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UTrip Distribution 

After all available and relevant information on the number of trips departing or arriving in each 
zone has been collected, the next step in transport modeling is to distribute these trips over 
origin-destination (OD) cells. This can be done either at disaggregated or at aggregate level. In 
disaggregated trip distribution, destination choice proportions are simulated using information 
on individual characteristics. In aggregate trip distribution individual characteristics are not 
considered. In this course we will only discuss aggregate trip distribution models. 
 
The point of departure to the aggregate trip distribution step are the margins of the origin 
destination (OD) table computed in the trip generation step. This implies estimates are available 
for either: 
 the number of trip departures, 
 the number of trip arrivals, 
 the number of trip departures and the number of trip arrivals, 
 none. 

 
Which case is true depends on the purpose of the study and the availability of data and leads to 
separate trip distribution models. Table 1 schematizes the trip distribution problem for the case 
where both the number of trip departures and the number of trip arrivals are known: 
the objective is to forecast an OD-table based on estimates of future productions and attractions 
and measurements of current OD-flows, or measurements of the generalized cost of each trip. 
 
Table 1: Doubly constrained trip distribution 
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 Trip Matrix 

 
 
UTwo basic categories of aggregate trip distribution methods predominate in urban transportation 
planningU: 
 The first basic category of aggregate trip distribution methods is based on the gravity 

model. For gravity models, typical inputs include one or more flow matrices, an 
impedance matrix reflecting the distance, time, or cost of travel between zones, and 
estimates of future levels of productions and attractions. The gravity model explicitly 
relates flows between zones to interzonal impedance to travel. 
The gravity model was originally motivated by the observation that flows decrease as a 
function of the distance separating zones, just as the gravitational pull between two 
objects decreases as a function of the distance between the objects. As implemented for 
planning models, the Newtonian analogy has been replaced with the hypothesis that the 
trips between zones i and j are a function of trips originating in zone i and the relative 
attractiveness and/or accessibility of zone j with respect to all zones. 
Modern derivations of the gravity model show that it can be understood as the most likely 
spatial arrangement of trips given limited information available on zonal origin totals, 
zonal destination totals, and various supporting assumptions or constraints about mean 
trip lengths (Ortúzar en Willumsen, 1994). 
Many different measures of impedance can be used, such as travel distance, travel time, 
or travel cost. There are also several potential impedance functions used to describe the 
relative attractiveness of each zone. Popular choices are the exponential functions 
typically used in entropy models. As an alternative to impedance functions, one can use a 
friction factor lookup table (essentially a discrete impedance function) that relates the 
impedance between zones to the attractiveness between zones. 
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Prior to applying a gravity model, one has to calibrate the impedance function. Typically, 
calibration entails an iterative process that computes coefficients such that the gravity 
model replicates the trip length frequency distribution and matches base year productions, 
or attractions, or both . 

 The second basic category of aggregate trip distribution are the growth factor methods. 
These involve scaling an existing matrix (called base matrix) by applying multiplicative 
factors (often derived from predicted productions and/or attractions) to matrix cells. 

 
UPractical Issues 
 
Some of the classical growth factor methods do not take into account any information about the 
transportation network, and thus cannot reflect impacts of changes in the network. This may be 
reasonable for very short-term forecasts, but it is invalid for medium to long-term forecasts for 
which the network has changed, or to forecast scenarios that include changes in the network. 
Since most transportation planning involves analysis of transportation networks, gravity models 
or more sophisticated destination choice models should be used. 
In aggregate analysis, the choice of the impedance function should be based upon the 
mathematical properties of the function and the data distributions to be modeled. In practice, the 
selection of the functional form of the model should be based on the shape of the measured trip 
length distribution; consequently, examination of empirical trip length distributions is an 
important input into the decision process. Both smooth impedance functions and discrete 
functions (i.e. friction factors) can be used, as well as hybrid functions combining functions or 
utilizing smoothed discrete values . 
 

Distribution models should be estimated and applied for several trip purposes. The rationale for 
this is that both the alternatives and individuals' willingness to travel differ greatly by purpose. 
 
UDerivation of the gravity model 
 
The gravity model in its general form states that the number of trips between an origin and 
destination zone is proportional to the following three factors: 

 a factor for the origin zone (the production ability) 
 a factor for the destination zone (the attraction ability) 
 a factor depending on the travel costs between origin and destination zone 

Mathematically this is summarized as follows: 
 
TRijR = μQRiR X RjR FRij 
 
with: 
TRijR = number of trips from zone i to zone j 
QRiR = production ability of zone i 
X RjR = attraction ability of zone j 
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FRijR  = accessibility of j from i (depends on travel costs cRijR) 
μ = measure of average trip intensity in area. 
 
