are placed on D7–D0, and a pulse is then
applied to the connection. The strobe signal sends or clocks the data into the printer so that
they can be printed. As soon as the printer receives the data, it places a logic 1 on the BUSY pin,
indicating that the printer is busy printing data. The microprocessor software polls or tests the
BUSY pin to decide whether the printer is busy. If the printer is busy, the microprocessor waits;
if it is not busy, the microprocessor sends the next ASCII character to the printer. This process of
interrogating the printer, or any asynchronous device like a printer, is called handshaking
or polling. Example 11–1 illustrates a simple procedure that tests the printer BUSY flag and
then sends data to the printer if it is not busy. Here, the PRINT procedure prints the ASCII-coded
contents of BL only if the BUSY flag is a logic 0, indicating that the printer is not busy. This
procedure is called each time a character is to be printed.

EXAMPLE 11–1

;An assembly language procedure that prints the ASCII contents of BL.

PRINT PROC NEAR

.REPEAT ;test the busy flag
IN AL,BUSY
TEST AL,BUSY_BIT

.UNTIL ZERO
MOV AL,BL ;position data in AL
OUT PRINTER,AL ;print data
RET

PRINT ENDP

Notes about Interfacing Circuitry
A part of interfacing requires some knowledge about electronics. This portion of the introduction
to interfacing examines some of the many facets of electronic interfacing. Before a circuit or

STB

384 CHAPTER 11

FIGURE 11–5 The DB25 connector found on computers and the Centronics 36-pin connector found on printers for the
Centronics parallel printer interface.

device can be interfaced to the microprocessor, the terminal characteristics of the microprocessor
and its associated interfacing components must be known. (This subject was introduced at the
start of Chapter 9.)

Input Devices. Input devices are already TTL and compatible, and therefore can be connected
to the microprocessor and its interfacing components, or they are switch-based. Most switch-
based devices are either open or connected. These are not TTL levels—TTL levels are a logic 0
(0.0 V–0.8 V) or a logic 1 (2.0 V–5.0 V).

For a switch-based device to be used as a TTL-compatible input device, some conditioning
must be applied. Figure 11–6 shows a simple toggle switch that is properly connected to function
as an input device. Notice that a pull-up resistor is used to ensure that when the switch is open,
the output signal is a logic 1; when the switch is closed, it connects to ground, producing a valid
logic 0 level. The value of the pull-up resistor is not critical—it merely assures that the signal is

BASIC I/O INTERFACE 385

SPST

VCC

2.2K

TTL Output

FIGURE 11–6 A single-
pole, single-throw switch
interfaced as a TTL device.

VCC

VCC

1K

1K

Q

Q
4
5

1
2

6

3
A A

B
74LS00 74LS04 74LS04

74LS00

Q

Q

(a) (b)

Q

Q
Q

Q
B

1 2 3 4

FIGURE 11–7 Debouncing
switch contacts: (a) conventional
debouncing and (b) practical
debouncing.

at a logic 1 level. A standard range of values for pull-up resistors is usually anywhere between
1K Ω and 10K Ω.

Mechanical switch contacts physically bounce when they are closed, which can create a
problem if a switch is used as a clocking signal for a digital circuit. To prevent problems with
bounces, one of the two circuits depicted in Figure 11–7 can be constructed. The first circuit
(a) is a classical textbook bounce eliminator; the second (b) is a more practical version of the same
circuit. Because the first version costs more money to construct, in practice, the second would be
used because it requires no pull-up resistors and only two inverters instead of two NAND gates.

You may notice that both circuits in Figure 11–7 are asynchronous flip-flops. The circuit of
(b) functions in the following manner: Suppose that the switch is currently at position . If it is
moved toward Q but does not yet touch Q, the Q output of the circuit is a logic 0. The logic 0
state is remembered by the inverters. The output of inverter B connects to the input of inverter A.
Because the output of inverter B is a logic 0, the output of inverter A is a logic 1. The logic 1 out-
put of inverter A maintains the logic 0 output of inverter B. The flip-flop remains in this state
until the moving switch-contact first touches the Q connection. As soon as the Q input from the
switch becomes a logic 0, it changes the state of the flip-flop. If the contact bounces back away
from the Q input, the flip-flop remembers and no change occurs, thus eliminating any bounce.

