Second Class /Materials Engineering Department

Torsion(twisting)

Derivation of Torsion Formula

In deriving the torsion formulas , we make the following assumptions. The first two apply only to shaft of circular section:

- 1. Circular section remain circular.
- 2. Plane section remain plane and don't warp.
- 3. The projection upon a transverse section of straight radial line in the section remains straight. As show fig.2
- 4. Shaft is loaded by twisting couples(torque) in planes that are perpendicular to the axis of the shaft.
- 5. Stresses don't exceed the proportional limit.

Fig.1

The total shearing deformation δ_s , as show fig.1 is given by:

 $\delta_s = DE = \rho\theta$ -----(a) where: DE is the arc length of a circle whose radius ρ ρ is a circle radius θ is the twisted angle in radian (not degree) (((to express θ in degree multiply by $180/\pi = 57.3 \text{ deg/ rad})))$

The unit deformation of this fiber(called Shear strain) is $\gamma = \delta_s / L = \rho \theta / L$ -----(b)

the shearing stress is determined from Hooke's law:

 $\tau = G \gamma = (G\theta/L)\rho$ -----(c)

where τ is shear stress

G is modulus of rigidity for shaft materials.

Now , a differential area of section M-N at a radial distance ρ from the axis of the shaft carries the differential load , as show fig.2

 $dP = \tau dA.$

The fact that applied torque *T* equal the resisting torque T_r , where T_r is the sum of resisting torque developed by all differential loads *dP*.

$$T = Tr = \int \rho \ dP = \int \rho \ (\tau \ dA)$$

Replacing by its valus from eq. (c) gives $T = (G\theta/L)\int\rho 2 \, dA$ Since $\int \rho 2 \, dA = J$ Where J is the polar moment of intertia of cross section. $T = G \theta J/L$ Then $\theta = TL/GJ$ -----(1) by replacing the product $G\theta/L$ in eq.(c)by T/J we obtain $\tau = T\rho/J$ -----(2) But, the maximum shearing stress is obtained at surface of shaft then repacled ρ by r radius of shaft.

Max. $\tau = Tr/J$ -----(2a)

When J value is applied in eq.2a, we obtained:

Ex/ An aluminum shaft with a constant diameter of 50 mm is loaded by torques applied to gears attached to it as shown in fig below. Using G = 28 GPa, determine the shearing stress for each segment and the relative angle of twist of gear D relative to gear A.

(Note/ review question 210 in the book, you can see the similarity of solution method between two questions)

$$\tau_{max} = \frac{16T}{\pi d^3}$$

$$\tau_{max} = \frac{16T}{\pi d^3}$$

$$= 16 \ge 600 \text{ N.m} / \pi (50 \text{ mm})^3 = 9600 \text{ N.m} / \pi 12500 \ge 10^{-6} \text{m} = ?$$

$$\tau_{max} = \frac{16T}{\pi d^3}$$

$$= 16 \ge 300 \text{ N.m} / \pi (50 \text{ mm})^3 = 4800 \text{ N.m} / \pi 12500 \ge 10^{-6} \text{m} = ?$$

$$\tau_{max} = \frac{16T}{\pi d^3}$$

$$= 16 \ge 800 \text{ N.m} / \pi (50 \text{ mm})^3 = 12800 \text{ N.m} / \pi 12500 \ge 10^{-6} \text{m} = ?$$

$$\theta = \frac{TL}{JG}$$

Rotation of D relative to A:

$$\theta_{D/A} = \frac{1}{JG} \Sigma TL$$

$$\theta_{D/A} = \frac{1}{\frac{1}{32}\pi (50^4)(28\,000)} [800(2) - 300(3) + 600(2)] (1000^2)$$

$$\theta_{D/A} = 0.1106 \, \text{rad} \, X \, 57.3 \, \text{deg/rad}$$

$$\theta_{D/A} = ? \circ$$