
C++ Programming Language 12/7/2017

1

Lecture Three
Operators and Precedence

Operator Precedence and 
Associativity

When different operators are used in the same
expression, the normal rules of arithmetic apply.
All C++ operators have a precedence and
associativity:
Precedence—when an expression contains two
different kinds of operators, which should be
applied first?
Associativity—when an expression contains two
operators with the same precedence, which
should be applied first?

2C++ Programming LanguageThursday, December 07, 2017



C++ Programming Language 12/7/2017

2

Operator Precedence and 
Associativity

2 + 3 * 4
Should it be interpreted as :- (2 + 3) * 4 (that is,
20), or rather is: 2 + (3 * 4)(that is, 14) the
correct interpretation?
As in normal arithmetic, in C++ multiplication
and division have equal importance and are
performed before addition and subtraction. We
say multiplication and division have precedence
over addition and subtraction.

3C++ Programming LanguageThursday, December 07, 2017

Operator Precedence and 
Associativity

To see how associativity works, consider the
expression

2 - 3 - 4
The two operators are the same, so they have
equal precedence. Should the first subtraction
operator be applied before the second, as in:
(2 - 3) – 4 (that is, -5), or rather is 2 - (3 - 4)

(that is, 3).

4C++ Programming LanguageThursday, December 07, 2017



C++ Programming Language 12/7/2017

3

Operator Precedence and 
Associativity

Consider the statement: w = x = y = z;
This is legal C++ and is called chained
assignment. Assignment can be used as
both a statement and an expression. The
statement x = 2 assigns the value 2 to the
variable x.

5C++ Programming LanguageThursday, December 07, 2017

Operator Precedence and 
Associativity

W=x=y=z;
Since assignment is right associative, the
chained assignment example should be
interpreted as: w = (x = (y = z)); which behaves
as follows:
• The expression y = z is evaluated first. z’s

value is assigned to y, and the value of the
expression y = z is z’s value.

6C++ Programming LanguageThursday, December 07, 2017



C++ Programming Language 12/7/2017

4

Operator Precedence and 
Associativity

7C++ Programming LanguageThursday, December 07, 2017

More Arithmetic Operators
A variable may increase by one or
decrease by five. The statement

x = x + 1;
increments x by one, making it one bigger
than it was before this statement was
executed. C++ has a shorter statement
that accomplishes the same effect:

x++;
This is the increment statement. A similar
decrement statement is available:

x--; // Same as x = x - 1;
8C++ Programming LanguageThursday, December 07, 2017



C++ Programming Language 12/7/2017

5

Increment and Decrement 
Operators

These statements are more precisely post-
increment and post-decrement operators. There
are also pre-increment and pre-decrement
forms, as in

--x; //Same as x=x-1;
++y; //Same as y=y+1;

When they appear alone in a statement, the pre-
and post- versions of the increment and
decrement operators work identically. Their
behavior is different when they are embedded
within a more complex statement.

9C++ Programming LanguageThursday, December 07, 2017

#include <iostream>

int main() {

int x1 = 1, y1 = 10,x2 = 100, y2 = 1000;

cout <<"x1=" << x1 << ", y1=" << y1

<<", x2=" << x2 << ", y2=" << y2 << '\n';

y1 = x1++;

cout <<"x1=" << x1 << ", y1=" << y1

<<", x2=" << x2 << ", y2=" << y2 << '\n';

y2 = ++x2;

cout <<"x1=" << x1 << ", y1=" << y1

<<", x2="<< x2 << ", y2=" << y2 << '\n';

}

10C++ Programming LanguageThursday, December 07, 2017

Increment and Decrement 
Operators



C++ Programming Language 12/7/2017

6

C++ provides a more general way of simplifying a
statement that modifies a variable through simple
arithmetic. For example, the statement

x = x + 5;
can be shorted to: x += 5; This statement means
“increase x by five.” Any statement of the form:

x op= exp;
Where: x is a variable.

op= is an arithmetic operator combined with the
assignment operator; for our purposes, the ones most
useful to us are +=, -=, *=, /=, and %=.

exp is an expression compatible with the variable x.
11C++ Programming LanguageThursday, December 07, 2017

Increment and Decrement 
Operators

Arithmetic reassignment statements of this form are
equivalent to:
x = x op exp; This means the statement: x *= y + z;
is equivalent to x = x * (y + z);
Do not accidentally reverse the order of the symbols
for the arithmetic assignment : x =+ 5 ; Notice that
the + and = symbols have been reversed.
The compiler interprets this statement as if it had
been written: x = +5 ; that is, assignment and the
unary operator. This assigns x to exactly five instead
of increasing it by five

12C++ Programming LanguageThursday, December 07, 2017

Increment and Decrement 
Operators



C++ Programming Language 12/7/2017

7

C++ provides a few other special-purpose arithmetic operators.
These special operators allow programmers to examine or
manipulate the individual bits that make up data values.