Output Devices. Output devices are far more diverse than input devices, but many are inter-
faced in a uniform manner. Before any output device can be interfaced, we must understand what
the voltages and currents are from the microprocessor or a TTL interface component. The volt-
ages are TTL-compatible from the microprocessor of the interfacing element. (Logic 0 = 0.0 V
to 0.4 V; logic 1 = 2.4 V to 5.0 V.) The currents for a microprocessor and many microprocessor-
interfacing components are less than for standard TTL components. (Logic 0 = 0.0 to 2.0 mA;
logic 1 = 0.0 to 400 μA.)

Once the output currents are known, a device can now be interfaced to one of the outputs.
Figure 11–8 shows how to interface a simple LED to a microprocessor peripheral pin. Notice
that a transistor driver is used in Figure 11–8(a) and a TTL inverter is used in Figure 11–8(b).
The TTL inverter (standard version) provides up to 16 mA of current at a logic 0 level, which is
more than enough to drive a standard LED. A standard LED requires 10 mA of forward bias cur-
rent to light. In both circuits, we assume that the voltage drop across the LED is about 2.0 V.

Q

386 CHAPTER 11

VCC

LED

330

VCC

LED

330

2N2222
18K

Input

(a) (b)

Input
A

1 2

7404

FIGURE 11–8 Interfacing
an LED: (a) using a transistor
and (b) using an inverter.

A

Input

12V

6.2K

+

–

FIGURE 11–9 A DC motor
interfaced to a system by
using a Darlington-pair.

The data sheet for an LED states that the nominal drop is 1.65 V, but it is known from experience
that the drop is anywhere between 1.5 V and 2.0 V. This means that the value of the current-
limiting resistor is 3.0 V ÷ 10 mA or 300 Ω. Because 300 Ω is not a standard resistor value (the
lowest cost), a 330 Ω resistor is chosen for this interface.

In the circuit of Figure 11–8(a), we elected to use a switching transistor in place of the TTL
buffer. The 2N2222 is a good low-cost, general-purpose switching transistor that has a minimum
gain of 100. In this circuit, the collector current is 10 mA, so the base current will be 1/100 of the
collector current of 0.1 mA. To determine the value of the base current–limiting resistor, use the
0.1 mA base current and a voltage drop of 1.7 V across the base current–limiting resistor. The TTL
input signal has a minimum value of 2.4 V and the drop across the emitter-base junction is 0.7 V.
The difference is 1.7 V, which is the voltage drop across the resistor. The value of the resistor is
1.7 V ÷ 0.1 mA or 17K Ω. Because 17K Ω is not a standard value, an 18K Ω resistor is chosen.

Suppose that we need to interface a 12 V DC motor to the microprocessor and the motor
current is 1A. Obviously, we cannot use a TTL inverter for two reasons: The 12 V signal would
burn out the inverter and the amount of current far exceeds the 16 mA maximum current from the
inverter. We cannot use a 2N2222 transistor either, because the maximum amount of current
is 250 mA to 500 mA, depending on the package style chosen. The solution is to use a
Darlington-pair, such as a TIP120. The TIP120 costs 25¢ and with the proper heat sink can
handle 4A of current.

Figure 11–9 illustrates a motor connected to the Darlington-pair. The Darlington-pair has a
minimum current gain of 7000 and a maximum current of 4A. The value of the bias resistor is
calculated exactly the same as the one used in the LED driver. The current through the resistor is
1.0 A ÷ 7000, or about 0.143 mA. The voltage drop across the resistor is 0.9 V because of the
two diode drops (base/emitter junctions) instead of one. The value of the bias resistor is 0.9 V ÷
0.143 mA or 6.29K Ω. The standard value of 6.2 K Ω is used in the circuit. The Darlington-pair
must use a heat sink because of the amount of current going through it. Typically any device that
passes more than 1⁄2 A of current needs a heat sink. The diode must also be present to prevent the
Darlington-pair from being destroyed by the inductive kickback from the motor. This circuit is
also used to interface mechanical relays or just about any device that requires a large amount of
current or a change in voltage.

