

Equal spacing Newton's Forward difference formula.

Equal spacing Newton's backward difference formula.

Central Difference Notation.

❖ Equal spacing Newton's Forward difference formula:

Previous general formula is valid for any arbitrary spaced nodes, if the X_i are equally spaced:

$$x_0, x_1 = x_0 + h, x_2 = x_0 + 2h, \dots, x_n = x_0 + nh$$

Then previous formula may be simplified to get started, define the first forward difference of g at X_i by:

$$\Delta g_j = g_{j+1} - g_j \text{ And the second forward diff. of } g_i$$

$$\Delta^2 g_j = \Delta g_{j+1} - \Delta g_j$$

Continuing in this way, the k th.

$$\Delta^k g_j = \Delta^{k-1} g_{j+1} - \Delta^{k-1} g_j \text{ Forward diff. of } g \text{ at } X_i$$

Theorem: the k th. Divided difference of an equally spaced (h) forward interpolation is given by:

$$g[x_0, x_1, \dots, x_k] = \frac{1}{k! h^k} \Delta^k g_0$$

Proof: we prove a ~~above~~ theorem by induction.

It is true for $k=1$ so that:

$$g[x_0, x_1] = \frac{g_1 - g_0}{x_1 - x_0} = \frac{1}{h} (g_1 - g_0) = \frac{1}{1! h^1} \Delta g_0. \text{ Now:}$$

$$g[x_0, x_1, \dots, x_{k+1}] = \frac{g[x_1, x_2, \dots, x_{k+1}] - g[x_0, x_2, \dots, x_k]}{(k+1)h}$$

$$= \frac{1}{(k+1)h} \left[\frac{1}{k! h^k} \Delta^k g_1 - \frac{1}{k! h^k} \Delta^k g_0 \right] = \frac{1}{(k+1)! h^{k+1}} \Delta^{k+1} g_0$$

Replacing $(k+1)$ by k then:

$$g[x_0, x_1, \dots, x_k] = \frac{1}{k! h^k} \Delta^k g_0$$

Next we write $f_n(x)$: first $x = x_0 + rh \Rightarrow r = \frac{x - x_0}{h}$
 $x - x_1 = (r - 1)h$

$$f_n(x) = g_0 + (x - x_0) g[x_0, x_1] + (x - x_0)(x - x_1) g[x_0, x_1, x_2] + \dots + (x - x_0) \dots (x - x_n) g[x_0, x_1, \dots, x_n]$$

$$= g_0 + \frac{rh}{h} \Delta g_0 + \frac{rh(r-1)h}{2!h^2} \Delta^2 g_0 + \frac{rh(r-1)h(r-2)h}{3!h^3} \Delta^3 g_0 + \dots$$

Simplifying get:

$$f_n(x) = g_0 + r \Delta g_0 + \frac{r(r-1)}{2!} \Delta^2 g_0 + \frac{r(r-1)(r-2)}{3!} \Delta^3 g_0 + \dots + \frac{r(r-1) \dots (r-n+1)}{n!} \Delta^n g_0$$

Or in compact form:

$$f_n(x) = \sum_{s=0}^n C_s^r \Delta^s g_0, \quad C_s^r = \frac{r(r-1)(r-2) \dots (r-s+1)}{s!}$$

Ex: given the following data, approximate the functional value at $x = 3.75$ using **Newton's forward interpolating** formula:

X	-1	0	1	2	3	4
Y	2	-1	1	3	5	2

Solution: equally spaced ($h = 1$):

j	x_j	y_j	Δy_j	$\Delta^2 y_j$	$\Delta^3 y_j$	$\Delta^4 y_j$	$\Delta^5 y_j$
0	-1	2		-3			
1	0	-1		5			
2	1	1	2	0	-5		5
3	2	3	2	0	0	-5	-10
4	3	5	2	-5			
5	4	2	-3				

$$f_s(x) = \sum_{s=0}^5 C_s^r \Delta^s y_0 \quad , \quad r = \frac{x - x_0}{h} = \frac{3.75 - (-1)}{1} = 4.75$$

$$\begin{aligned}
 f_s(3.75) &= 2 + 4.75(-3) + \frac{5(4.75)(4.75-1)}{2!} + \frac{-5(4.75)(4.75-1)(4.75-2)}{3!} \\
 &+ \frac{5(4.75)(4.75-1)(4.75-2)(4.75-3)}{4!} + \frac{-10(4.75)(4.75-1)\dots(4.75-4)}{5!} \\
 &= 3.96215 \quad (\text{check})
 \end{aligned}$$

❖ Equal spacing: Newton's backward Difference formula:

In stead of forward -sloping differences. We may also employ backward -sloping differences .the difference table remains the same as before (same numbers in the same positions) except for the running subscript j . we define the **1st. backward difference**

of g at X_j by:

$$\nabla g_j = g_j - g_{j-1} \quad \text{and the 2nd. backward diff.}$$

$$\nabla^2 g_j = \nabla g_j - \nabla g_{j-1} \quad \text{and continuing for the kth diff}$$

$$\nabla^k g_j = \nabla^{k-1} g_j - \nabla^{k-1} g_{j-1}$$

And in a similar procedure the **Newton's backward** diff. interpolating formula will be:

$$f_n(x) = \sum_{s=0}^n C_s^{r+s-1} \nabla^s g_0 \quad , \quad r = \frac{x - x_0}{h}$$

$$f_n(x) = g_0 + r \nabla g_0 + \frac{r(r+1)}{2!} \nabla^2 g_0 + \frac{r(r+1)(r+2)}{3!} \nabla^3 g_0 + \dots + \frac{r(r+1)\dots(r+n-1)}{n!} \nabla^n g_0$$

Ex: compute $j_0(1.72)$ from the values of **Bessel's fn.**

x	1.7	1.8	1.9	2
$j_0(x)$	0.397985	0.339986	0.281819	0.223891

Using (a) Newton's **forward** (b) Newton's **backward** formula:

Solution:

Equal spacing $h = 0.1$

j_{forward}	j_{back}	x_j	$j_0(x_j)$	1 st diff.	2 nd diff.	3 rd diff.
0	-3	1.7	0.397985		-0.057999	
1	-2	1.8	0.339986		-0.000168	
2	-1	1.9	0.281819	-0.058167		0.000409
3	0	2.0	0.223891	-0.057928		

$$(a) \quad r = \frac{x - x_0}{h} = \frac{1.72 - 1.7}{0.1} = 0.2$$

$$\begin{aligned} j_0(1.72) &= 0.397985 + 0.2(-0.057999) + \frac{0.2(0.2-1)(-0.000168)}{2!} \\ &+ \frac{0.2(0.2-1)(0.2-2)(0.000409)}{3!} = 0.386418 \end{aligned}$$

$$(b) \quad r = \frac{x - x_0}{h} = \frac{1.72 - 2}{0.1} = -2.8$$

$$j_0(1.72) = 0.223891 - 2.8(-0.057928) + \frac{-2.8(-2.8+1)(0.00024)}{2!} \\ + \frac{-2.8(-2.8+1)(-2.8+2)(-0.000409)}{3!} = 0.386418$$

Ex: show that (a) $\nabla^4 g_j = g_j - 4g_{j-1} + 6g_{j-2} - 4g_{j-3} + g_{j-4}$

$$(b) \quad \Delta^4 g_j = g_{j+4} - 4g_{j+3} + 6g_{j+2} - 4g_{j+1} + g_j$$

(a) **Start with:** $\nabla g_j = g_j - g_{j-1}$

$$\begin{aligned} \nabla^2 g_j &= \nabla(g_j - g_{j-1}) = \nabla g_j - \nabla g_{j-1} = g_j - g_{j-1} - (g_{j-1} - g_{j-2}) \\ &= g_j - 2g_{j-1} + g_{j-2} \end{aligned}$$