This model will be referred to as the general trip generation model; it will be made more 
specific for cases where extra information is available, such as the number of arrivals or 
departures. It can be seen that above model is in line with intuitively clear symmetry 
assumptions: if two possible destination zones have similar attraction abilities and are equally 
accessible from an origin zone, there is no reason to expect that more trips will be made from 
that origin zone to the first destination zone than to the second destination zone. 
According to utility theory, decision makers aim at maximizing their perceived net utilities. 
Utility is derived from activities. To maximize utility, in general multiple types of activities 
are needed during a day, e.g. working and living. 
Individual utility URijpR of making a trip from origin i to destination j for a specific homogeneous 
travel purpose (e.g. home to work) is: 
 
URijpR =URiR +U RjR − f (cRijR ) +ε Rijp 
 
 
URiR = average utility of origin bound activity in i 
URjR = average utility of destination bound activity in j 
f(cRijR) = utility value of travel resistance (cost) between i and j 
εRijpR = individual error term, accounting for misperceptions, taste variation and non modeled 
attributes. 
 
Define: 
VRijR =URiR +U RjR − f (cRijR ) 
 
Now we can write: 
URijpR =VRij R+𝜀𝜀 Rijp 
 
If we assume that the error term ε RijpR is Gumbel distributed with scale parameter b (logit 
assumptions), then for each decision maker the probability that he will opt for 
a trip from zone i to zone j equals: 
 

𝑝𝑝𝑖𝑖𝑖𝑖 =
exp(𝑏𝑏𝑣𝑣𝑖𝑖𝑖𝑖 )

∑ exp(𝑏𝑏𝑣𝑣𝑖𝑖𝑖𝑖 )𝑖𝑖𝑖𝑖
= 1

𝑘𝑘
exp(𝑏𝑏𝑈𝑈𝑖𝑖) . exp�𝑏𝑏𝑈𝑈𝑖𝑖 �. exp�−𝑏𝑏𝑏𝑏(𝑐𝑐𝑖𝑖𝑖𝑖 )�   

 
with 

𝑘𝑘 = � exp(𝑏𝑏𝑣𝑣𝑖𝑖𝑖𝑖 )
𝑖𝑖𝑖𝑖
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PRijR = probability that an individual will make a trip from i to j 
b = scale parameter in Gumbel distribution 
k = a measure for the number of and variability in trip alternatives. The larger k, the more 
choice opportunities for a traveler. 
 
With P travelers, the expected number of trips between i and j amounts to: 
 
TRijR = μQRiR X RjR FRij 
 
which is the general trip distribution model with: 
 
QRiR = production potential = exp(bURiR )  
XRjR = attraction potential = exp(bUR jR )  
FRijR = accessibility of j from = exp(−bf (cRijR ))  
μ = measure of average trip intensity in area = P / k 
 
Taking this general trip distribution model as starting point, we can formulate various derived 
models depending on additional constraints imposed on the model, especially on the number 
of trip arrivals and departures in the zones (see Table 1). 
 
Table 1: Types of distribution models according to imposed constraints on arrivals and 
departures 
 Departures unknown Departures known 
Arrivals unknown Direct Demand Origin Constraint 
Arrivals known Destination Constraint Doubly Constraint 
 
 
U1. Direct demand model 
In this case, no additional trip constraints are imposed, so this model equals the general trip 
distribution model: 
 
TRijR = μQRiR XR jR FRij 
 
with: 
Qi = production potential of i 
Xj = attraction potential of j 
Fij = accessibility of j from i 
μ = measure of average trip intensity in area 
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The production and attraction potentials may be derived from population, area, number of jobs, 
etc. Both the numbers of departures (productions) and arrivals (attractions) are unknown. They 
are determined endogenously. The resulting flows are estimated solely on the potentials of 
zones i and j and the impedance between them. 
Although the direct demand model is easy to implement, a disadvantage of the direct demand 
model is that it predicts a large number of trips per unit of analysis (e.g. person) for particularly 
accessible origin zones (zones that have many high attraction potential zones nearby). This is 
not realistic under all circumstances. For example, the number of home-work trips per person 
will in general not increase, even if many job opportunities are close-by. For this reason this 
method is rarely used in practice. 
 