They are known as the bitwise operators. These operators consist of
&, |, ^, , >>, and <<.

The bitwise and operator, &, takes two integer sub expressions and
computes an integer result. The expression e1 & e2 is evaluated as
follows:

1. If bit 0 in both e1 and e2 is 1, then bit 0 in the result is 1;
otherwise, bit 0 in the result is 0.

2. If bit 1 in both e1 and e2 is 1, then bit 1 in the result is 1;
otherwise, bit 1 in the result is 0.

3. If bit 2 in both e1 and e2 is 1, then bit 2 in the result is 1;
otherwise, bit 2 in the result is 0.

4. If bit 31 in both e1 and e2 is 1, then bit 31 in the result is 1;
otherwise, bit 31 in the result is 0.

13C++ Programming Language
Thursday, December 07, 2017

Bitwise Operators

The bitwise or operator, |, takes two integer sub
expressions and computes an integer result. The
expression e1 | e2 is evaluated as follows:
1.If bit 0 in both e1 and e2 is 0, then bit 0 in the

result is 0; otherwise, bit 0 in the result is 1.
2.If bit 1 in both e1 and e2 is 0, then bit 1 in the

result is 0; otherwise, bit 1 in the result is 1.
3.If bit 2 in both e1 and e2 is 0, then bit 2 in the

result is 0; otherwise, bit 2 in the result is 1. ...
4.If bit 31 in both e1 and e2 is 0, then bit 31 in

the result is 0; otherwise, bit 31 in the result is
1.

14C++ Programming Language
Thursday, December 07, 2017

Bitwise Operators



C++ Programming Language 12/7/2017

8

The bitwise exclusive or (often referred to as xor)
operator (^) takes two integer sub expressions and
computes an integer result. The expression e1 ^ e2 is
evaluated as follows:

1. If bit 0 in e1 is the same as bit 0 in e2, then bit 0 in
the result is 0; otherwise, bit 0 in the result is 1.
2. If bit 1 in e1 is the same as bit 1 in e2, then bit 1 in
the result is 0; otherwise, bit 1 in the result is 1.
3. If bit 2 in e1 is the same as bit 2 in e2, then bit 2 in
the result is 0; otherwise, bit 2 in the result is 1. ...
4. If bit 31 in e1 is the same as bit 31 in e2, then bit
31 in the result is 0; otherwise, bit 31 in the result is
1.

15C++ Programming Language
Thursday, December 07, 2017

Bitwise Operators

The bitwise negation operator ( ) is a unary
operator that inverts all the bits of its expression.
The expression e is evaluated as follows:
1. If bit 0 in e is 0, then bit 0 in the result is 1;
otherwise, bit 0 in the result is 0.
2. If bit 1 in e is 0, then bit 1 in the result is 1;

otherwise, bit 1 in the result is 0.
3. If bit 2 in e is 0, then bit 2 in the result is 1;

otherwise, bit 2 in the result is 0 . ...
4. If bit 31 in e is 0, then bit 31 in the result is 1;
otherwise, bit 31 in the result is 0.

16C++ Programming Language
Thursday, December 07, 2017

Bitwise Operators



C++ Programming Language 12/7/2017

9

Shift left (<<). The expression x << y, where x and y are
integer types, shifts all the bits in x to the left y places.
Zeros fill vacated positions. The bits shifted off the left side
are discarded. The expression 5 << 2 evaluates to 20,
since 510 = 1012 shifted two places to the left yields
101002 = 2010.
Shift right (>>). The expression x >> y, where x and y are
integer types, shifts all the bits in x to the right y places.
What fills the vacated bits on the left depends on whether
the integer is signed or unsigned (for example, int vs.
unsigned):
� For signed values the vacated bit positions are filled

with the sign bit (the original leftmost bit).
� For unsigned values the vacated bit positions are filled

with zeros.
17C++ Programming Language

Thursday, December 07, 2017

Bitwise Operators

The bits shifted off the right side are discarded. The expression 5 >> 
2 evaluates to 1, since 510 = 1012 shifted two places to the left 
yields 0012 = 2010 (the original bits in positions 1 and 0 are shifted 
off the end and lost). Observe that x >> y is equal to x 2y.