	Cover������������
	Title Page�����������������
	Copyright����������������
	CONTENTS
	CHAPTER 1 INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER
	Introduction/Chapter Objectives
	1–1 A Historical Background
	The Mechanical Age
	The Electrical Age
	Programming Advancements
	The Microprocessor Age
	The Modern Microprocessor

	1–2 The Microprocessor-Based Personal Computer System
	The Memory and I/O System
	The Microprocessor

	1–3 Number Systems
	Digits
	Positional Notation
	Conversion to Decimal
	Conversion from Decimal
	Binary-Coded Hexadecimal

	1–4 Computer Data Formats
	ASCII and Unicode Data
	BCD (Binary-Coded Decimal) Data
	Byte-Sized Data
	Word-Sized Data
	Doubleword-Sized Data
	Real Numbers

	1–5 Summary
	1–6 Questions and Problems

	CHAPTER 2 THE MICROPROCESSOR AND ITS ARCHITECTURE
	Introduction/Chapter Objectives
	2–1 Internal Microprocessor Architecture
	The Programming Model
	Multipurpose Registers

	2–2 Real Mode Memory Addressing
	Segments and Offsets
	Default Segment and Offset Registers
	Segment and Offset Addressing Scheme Allows Relocation

	2–3 Introduction to Protected Mode Memory Addressing
	Selectors and Descriptors
	Program-Invisible Registers

	2–4 Memory Paging
	Paging Registers
	The Page Directory and Page Table

	2–5 Flat Mode Memory
	2–6 Summary
	2–7 Questions and Problems

	CHAPTER 3 ADDRESSING MODES
	Introduction/Chapter Objectives
	3–1 Data-Addressing Modes
	Register Addressing
	Immediate Addressing
	Direct Data Addressing
	Register Indirect Addressing
	Base-Plus-Index Addressing
	Register Relative Addressing
	Base Relative-Plus-Index Addressing
	Scaled-Index Addressing
	RIP Relative Addressing
	Data Structures

	3–2 Program Memory-Addressing Modes
	Direct Program Memory Addressing
	Relative Program Memory Addressing
	Indirect Program Memory Addressing

	3–3 Stack Memory-Addressing Modes
	3–4 Summary
	3–5 Questions and Problems

	CHAPTER 4 DATA MOVEMENT INSTRUCTIONS
	Introduction/Chapter Objectives
	4–1 MOV Revisited
	Machine Language
	The 64-Bit Mode for the Pentium 4 and Core2

	4–2 PUSH/POP
	PUSH
	POP
	Initializing the Stack

	4–3 Load-Effective Address
	LEA
	LDS, LES, LFS, LGS, and LSS

	4–4 String Data Transfers
	The Direction Flag
	DI and SI
	LODS
	STOS
	MOVS
	INS
	OUTS

	4–5 Miscellaneous Data Transfer Instructions
	XCHG
	LANF and SAHF
	XLAT
	IN and OUT
	MOVSX and MOVZX
	BSWAP
	CMOV

	4–6 Segment Override Prefix
	4–7 Assembler Detail
	Directives
	Memory Organization
	A Sample Program

	4–8 Summary
	4–9 Questions and Problems

	CHAPTER 5 ARITHMETIC AND LOGIC INSTRUCTIONS
	Introduction/Chapter Objectives
	5–1 Addition, Subtraction, and Comparison
	Addition
	Subtraction
	Comparison

	5–2 Multiplication and Division
	Multiplication
	Division

	5–3 BCD and ASCII Arithmetic
	BCD Arithmetic
	ASCII Arithmetic

	5–4 Basic Logic Instructions
	AND
	OR
	Test and Bit Test Instructions
	NOT and NEG

	5–5 Shift and Rotate
	Shift
	Rotate
	Bit Scan Instructions

	5–6 String Comparisons
	SCAS
	CMPS

	5–7 Summary
	5–8 Questions and Problems

	CHAPTER 6 PROGRAM CONTROL INSTRUCTIONS
	Introduction/Chapter Objectives
	6–1 The Jump Group
	Unconditional Jump (JMP)
	Conditional Jumps and Conditional Sets
	LOOP

	6–2 Controlling the Flow of the Program
	WHILE Loops
	REPEAT-UNTIL Loops

	6–3 Procedures
	CALL
	RET

	6–4 Introduction to Interrupts
	Interrupt Vectors
	Interrupt Instructions
	Interrupt Control
	Interrupts in the Personal Computer
	64-Bit Mode Interrupts

	6–5 Machine Control and Miscellaneous Instructions
	Controlling the Carry Flag Bit
	WAIT
	HLT
	NOP
	LOCK Prefix
	ESC
	BOUND
	ENTER and LEAVE

	6–6 Summary
	6–7 Questions and Problems

	CHAPTER 7 USING ASSEMBLY LANGUAGE WITH C/C++
	Introduction/Chapter Objectives
	7–1 Using Assembly Language with C++ for 16-Bit DOS Applications
	Basic Rules and Simple Programs
	What Cannot Be Used from MASM Inside an_asm Block
	Using Character Strings
	Using Data Structures
	An Example of a Mixed-Language Program