USingly constrained trip distribution model 
UOrigin constrained 
 
In the origin constrained trip distribution model, the number of trip departures Pi are imposed 
as a set constraints on the general trip distribution model: 
 
∑ 𝑇𝑇𝑖𝑖 Rij R= PRi 

 
where Pi is the known number of trips departing from zone i, which is determined exogenously 
(for example estimated using a trip generation model). Combining this with the general trip 
distribution model 
 
TRij = RμQRiR X RjR FRij 
 
we can write: 
 
∑ 𝑇𝑇𝑖𝑖 RijR= ∑ (μ𝑄𝑄𝑖𝑖 𝑋𝑋𝑖𝑖 𝐹𝐹𝑖𝑖𝑖𝑖 ) 𝑖𝑖 = 𝜇𝜇QRiR ∑ (𝑋𝑋𝑖𝑖  𝐹𝐹𝑖𝑖𝑖𝑖  𝑖𝑖 )= PRi 
 
Solving for QRiR yields: 
 

QRiR=
𝑝𝑝𝑖𝑖𝑎𝑎𝑖𝑖
𝜇𝜇

 
 
where aRiR is defined as: 
 

𝑎𝑎𝑖𝑖 =
1

∑ 𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖
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Subditiuting the above equations gives the origin constrained distribution model: 
 
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖

𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖
∑ 𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑎𝑎𝑖𝑖𝑃𝑃𝑖𝑖𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖                                                         Equation (1) 

 
with: 
aRi R= balancing factor 
PRiR = number of trips departing from zone i 
XRj R= attraction potential of zone j 
FRijR = accessibility of zone j from zone i 
 
 
The origin constrained trip distribution model is therefore a proportional model that splits the 
given trip numbers originating in i over the destinations j in proportion to their relative 
accessibility and utility opportunity. 
Although different definitions of accessibility may be used, the factor ΣRjR (X RjRFRijR ) is often 
referred to as the accessibility of zone i. By dividing the total number of departures by the 
accessibility of a zone, we avoid the phenomenon that causes the total number of departures 
from an origin zone to increase if it is close to zones with high attraction. Of course, if a 
destination is highly accessible, i.e. many origin zones with high production abilities are close-
by, this will still result in a large number of trip arrivals. This might be an unwanted effect if the 
attraction ability is based on, e.g., the number of jobs in a zone. 
 

Equation (1) shows that the absolute levels of XRjR and FRij Rare not essential in this proportional 
model. If we multiply each of these variables by an arbitrary constant factor, this would not 
affect the model outcomes. This characteristic leaves a lot of freedom in specifying both 
variables. 
A practical example of an origin constrained model is the WOLOCAS model. This model is 
designed to predict the impact of the development of new residential areas (e.g. VINEX). While 
the number of trips originating from these areas is estimated using detailed trip generation 
models, no explicit estimate is made of the number of trip arrivals. Instead, attraction abilities 
are supplied for different trip purposes based on the number of jobs (homework), the number of 
facilities (shopping), and the number of inhabitants (other trip purposes).  
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UConstrained to destinations 
In analogy with the derivation of the origin constrained trip distribution model, the destination 
constrained trip distribution may be derived. The internal trip numbers are constrained to 
exogenously given arrivals. The number of arriving trips ARjR in j is known (e.g. by using a 
separate trip generation model), which implies: 
 
�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖∀𝑖𝑖
𝑖𝑖

 

 
Skipping the derivation (which is analogous to the previous derivation), the model is given 
below: 
 

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖
𝑄𝑄𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖

∑ (𝑄𝑄𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 ) = 𝑏𝑏𝑖𝑖𝑄𝑄𝑖𝑖𝐴𝐴𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖  

 
with: 
bRjR = balancing factor = ΣRiR 1/(QRiRFRijR ) 
QRiR = production potential of i 
ARjR = number of trips arriving at zone j 
FRijR = accessibility of j from i 
 
The destination constraint trip distribution model is therefore a proportional model that splits 
the given trip numbers arriving at j over the origins i in proportion to their relative accessibility 
and utility opportunity. 
The model outcomes are not sensitive to the absolute levels of QRiR and FRijR (see equation (1)). 
Multiplying both variables with an arbitrary constant does not change the results. This  
characteristic gives considerable freedom in defining these variables. 
 