#include<iostream.h>

Int main(){

int x, y ;

cout << "Please enter two integers " :;

cin >> x >> y ;

cout << x << " & " << y << " = " << (x & y) << 
'\n'; cout << x << " | " << y << " = " << (x | y) 
<< '\n'; cout << x << " ^ " << y << " = " << (x ^ 
y) << '\n'; cout << " " << x << " = " << x << '\n ;'

cout << x << " << " << 2 << " = " << (x << 2) << 
'\n'; cout << x << " >> " << 2 << " = " << (x >> 2) 
<< '\n {;'

18C++ Programming Language
Thursday, December 07, 2017

Bitwise Operators



C++ Programming Language 12/7/2017

10

19C++ Programming Language
Thursday, December 07, 2017

Bitwise Operators

Logical Expressions

Thursday, December 07, 2017 20C++ Programming Language

Relational and logical operators – result is boolean-valued
• == equal to counter == 0

• != not equal to counter != 0

• > greater than counter > 0

• < less than counter < 0

• >= greater than or equal to counter >= 0

• <= less than or equal to counter <= 0

• && logical and 0 < i && i < 10

• | | logical or i <= 0 || i >= 10

• ! logical not ! done



C++ Programming Language 12/7/2017

11

Boolean Expressions

An expression whose value is true or false
In C:
� integer value of 0 is “false”
� nonzero integer value is “true”

Example of Boolean expressions:

� age < 40
� graduation_year == 2010

Relational operator

21C++ Programming LanguageThursday, December 07, 2017

#include <iostream.h>

#include <stdbool.h>

int main()

{

const bool trueVar = true, falseVar = false;  

const int int3 = 3, int8 = 8;

cout<<"No 'boolean' output type\n”;

cout<<"bool trueVar: %d\n",trueVar;

cout<<"bool falseVar: %d\n\n",falseVar;

cout<<"int int3: %d\n",int3);

cout<<"int int8: %d\n",int8);

}

Library that defines: bool, true, false

What does the 

output look like?

22
C++ Programming LanguageThursday, December 07, 2017



C++ Programming Language 12/7/2017

12

Boolean Expressions

An expression whose value is true or false
In C:
� integer value of 0 is “false”
� nonzero integer value is “true”

Example of Boolean expressions:

� age < 40
� graduation_year == 2010

Relational operator

23C++ Programming LanguageThursday, December 07, 2017

#include <iostream.h>

#include <stdbool.h>

int main()

{

const bool trueVar = true, falseVar = false;  

const int int3 = 3, int8 = 8;

cout<<"No 'boolean' output type\n”;

cout<<"bool trueVar: %d\n",trueVar;

cout<<"bool falseVar: %d\n\n",falseVar;

cout<<"int int3: %d\n",int3);

cout<<"int int8: %d\n",int8);

}

Library that defines: bool, true, false

What does the 

output look like?

24C++ Programming LanguageThursday, December 07, 2017

Boolean Expressions



C++ Programming Language 12/7/2017

13

// Example3 (continued…)

cout<<"\nint3 comparators\n”;

cout<<"int3 == int8: %d\n",(int3 == int8);

cout<<"int3 != int8: %d\n",(int3!=int8);

cout<<"int3 < 3:  %d\n",(int3 <  3);

cout<<"int3 <= 3: %d\n",(int3 <= 3);

cout<<"int3 > 3:  %d\n",(int3 >  3);

cout<<"int3 >= 3: %d\n",(int3 >= 3);

Comparing 

values of two 

integer 

constants

What does the 

output look 

like?

25C++ Programming LanguageThursday, December 07, 2017

Boolean Expressions

More Examples

char myChar = ‘A’;
� The value of myChar==‘Q’ is false (0)

Be careful when using floating point equality
comparisons, especially with zero, e.g.
myFloat==0

26C++ Programming LanguageThursday, December 07, 2017



C++ Programming Language 12/7/2017

14

Suppose?
What if I want to know if a value is in a range?

Test for: 100 ≤ L ≤ 1000?

27C++ Programming LanguageThursday, December 07, 2017

You can’t do…

if(100 <= L <= 1000)

{

cout<<“Value is in range…\n”);

}

This code is WRONG 

and will fail.

28C++ Programming LanguageThursday, December 07, 2017



C++ Programming Language 12/7/2017

15

Why this fails…

if((100 <= L) <= 1000)

{

cout<<“Value is in range…\n”);

}

C ++ Treats this 

code this way

Suppose L is 5000. Then 100 <= L is true, so (100 <= L) 

evaluates to true, which, in C, is a 1. Then it tests 1 <= 1000, 

which also returns true, even though you expected a false.