	7–2 Using Assembly Language with Visual C/C++ for 32-Bit Applications
	An Example that Uses Console I/O to Access the Keyboard and Display
	Directly Addressing I/O Ports
	Developing a Visual C++ Application for Windows

	7–3 Mixed Assembly and C++ Objects
	Linking Assembly Language with Visual C++
	Adding New Assembly Language Instructions to C/C++ Programs

	7–4 Summary
	7–5 Questions and Problems

	CHAPTER 8 PROGRAMMING THE MICROPROCESSOR
	Introduction/Chapter Objectives
	8–1 Modular Programming
	The Assembler and Linker
	PUBLIC and EXTRN
	Libraries
	Macros

	8–2 Using the Keyboard and Video Display
	Reading the Keyboard
	Using the Video Display
	Using a Timer in a Program
	The Mouse

	8–3 Data Conversions
	Converting from Binary to ASCII
	Converting from ASCII to Binary
	Displaying and Reading Hexadecimal Data
	Using Lookup Tables for Data Conversions
	An Example Program Using a Lookup Table

	8–4 Disk Files
	Disk Organization
	File Names
	Sequential Access Files
	Random Access Files

	8–5 Example Programs
	Time/Date Display Program
	Numeric Sort Program
	Data Encryption

	8–6 Summary
	8–7 Questions and Problems

	CHAPTER 9 8086/8088 HARDWARE SPECIFICATIONS
	Introduction/Chapter Objectives
	9–1 Pin-Outs and the Pin Functions
	The Pin-Out
	Power Supply Requirements
	DC Characteristics
	Pin Connections

	9–2 Clock Generator (8284A)
	The 8284A Clock Generator
	Operation of the 8284A

	9–3 Bus Buffering and Latching
	Demultiplexing the Buses
	The Buffered System

	9–4 Bus Timing
	Basic Bus Operation
	Timing in General
	Read Timing
	Write Timing

	9–5 Ready and the Wait State
	The READY Input
	RDY and the 8284A

	9–6 Minimum Mode versus Maximum Mode
	Minimum Mode Operation
	Maximum Mode Operation
	The 8288 Bus Controller
	Pin Functions

	9–7 Summary
	9–8 Questions and Problems

	CHAPTER 10 MEMORY INTERFACE
	Introduction/Chapter Objectives
	10–1 Memory Devices
	Memory Pin Connections
	ROM Memory
	Static RAM (SRAM) Devices
	Dynamic RAM (DRAM) Memory

	10–2 Address Decoding
	Why Decode Memory?
	Simple NAND Gate Decoder
	The 3-to-8 Line Decoder (74LS138)
	The Dual 2-to-4 Line Decoder (74LS139)
	PLD Programmable Decoders

	10–3 8088 and 80188 (8-Bit) Memory Interface
	Basic 8088/80188 Memory Interface
	Interfacing Flash Memory
	Error Correction

	10–4 8086, 80186, 80286, and 80386SX (16-Bit) Memory Interface
	16-Bit Bus Control

	10–5 80386DX and 80486 (32-Bit) Memory Interface
	Memory Banks
	32-Bit Memory Interface

	10–6 Pentium through Core2 (64-Bit) Memory Interface
	64-Bit Memory Interface

	10–7 Dynamic RAM
	DRAM Revisited
	EDO Memory
	SDRAM
	DDR
	DRAM Controllers

	10–8 Summary
	10–9 Questions and Problems

	CHAPTER 11 BASIC I/O INTERFACE
	Introduction/Chapter Objectives
	11–1 Introduction to I/O Interface
	The I/O Instructions
	Isolated and Memory-Mapped I/O
	Personal Computer I/O Map
	Basic Input and Output Interfaces
	Handshaking
	Notes about Interfacing Circuitry

	11–2 I/O Port Address Decoding
	Decoding 8-Bit I/O Port Addresses
	Decoding 16-Bit I/O Port Addresses
	8- and 16-Bit-Wide I/O Ports
	32-Bit-Wide I/O Ports

	11–3 The Programmable Peripheral Interface
	Basic Description of the 82C55
	Programming the 82C55
	Mode 0 Operation
	An LCD Display, Interfaced to the 82C55
	Mode 1 Strobed Input
	Signal Definitions for Mode 1 Strobed Input
	Mode 1 Strobed Output
	Signal Definitions for Mode 1 Strobed Output
	Mode 2 Bidirectional Operation
	Signal Definitions for Bidirectional Mode 2
	82C55 Mode Summary
	The Serial EEPROM Interface