UDoubly constrained trip distribution model 
The doubly constrained model arises if both the number of trip departures and the number of 
trip arrivals are imposed on the general trip distribution model. The derivation of the doubly 
constrained trip distribution model is as follows. We again start with the general trip 
distribution model: 
 
TRijR = μQRiR XR jR FRij 
 
Now we have two sets of constraints in that the numbers of arrivals and departures in the zones 
are exogenously given. Thus, the number of arriving trips Aj at j is known and the number of 
departing trips Pi from i is known (again, e.g., using separate models). This yields 
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�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖
𝑖𝑖

 

 
and  
 
�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖
𝑖𝑖

 

 
Hence, 
 
�𝑇𝑇𝑖𝑖𝑖𝑖 = ��𝜇𝜇𝑄𝑄𝑖𝑖𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖 � = 𝜇𝜇𝑄𝑄𝑖𝑖 ��𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖 � = 𝑃𝑃𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖

 

 
and 
�𝑇𝑇𝑖𝑖𝑖𝑖 = ��𝜇𝜇𝑄𝑄𝑖𝑖𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖 � = 𝜇𝜇𝑋𝑋𝑖𝑖 ��𝑄𝑄𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖 � = 𝐴𝐴𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖

 

 
 
Solving for Qiand Xj  
 

Qi =
Piai

μ  

 

Xj =
Ajbj

μ  

 
where aRiR and bRjR are balancing factors for the trip constraints, defined by: 
 

𝑎𝑎𝑖𝑖 =
1

∑ 𝑋𝑋𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖
 

 
and 
 

𝑏𝑏𝑖𝑖 =
1

∑ 𝑄𝑄𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖
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Hence, the doubly constrained trip distribution model now is: 
 

𝑇𝑇𝑖𝑖𝑖𝑖 =
1
𝜇𝜇 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 𝑃𝑃𝑖𝑖𝐴𝐴𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖  

 
The parameter μ may be included in the estimated values for aRiR and bRjR resulting in: 
 
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖 𝑃𝑃𝑖𝑖𝐴𝐴𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖                                           equation 2 
 
with: 
aRiR = balancing parameter 
bRjR = balancing parameter 
PRiR = number of trips departing at zone i 
ARjR = number of trips arriving at zone j 
FRijR = accessibility of zone j from i 
 
Whereas the trip distribution can be computed directly with the non-constrained and the singly 
constrained trip distribution models (provided sufficient input data are available), this is not the 
case with the doubly constrained trip distribution model. If all input data are available (i.e. the 
number of departures, Pi, the number of arrivals, ARjR, and the values of the distribution function, 
FRijR), previous equations define the coefficients aRiR and bRjR in model Equation (2) in an implicit 
manner. To determine these coefficients, an iterative procedure may be used. The following 
example illustrates such a procedure. 
 
UExample 2U [ trip distribution using a doubly constrained model ] 
Consider a study area consisting of two zones. The following data on population and labor are 
available: 

 
It should be emphasized that in this case the number of inhabitants was determined more 
accurately than the number of jobs. From national data it follows that the number of work-
related trips is on average 0.25 per person per day. The number of work-related trips arriving in 
a zone is 0.8 for each job. The travel resistance may be assumed to be equal for all OD-pairs in 
this example. 
UQuestions: 
(a) Formulate the doubly constrained distribution model and define its variables. 
(b) Compute the trip distribution using the doubly constrained trip distribution model. 
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UAnswers: 
 
(a) TRijR = aRiRbRjRPRiR ARjR FRij 
For the definition of the variables, see above. 
 
(b) If the travel resistance is equal for all OD-pairs, distribution function values equal to 1 may 
be used; i.e. FRijR = 1. The trip generation is obtained as follows: 
 

 
 
Now the values of the balancing factors aRiR and bRjR need to be computed. This is done in an 
iterative way. As an initializing step we fill a tableau with the known values of PRiR, ARjR, and FRijR: 
 

 
The total number of trip departures (450) does not match the total number of arrivals (400). The 
first step is therefore to balance them. This is done by multiplying the trip arrivals with a factor 
450/400 (because the number of departures is more accurately known): 
 

 
The following step is factor each row in order to match the row totals (departures): 

 
And each column in order to match the column totals (arrivals): 
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In this case there is no use in performing more iterations as this would not alter the solution 
anymore. The table above gives the requested trip distribution. 
 
UDistribution functions 
As can be deduced from Example 1, knowledge of distribution functions is essential when 
applying trip distribution models. The distribution function F (also referred to as deterrence 
function) represents the relative willingness to make a trip as a function of the generalized travel 
costs cRijR. In general such a function will be a monotonously decreasing function of travel costs. 
 

Usually different distribution functions are used, depending on the trip purpose and the 
attributes of the trip maker. The difference can be attributed to the fact that different categories 
of a population (students, housewife, employees) value travel resistance in a different way, due 
to differences in monetary and time budgets. A requirement to apply these different distribution 
functions of course is that the trip production and attraction can be estimated by category. In the 
most trip distribution models distinguish between different trip purposes (e.g. work, business 
and others), while some also distinguish between different categories of travelers (e.g. car 
available, and no car available). 
 