$$\begin{aligned} \nabla^3 g_j &= \nabla(g_j - 2g_{j-1} + g_{j-2}) = \nabla g_j - 2\nabla g_{j-1} + \nabla g_{j-2} \\ &= g_j - g_{j-1} - 2(g_{j-1} - g_{j-2}) + (g_{j-2} - g_{j-3}) \\ &= g_j - 3g_{j-1} + 3g_{j-2} - g_{j-3} \end{aligned}$$

$$\begin{aligned} \nabla^4 g_j &= \nabla(g_j - 3g_{j-1} + 3g_{j-2} - g_{j-3}) = \nabla g_j - 3\nabla g_{j-1} + 3\nabla g_{j-2} - \nabla g_{j-4} \\ &= g_j - g_{j-1} - 3(g_{j-1} - g_{j-2}) + 3(g_{j-2} - g_{j-3}) - g_{j-3} + g_{j-4} \\ &= g_j - 4g_{j-1} + 6g_{j-2} - 4g_{j-3} + g_{j-4} \end{aligned}$$

(b) **H.w.** (similarly except that $\Delta g_j = g_{j+1} - g_j$ forward

❖ Central Difference Notation:

There is a 3rd. notation for difference which is useful in numerical differentiation and connection with differential eqs. This is the central difference notation given by at \mathbf{x}_j

$\delta g_j = g_{j+\frac{1}{2}} - g_{j-\frac{1}{2}}$ The difference table

x_{-1}	g_{-1}	$\delta g_{-\frac{1}{2}}$
x_0	g_0	$\delta^2 g_0$
x_1	g_1	$\delta^3 g_{\frac{1}{2}}$
x_2	g_2	$\delta^2 g_{\frac{3}{2}}$

Relationship between difference operators:

Forward difference $\Delta g_j = g_{j+1} - g_j$

Backward difference $\nabla g_j = g_j - g_{j-1}$

Central difference $\delta g_j = g_{j+\frac{1}{2}} - g_{j-\frac{1}{2}}$

In fact these are related:

Define the shift operator E as $g(x+h) = E g(x)$ [shift one space h]. Hence: $g_{j+1} = E g_j$. now the shift operator E will be applied to forward, backward & central diff. and in general $g_{j+n} = E^n g_j$.

a) **For forward diff.**

$$\Delta g_j = g_{j+1} - g_j = E g_j - g_j = (E - 1)g_j \quad \therefore \Delta = E - 1$$

And in general

$$\Delta^n g_j = (E - 1)^n g_j \quad \text{or} \quad \Delta^n = (E - 1)^n$$

b) **For backward diff.**

$$\nabla g_j = g_j - g_{j-1}, \text{ and since } g_j = Eg_{j-1} \Rightarrow g_{j-1} = \frac{1}{E} g_j$$

$$\therefore \nabla g_j = \left(1 - \frac{1}{E}\right) g_j \text{ or simply } \nabla = \frac{E - 1}{E}$$

Therefore the relationship between Δ and ∇ is :

$$\nabla = \frac{\Delta}{\Delta + 1} \quad \& \quad \nabla^n = \frac{\Delta^n}{(\Delta + 1)^n}$$

c) **For central diff.**

$$\delta g_j = g_{j+\frac{1}{2}} - g_{j-\frac{1}{2}} = (E^{\frac{1}{2}} - E^{-\frac{1}{2}}) g_j$$

$$\therefore \delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}} = (\Delta + 1)^{\frac{1}{2}} - (\Delta + 1)^{-\frac{1}{2}}$$

$$\text{or } \delta = \frac{\Delta}{(\Delta + 1)^{\frac{1}{2}}} \quad \text{and} \quad \delta^n = \frac{\Delta^n}{(\Delta + 1)^{\frac{n}{2}}}$$