	11–4 8254 Programmable Interval Timer
	8254 Functional Description
	Pin Definitions
	Programming the 8254
	DC Motor Speed and Direction Control

	11–5 16550 Programmable Communications Interface
	Asynchronous Serial Data
	16550 Functional Description
	16550 Pin Functions
	Programming the 16550

	11–6 Analog-to-Digital (ADC) and Digital-to-Analog (DAC) Converters
	The DAC0830 Digital-to-Analog Converter
	The ADC080X Analog-to-Digital Converter
	Using the ADC0804 and the DAC0830

	11–7 Summary
	11–8 Questions and Problems

	CHAPTER 12 INTERRUPTS
	Introduction/Chapter Objectives
	12–1 Basic Interrupt Processing
	The Purpose of Interrupts
	Interrupts
	Interrupt Instructions: BOUND, INTO, INT, INT 3, and IRET
	The Operation of a Real Mode Interrupt
	Operation of a Protected Mode Interrupt
	Interrupt Flag Bits
	Storing an Interrupt Vector in the Vector Table

	12–2 Hardware Interrupts
	INTR and INTA
	The 82C55 Keyboard Interrupt

	12–3 Expanding the Interrupt Structure
	Using the 74ALS244 to Expand Interrupts
	Daisy-Chained Interrupt

	12–4 8259A Programmable Interrupt Controller
	General Description of the 8259A
	Connecting a Single 8259A
	Cascading Multiple 8259As
	Programming the 8259A
	8259A Programming Example

	12–5 Interrupt Examples
	Real-Time Clock
	Interrupt-Processed Keyboard

	12–6 Summary
	12–7 Questions and Problems

	CHAPTER 13 DIRECT MEMORY ACCESS AND DMA-CONTROLLED I/O
	Introduction/Chapter Objectives
	13–1 Basic DMA Operation
	Basic DMA Definitions

	13–2 The 8237 DMA Controller
	Pin Definitions
	Internal Registers
	Software Commands
	Programming the Address and Count Registers
	The 8237 Connected to the 80X86 Microprocessor
	Memory-to-Memory Transfer with the 8237
	DMA-Processed Printer Interface

	13–3 Shared-Bus Operation
	Types of Buses Defined
	The Bus Arbiter
	Pin Definitions

	13–4 Disk Memory Systems
	Floppy Disk Memory
	Pen Drives
	Hard Disk Memory
	Optical Disk Memory

	13–5 Video Displays
	Video Signals
	The TTL RGB Monitor
	The Analog RGB Monitor

	13–6 Summary
	13–7 Questions and Problems

	CHAPTER 14 THE ARITHMETIC COPROCESSOR, MMX, AND SIMD TECHNOLOGIES
	Introduction/Chapter Objectives
	14–1 Data Formats for the Arithmetic Coprocessor
	Signed Integers
	Binary-Coded Decimal (BCD)
	Floating-Point

	14–2 The 80X87 Architecture
	Internal Structure of the 80X87

	14–3 Instruction Set
	Data Transfer Instructions
	Arithmetic Instructions
	Comparison Instructions
	Transcendental Operations
	Constant Operations
	Coprocessor Control Instructions
	Coprocessor Instructions

	14–4 Programming with the Arithmetic Coprocessor
	Calculating the Area of a Circle
	Finding the Resonant Frequency
	Finding the Roots Using the Quadratic Equation
	Using a Memory Array to Store Results
	Converting a Single-Precision Floating-Point Number to a String

	14–5 Introduction to MMX Technology
	Data Types
	Instruction Set

	14–6 Introduction to SSE Technology
	Floating-Point Data
	The Instruction Set
	The Control/Status Register
	Programming Examples
	Optimization

	14–7 Summary
	14–8 Questions and Problems

	CHAPTER 15 BUS INTERFACE
	Introduction/Chapter Objectives
	15–1 The ISA Bus
	Evolution of the ISA Bus
	The 8-Bit ISA Bus Output Interface
	The 8-Bit ISA Bus Input Interface
	The 16-Bit ISA Bus

	15–2 The Peripheral Component Interconnect (PCI) Bus
	The PCI Bus Pin-Out
	The PCI Address/Data Connections
	Configuration Space
	BIOS for PCI
	PCI Interface
	PCI Express Bus

	15–3 The Parallel Printer Interface (LPT)
	Port Details
	Using the Parallel Port Without ECP Support