A typical example of the shape of distribution functions for various travel modes is shown in 
Figure 1. All functions decrease monotonously. The distribution function for the bicycle 
exceeds the others for small travel distances, but decreases to approximately zero at 10 km. 
The public transit curve is smallest initially, but barely decreases. At a distance of 
approximately 50 kilometres the public transit curve exceeds the car curve. 
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Figure 1: Example of distribution function for various modes 

 
 
UMathematical requirements 
Distribution functions are usually estimated on the basis of empirical data. In this procedure the 
following theoretical requirements may be imposed: 
 
1. The function should be decreasing with generalized travel time; a larger travel time should 
lead to diminished willingness to make a trip: 
 
𝐹𝐹(𝐶𝐶𝑖𝑖𝑖𝑖 ) ≥ 𝐹𝐹�𝑐𝑐𝑖𝑖𝑖𝑖 + ∆𝑐𝑐�𝑖𝑖𝑏𝑏 ∆𝑐𝑐> 0 
 
2. The expression ∫ 𝐹𝐹(𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐∞

0  is finite. 
 
This requirement implies that a limited number of trips originate from each zone, even if the 
study area is not bounded. If this requirement is not met, the number of trips depends on the 
boundaries of the study area, preventing model parameters from being transferable to other 
studies. Power functions (see next section) with an exponent less than or equal to 2 do not meet 
this requirement. 
 

3. The fraction 
𝐹𝐹(𝑎𝑎𝑐𝑐𝑖𝑖𝑖𝑖 )
𝐹𝐹𝑐𝑐𝑖𝑖𝑖𝑖

 depends on the value of cRijR. 

This requirement expresses that if the travel costs decrease with a constant factor, this has an 
impact on the trip distribution. 
 
4. Fixed absolute changes should have a diminishing relative impact on the willingness to 
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make a trip: 
 
𝐹𝐹(𝐶𝐶𝑖𝑖𝑖𝑖 + ∆𝐶𝐶)
𝐹𝐹(𝐶𝐶𝑖𝑖𝑖𝑖 ) >

𝐹𝐹(𝐶𝐶𝑖𝑖𝑖𝑖 + 𝐴𝐴 + ∆𝐶𝐶)
𝐹𝐹(𝐶𝐶𝑖𝑖𝑖𝑖 + 𝐴𝐴) 𝑖𝑖𝑏𝑏 𝐴𝐴 > 0 

 
 
UContinuous distribution functions 
 
Over time, different mathematical forms of distribution function have been proposed. The 
following overview is by no means complete, but is quite representative for practice. Note that 
all distribution functions are written with an index m (mode choice). If only one mode is 
considered, this index may be omitted. 
 
UPower: 
 
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 � = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

−𝛼𝛼𝑖𝑖  
 
This function is believed to be relatively accurate for large travel distances or costs, and less so 
for small distances. It is rarely used in practice. If αRmR=2, the Newtonian model is obtained. 
Although the name may suggest differently, in transport planning the name ‘gravity model’ is 
used for trip generation models using a wide range of distribution functions, including the 
Newtonian. 
 
 
UExponential: 
 
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 � = 𝛼𝛼 exp�𝛽𝛽𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 �      
 
 
A counterintuitive property of this function is that a fixed absolute increase in travel time results 
in a fixed relative decrease in the (modeled) willingness to make a trip. Therefore the function is 
not believed to be accurate when the range of traveled distances in the study area exceeds 15 
km. 
Nevertheless, this function appears quite often in theoretical research due to its nice 
mathematical properties. Most derivations of the trip distribution model in the literature result in 
a model with an exponential distribution function. 
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UTop-exponential (Tanner): 
 
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 � = 𝛼𝛼𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

𝛾𝛾𝑖𝑖 exp(𝛽𝛽𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 ) 
 
ULognormal: 
 
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 � = 𝛼𝛼𝑖𝑖 exp(𝛽𝛽𝑖𝑖𝑙𝑙𝑙𝑙2𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 + 1)) 
 
UTop-lognormal: 
 
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 � = 𝛼𝛼𝑖𝑖 Cijm

γm exp(𝛽𝛽𝑖𝑖𝑙𝑙𝑙𝑙2(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 + 1)) 
 
ULog-logistic: 
 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 � =
𝑀𝑀𝐴𝐴𝑋𝑋𝑖𝑖

1 + exp�𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖 log(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 )�
 

 
The top-exponential and top-lognormal distribution functions are used in practice as an 
alternative for the exponential and lognormal functions. They ignore the requirement that a 
distribution function should be monotonously decreasing (see Figure 2). 
 