29C++ Programming LanguageThursday, December 07, 2017

Compound Expressions

Want to check whether -3 <= B <= -1
� Since B = -2, answer should be True (1)

But in C++, the expression is evaluated as
� ((-3 <= B) <= -1)      (<= is left associative)
� (-3 <= B) is true (1)
� (1 <= -1) is false (0)
� Therefore, answer is 0!

30C++ Programming LanguageThursday, December 07, 2017



C++ Programming Language 12/7/2017

16

Compound Expressions

Solution (not in C): (-3<=B) and (B<=-1)

In C: (-3<=B) && (B<=-1)
Logical Operators
� And: &&
� Or: ||
� Not: !

31C++ Programming LanguageThursday, December 07, 2017

Compound Expressions
#include <iostream.h>

int main() 

{

const int A=2, B = -2;

cout<<"Value of A is %d\n", A;

cout<<"0 <= A <= 5?: Answer=%d\n", (0<=A) && (A<=5);

cout<<"Value of B is %d\n", B;

cout<<"-3 <= B <= -1?: Answer=%d\n", (-3<=B) && (B<=-1);

}
32C++ Programming LanguageThursday, December 07, 2017



C++ Programming Language 12/7/2017

17

Compound Expressions
#include <iostream.h>

int main() 

{

const int A=2, B = -2;

cout<<"Value of A is %d\n", A);

cout<<"0 <= A <= 5?: Answer=%d\n", (0<=A) && (A<=5);

cout<<"Value of B is %d\n", B);

cout<<"-3 <= B <= -1?: Answer=%d\n", (-3<=B) && (B<=-1);

}

Correct 

Answer!!! 

33C++ Programming LanguageThursday, December 07, 2017

Compound Expressions
#include <stdio.h>

int main() 

{

const int A=2, B = -2;

cout<<"Value of A is %d\n", A;

cout<<"0 <= A <= 5?: Answer=%d\n", (0<=A) && (A<=5);

cout<<"Value of B is %d\n", B;

cout<<"-3 <= B <= -1?: Answer=%d\n", (-3<=B) && (B<=-1);

}

Correct 

Answer!!! 

34C++ Programming LanguageThursday, December 07, 2017



C++ Programming Language 12/7/2017

18

Truth Tables

p q !p p && q p || q

True True

True False

False True

False False

Not And Or

35C++ Programming LanguageThursday, December 07, 2017

Truth Tables

p q !p p && q p || q 

True True False   

True False False   

False True True   

False False True   
 

 

Not And Or

36C++ Programming LanguageThursday, December 07, 2017



C++ Programming Language 12/7/2017

19

Truth Tables

p q !p p && q p || q 

True True  True  

True False  False  

False True  False  

False False  False  
 

 

Not And Or

37C++ Programming LanguageThursday, December 07, 2017

Truth Tables

p q !p p && q p || q 

True True   True 

True False   True 

False True   True 

False False   False 
 

 

Not And Or

38C++ Programming LanguageThursday, December 07, 2017



C++ Programming Language 12/7/2017

20

Truth Tables

p q !p p && q p || q 

True True False True True 

True False False False True 

False True True False True 

False False True False False 
 

 

Not And Or

Our comparison operators:  

<   <=   ==   !=   >=   >

39C++ Programming LanguageThursday, December 07, 2017

Conditional Expressions

Thursday, December 07, 2017 40C++ Programming Language

Based on the Conditional Operator ?:
(expr 1)?(expr 2 :expr 3)
• If expr 1 is true, expr 2 is the 

value of the overall expression
• If expr 1 is false, expr 3 is the 

value of the overall expression
• Parentheses are not syntactically 

required
• Typically used because ? has a 

high Precedence

max = (x > y) ? x : y;

min = (x < y) ? x : y;

index = (index+1 == size) ? 0 :
++index;



C++ Programming Language 12/7/2017

21

( ((A + B) > 5)   &&   ( ((A=0) < 1) > ((A + B) – 2)) )

( (6 > 5)            &&   ( ((A=0) < 1) > ((A + B) – 2)) )

(   1                   &&   ( ( 0 < 1)      >  ((A + B) – 2)) )

(   1                   &&   (     1            >  ( 2 – 2)       ) )

(   1                   &&   (      1           >   0               )  )

(   1                   &&           1                                   )

Answer:  1 Precedence: +/-

> <

&&

41C++ Programming LanguageThursday, December 07, 2017

You should refer to the 

C++ operator 

precedence and 

associative table

Or just use 

parentheses whenever 

you’re unsure about 

precedence and 

associativity

42C++ Programming LanguageThursday, December 07, 2017