	15–4 The Serial COM Ports
	Communication Control

	15–5 The Universal Serial Bus (USB)
	The Connector
	USB Data
	USB Commands
	The USB Bus Node
	Software for the USBN9604/3

	15–6 Accelerated Graphics Port (AGP)
	15–7 Summary
	15–8 Questions and Problems

	CHAPTER 16 THE 80186, 80188, AND 80286 MICROPROCESSORS
	Introduction/Chapter Objectives
	16–1 80186/80188 Architecture
	Versions of the 80186/80188
	80186 Basic Block Diagram
	80186/80188 Basic Features
	Pin-Out
	DC Operating Characteristics
	80186/80188 Timing

	16–2 Programming the 80186/80188 Enhancements
	Peripheral Control Block
	Interrupts in the 80186/80188
	Interrupt Controller
	Timers
	DMA Controller
	Chip Selection Unit

	16–3 80C188EB Example Interface
	16–4 Real-Time Operating Systems (RTOS)
	What Is a Real-Time Operating System (RTOS)?
	An Example System
	A Threaded System

	16–5 Introduction to the 80286
	Hardware Features
	Additional Instructions
	The Virtual Memory Machine

	16–6 Summary
	16–7 Questions and Problems

	CHAPTER 17 THE 80386 AND 80486 MICROPROCESSORS
	Introduction/Chapter Objectives
	17–1 Introduction to the 80386 Microprocessor
	The Memory System
	The Input/Output System
	Memory and I/O Control Signals
	Timing
	Wait States

	17–2 Special 80386 Registers
	Control Registers
	Debug and Test Registers

	17–3 80386 Memory Management
	Descriptors and Selectors
	Descriptor Tables
	The Task State Segment (TSS)

	17–4 Moving to Protected Mode
	17–5 Virtual 8086 Mode
	17–6 The Memory Paging Mechanism
	The Page Directory
	The Page Table

	17–7 Introduction to the 80486 Microprocessor
	Pin-Out of the 80486DX and 80486SX Microprocessors
	Pin Definitions
	Basic 80486 Architecture
	80486 Memory System

	17–8 Summary
	17–9 Questions and Problems

	CHAPTER 18 THE PENTIUM AND PENTIUM PRO MICROPROCESSORS
	Introduction/Chapter Objectives
	18–1 Introduction to the Pentium Microprocessor
	The Memory System
	Input/Output System
	System Timing
	Branch Prediction Logic
	Cache Structure
	Superscalar Architecture

	18–2 Special Pentium Registers
	Control Registers
	EFLAG Register
	Built-In Self-Test (BIST)

	18–3 Pentium Memory Management
	Paging Unit
	Memory-Management Mode

	18–4 New Pentium Instructions
	18–5 Introduction to the Pentium Pro Microprocessor
	Internal Structure of the Pentium Pro
	Pin Connections
	The Memory System
	Input/Output System
	System Timing

	18–6 Special Pentium Pro Features
	Control Register

	18–7 Summary
	18–8 Questions and Problems

	CHAPTER 19 THE PENTIUM II, PENTIUM III, PENTIUM 4, AND CORE2 MICROPROCESSORS
	Introduction/Chapter Objectives
	19–1 Introduction to the Pentium II Microprocessor
	The Memory System
	Input/Output System
	System Timing

	19–2 Pentium II Software Changes
	CPUID Instruction
	SYSENTER and SYSEXIT Instructions
	FXSAVE and FXRSTOR Instructions

	19–3 The Pentium III
	Chip Sets
	Bus
	Pin-Out

	19–4 The Pentium 4 and Core2
	Memory Interface
	Register Set
	Hyper-Threading Technology
	Multiple Core Technology
	CPUID
	Model-Specific Registers
	Performance-Monitoring Registers
	64-Bit Extension Technology

	19–5 Summary
	19–6 Questions and Problems

	APPENDIX A: THE ASSEMBLER, VISUAL C++, AND DOS
	The Assembler
	Assembler Memory Models
	Selected DOS Function Calls
	Using Visual C++
	Create a Dialog Application

	APPENDIX B: INSTRUCTION SET SUMMARY
	Instruction Set Summary
	SIMD Instruction Set Summary
	Data Movement Instructions
	Arithmetic Instructions
	Logic Instructions
	Comparison Instructions
	Data Conversion Instructions

	APPENDIX C: FLAG-BIT CHANGES
	APPENDIX D: ANSWERS TO SELECTED EVEN-NUMBERED QUESTIONS AND PROBLEMS
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