 
Figure 2: Exponential distribution functions (parameters a = 1, β = -0.15), and top- 

exponential distribution function (parameters a = 0.25, β = -0.15, γ = 0.75). 
 
 



    أ.م.د. ز ينب احمد القيسي                                                                                                                       تخطيط النقل المتقدم
 4 رقم محاضرة -ماجستير                                                                                                                                                      

 
UDiscrete distribution functions 
 
As an alternative to the continuous distribution, a discrete or piecewise constant distribution 
function may be used. The mathematical form of this function is: 
 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 � = �𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 𝑐𝑐𝑘𝑘(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 )
𝐾𝐾

𝑘𝑘=1

 

 
with 
 
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘 ≥ 0 𝑎𝑎𝑙𝑙𝑐𝑐  𝑐𝑐𝑘𝑘(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 ) ∈ {0,1} 
 
 
where k is the cost bin, K is the number of cost bins (e.g. 10), and 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘  is the value of the 
distribution function for cost bin k. The function 𝑐𝑐𝑘𝑘  (𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 ) is the membership function which is 
1 if 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖  lies in cost bin k and zero otherwise. 
This function defines a fixed distribution function value for each cost-bin. A property of this 
approach is that no assumptions on the shape of the distribution function are imposed. In 
Figure 3 an example of a discrete distribution function is shown. 
 

 
Figure 3: Example discrete distribution function. 
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U2. Growth factor models 
 
As an alternative to trip distribution models, growth factor models may be used. In this 
approach a base year matrix is needed ( ‘basismatrix’). Each cell of this matrix is multiplied by 
a growth factor. Growth factors may be computed in a number of ways, e.g. as the output of an 
economic model, a trend model, etc. However, in these course notes, we only discuss methods 
of computing growth factors based on trip generation modeling. 
The base year matrix contains an estimate of the trips being made in the base year. Theoretically 
it is possible to directly observe a base year matrix using a travel survey. However, if the study 
area is decomposed into many zones, and the travel survey represents only a part of all travel, 
directly observing a base year matrix would result in a matrix mainly consisting of zero cells. 
This can be seen from the following example: 
 
Consider a town with 100.000 inhabitants that produce 15.000 trips during a two hour peak 
period. If this town is divided in 50 zones, there are more than 2.000 OD cells, and the average 
number of trips per OD-cell is 15.000/2.000 = 8. If 10% of the population is surveyed (10% is a 
large number for an survey) on average 0.8 trips per cell are reported in the observed matrix. 
This means that at least 20% of all observed cells must be zero (note the distinction between 
observed zero and unobserved cell). 
Applying a growth factor model to a base year matrix mainly consisting of zeros results in a 
predicted matrix mainly consisting of zeros. A better approach is to impose extra constraints on 
the base year matrix in order to supply a realistic value for the cells in which no trips are 
observed, for example by requiring that the base year matrix complies with the gravity model, 
i.e.: 
 
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑖𝑖𝑋𝑋𝑖𝑖 𝑏𝑏(𝑐𝑐𝑖𝑖𝑖𝑖 ) 
 
 
UWhere: 
𝑇𝑇𝑖𝑖𝑖𝑖0   : base year matrix 
 
𝑋𝑋𝑖𝑖 ,𝑄𝑄𝑖𝑖  : parameters in gravity model, calibrated in such a way that the expression observed 
�𝑇𝑇𝑖𝑖𝑖𝑖0  𝑇𝑇𝑖𝑖𝑖𝑖𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑣𝑣𝑜𝑜𝑐𝑐 �minimized 
 
𝑏𝑏(𝑐𝑐𝑖𝑖𝑖𝑖 ) :value of distribution function for OD-pair i-j 
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Note that imposing such a structure can also ‘spoil’ an observed matrix, for example by causing 
bias. When larger zones are used, determining an appropriate value for the travel costs, cij, that 
is representative for all trips between i and j becomes impossible. This might introduce 
inaccuracies in the approach described above. 
Another source of information that can be used to estimate base year matrices is traffic counts. 
Dedicated estimation techniques are available to adapt a prior base year matrix to a set of traffic 
counts.  
The growth factor methodology is pointed out in Figure 3. A trip distribution model is used to 
compute a current and future trip matrix. Combining these matrices results in a growth factor 
that is then applied to the base year matrix, resulting in a predicted trip matrix. 
 

 
 

Figure 3: Predicting future trip matrix using growth factor methodology. 
 
The base year matrix is the best possible estimate of current origin-destination trip flows in the 
study area. In the growth factor methodology the base year matrix is the starting point for 
making predictions of future states. It is considered a better base for the future than using a trip 
distribution model on its own. 
Reasons for this are among others: 

 models cannot capture peculiarities in trip making that often can be found in study areas. 
In contrast, such peculiarities can be included in a base matrix to a large extent because it 
is based on observations. 

 in planning practice it is necessary that parties involved in planning all agree on the 
fundamentals for planning. In this respect, a base matrix is a better tool to gain 
confidence in the fundamentals than a model because it is more understandable, it is 
verifiable, etc. 
 



    أ.م.د. ز ينب احمد القيسي                                                                                                                       تخطيط النقل المتقدم
 4 رقم محاضرة -ماجستير                                                                                                                                                      

 
So, a widely accepted approach to prediction is to take a base matrix and adapt this using 
growth factors derived from models. 
 
The methodology pointed out in Figure 3 also has a number of disadvantages of which the most 
important ones are: 
 if new building sites are developed (e.g. VINEX) the resulting changes in trip distribution  

are difficult to capture in a growth factor model. This is because the travel behavior of the 
present inhabitants of these building sites is not representative for the future, especially 
when an agriculturally oriented environment changes to an urban environment. 

 the base year matrix is influenced to a great extent by historical travel patterns. These 
patterns might fade away in a few decades time. This is particularly true if new cities 
have arisen as a result of suburbanization: initially the travel of suburbs is oriented 
toward the nearby town, but in time such strong historic ties vanish, and a more balanced 
trip making pattern arises. Of course, planners have to take account of these phenomena. 
Simply applying growth factors in this case would not lead to the desired result. 

 
UComputation of growth factors 
 

Throughout this section we use the following notation: 
 
𝑇𝑇𝑖𝑖𝑖𝑖0  base matrix (known current OD-table) 
Tij future OD-table to be predicted τ growth factor 
𝑇𝑇𝑖𝑖𝑖𝑖0� model outcome of trip quantity (current situation) 
𝑇𝑇�𝑖𝑖𝑖𝑖  model outcome of trip quantity (future situation) 
 
We can distinguish various levels of updating a base matrix, ranging from simple to complex. 
In a first class of approaches, the growth factors do not reflect changes in the network and 
consider only changes in socio-economic conditions in the study area. The other approaches 
do reflect changes in interzonal accessibility. 
 
UA. Network independent base matrix updating. 
A.1 General growth factor τ 
 
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑇𝑇𝑖𝑖𝑖𝑖              ∀𝑖𝑖, 𝑖𝑖 
 
τ may be determined by general factors expressing growth in activities such as demographic 
growth, economic growth etc. 
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A.2 Origin or destination specific growth factors τ  
 
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖0           𝑜𝑜𝑜𝑜 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖0           ∀𝑖𝑖, 𝑖𝑖 
 
Growth factors τ may be derived from trip end models applied to current and future conditions 
respectively. 
 
A.3 Two sets of independently and exogenously determined growth factors for origins and 
destinations. 
 
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑖𝑖 𝜏𝜏𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖0               ∀𝑖𝑖, 𝑖𝑖 
 
with constraints: 
 
𝜏𝜏𝑖𝑖 � 𝑇𝑇𝑖𝑖𝑖𝑖0

𝑖𝑖
= �𝑇𝑇𝑖𝑖𝑖𝑖 ∀𝑖𝑖

𝑖𝑖

 

𝜏𝜏𝑖𝑖 � 𝑇𝑇𝑖𝑖𝑖𝑖0
𝑖𝑖

= �𝑇𝑇𝑖𝑖𝑖𝑖 ∀𝑖𝑖
𝑖𝑖

 

 
� (𝜏𝜏𝑖𝑖�𝑇𝑇𝑖𝑖𝑖𝑖0

𝑖𝑖𝑖𝑖
) = �(𝜏𝜏𝑖𝑖 �𝑇𝑇𝑖𝑖𝑖𝑖0)

𝑖𝑖𝑖𝑖

 

 
 
This updating problem can be iteratively solved by bi-proportional fitting. Alternatively, growth 
factors 𝜏𝜏  may be derived from trip end models applied to current and future conditions 
successively. 
 
UB. Network dependent base matrix updatingU. 
In this case the growth factors reflect changes that are OD-relation specific. These changes can 
be calculated using trip distribution models applied to current and future conditions. 
 
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖0      𝑤𝑤𝑖𝑖𝑤𝑤ℎ   𝜏𝜏𝑖𝑖𝑖𝑖 = 𝑇𝑇�𝑖𝑖𝑖𝑖 /𝑇𝑇�𝑖𝑖𝑖𝑖0  
 
It may even be considered to combine the approaches A.3 and B into one joint base year matrix 
updating. 
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UDerived quantities; network performance 
 
After trip distribution has been computed, various quantities can be derived. These quantities 
play a key role in judging a transport network. They may be derived in the following ways: 
 
Notation: 
BRtR = total travel time 
BRkR = total travel costs 
BRlR = total traveled distance 
 
From link characteristics 
 
𝐵𝐵𝑤𝑤 = �𝑞𝑞𝑎𝑎𝑤𝑤𝑎𝑎

𝑎𝑎

 

 
 
𝐵𝐵𝑘𝑘 = �𝑞𝑞𝑎𝑎𝑐𝑐𝑎𝑎

𝑎𝑎

 

 
𝐵𝐵𝑙𝑙 = �𝑞𝑞𝑎𝑎𝑙𝑙𝑎𝑎

𝑎𝑎

 

 
𝑞𝑞𝑎𝑎 : flow on link a 
𝑤𝑤𝑎𝑎  : travel time on link a 
𝑐𝑐𝑎𝑎  : travel costs of link a 
𝑙𝑙𝑎𝑎  : length of link a 
 
From route-characteristics 
 
𝐵𝐵𝑤𝑤 = ���𝑇𝑇𝑖𝑖𝑖𝑖𝑜𝑜 𝑤𝑤𝑖𝑖𝑖𝑖𝑜𝑜

𝑜𝑜𝑖𝑖𝑖𝑖

 

 
𝐵𝐵𝑘𝑘 = ∑ ∑ ∑ Tij

rCij
r

rji   
 
𝐵𝐵𝑙𝑙 = ���𝑇𝑇𝑖𝑖𝑖𝑖𝑜𝑜 𝑙𝑙𝑖𝑖𝑖𝑖𝑜𝑜

𝑜𝑜𝑖𝑖𝑖𝑖

 

 
 
 



    أ.م.د. ز ينب احمد القيسي                                                                                                                       تخطيط النقل المتقدم
 4 رقم محاضرة -ماجستير                                                                                                                                                      

 
𝑇𝑇𝑖𝑖𝑖𝑖𝑜𝑜  = number of trips from i to j via route r 
𝑤𝑤𝑖𝑖𝑖𝑖𝑜𝑜  = travel time from i to j via route r 
Cij

r  = travel costs from i to j via route r 
𝑙𝑙𝑖𝑖𝑖𝑖𝑜𝑜  = length of route r from i to j 
 
In Figure 4 and Figure 5 these computational schemes are illustrated 
 

 
Figure 4: Computing network performance index from trip distribution data. 

 

 
Figure 5: Computing network performance index. 
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UDeparture time choice 
 
The time of an activity influences the utility that is derived from it, and hence influences the 
utility of the trip that is needed for this activity. Employees usually have preferred times to start 
and end their daily job. Starting early or late brings about a certain disutility. This disutility is 
sometimes accepted if making the trip at the preferred time would bring about an even higher 
disutility, due to congestion on the roads or discomfort and irregularity in public transit. The 
phenomenon of travelers avoiding the peak hour is referred to as peak spreading. 
Peak spreading is one of the pitfalls in transport planning. Not taking peak spreading into 
account leads to, among other things, an underestimation of travel demand in the peak hour:  
building new infrastructure in most cases leads to an inevitable ‘back to the peak’ effect. A way 
to introduce departure time choice into the chain of transport models is to value early and late 
arrivals using the utility scale. If travelers start early to avoid congestion, they trade off the 
disutility of starting early against the disutility of incurring extra travel time due to congestion. 
Departure time choice (given travel mode) is usually modeled as a choice between a number of 
discrete time intervals, assuming that travelers maximize a utility that may be decomposed in 
the following components: 
 utility of the activity (constant) 
 disutility of the free flow travel time (constant) 
 disutility of the travel time loss due to congestion (time dependent) 
 disutility of arriving early (time dependent) 
 disutility of arriving late (time dependent) 

The way these components are valued differs per from person to person. 
Figure 6 illustrates the (hypothetical) disutility function D given the preferred arrival time AT. 
Arriving late is penalized more than arriving early, and arriving much early is associated with a 
large disutility per time unit (see the slope in Figure 6). New infrastructure causes changes in 
congestion levels.  
 

 
Figure 6: (dis)utility as a function of time (AT: preferred arrival time). 


