STABILITY ANALYSIS

Introduction

The most important problem in linear control systems concerns stability.
That is, under what conditions will a system become unstable? If it is
unstable, how should we stabilize the system?

Stability may be defined as the ability of a system to restore its
equilibrium position when disturbed or a system which has a bounded
response for a bounded output.

Stability Analysis in the Complex Plane

The stability of a linear closed-loop system can be determined from

the location of the closed-loop poles in the s-plane. If any of these poles
lie in the Right -Half of the s-plane (RHS), (either the poles are real or
complex as shown in Fig. 1.) then with increasing time, they give rise to
the dominant mode, and the transient response increases monotonically or
oscillate with increasing amplitude. Either of these systems represents an
unstable system.
For such a system, as soon as the power is turned on, the output may
increase with time. If no saturation takes place in the system and no
mechanical stop is provided, then the system may eventually be damaged
and fail, since the response of a real physical system cannot increase
indefinitely.
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Fig. 1. Poles located in RHS gives unstable response



Consider a simple feedback system shown in Fig. 2.
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Fig. 2, closed-loop control system
The overall T.F. is given as:
C(s) G(s)

R(s) 1+G(s)H(s)
The characteristic equation is of the above systemis 1+ G(s)H(s) = 0

The roots of the characteristic equation are called closed loop poles. The
location of such roots or poles on the s-plane will indicate the condition
of stability as shown in Fig. 3.
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Fig. 3. Stability condition based on the location of the closed loop poles



Routh Stability criterion (Two Necessary But Insufficient Conditions)

Since most liner closed loop systems have closed loop transfer function
of the form

Cls) bys" +bs"" + .- +b, s+b, B
R) ap"+as" "'+ +a,_s+a, AQ)

Where the a's and b's are constant and m < n, we must first factor the
polynomial A(s) in order to find the closed loop poles.

The characteristic equation of the simple feedback system can be written as a
polynomial:

ap8" + 3" P+ + adpys +a,=0

There are two necessary but insufficient conditions for the roots of the characteristic
equation to lie in Left Hand Side (LHS) of the S-plane (i.e., stable region)

1. All the coefficients a,, a,.;, a,., ..., a; and a, should have the same sign.

2. None of the coefficients vanish (All coefficients of the polynomial should exist).
By this way we judge the absolute stability of the system (stable or unstable).
Example #1

Given the characteristic equation,

3 )
Y25’ +5* +4s5+4

a(s)=s®+4s’ +3s
[s the system described by this characteristic equation stable?
One coefficient (-2) is negative. Therefore, the system does not satisfy the necessary
condition for stability.

Example #2

Given the characteristic equation,

a(s)=s*+4s +3s* +s* +4s+4

Is the system described by this characteristic equation stable? The term s is missin g.

Therefore, the system does not satisfy the necessary condition for stability.



Hurwitz Stability criterion (Necessary and Sufficient Condition)

Arrange the coefficients of the polynomial in rows and columns according to
the following pattern:
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The process of forming rows continues until we run out of elements. (The total

number of rows is n + 1.) The coefficients b, b;, bs;, and so on, are evaluated as

follows:
dydy — dpdy
by = —— —
h
dyidy — dpds
b‘g =
iy
aydg — dgdy
[!l:,.::I . S
iy

The evaluation of the b's is continued until the remaining ones are all zero.
The same pattern of cross-multiplying the coefficients of the two previous rows is

followed in evaluating the c's, d's, e's, and so on. That is,

o bya; — ayb,
Ly = "'-b'l
bias — ab
f_':z = T
b‘|ﬂ"ll - Hlbq.
f3 = b] e

Note that in developing the array an entire row may be divided or multiplied by a

positive_number in order to simplify the subsequent numerical calculation without

altering the stability conclusion.



Routh-Hurwitz stability criterion states that the number of roots of the
characteristic equation with positive real parts Is equal to the number of
changes in sign of the coefficients of the first column of the array.

It should be noted that the exact values of the terms in the first column
need not be known; instead, only the signs are needed.

The necessary and sufficient condition that all roots of the characteristic
equation lie in the left-half s plane is that:

a) All the coefficients of the characteristic equation be positive, and
b) All terms in the first column of the array have positive signs.

Example #3
Consider the following polynomial

427+ 38 +ds +5=0
Let us follow the procedure just presented and construct the array of coefficients.
(The first two rows can be obtained directly from the given polynomial. The
remaining terms are obtained from these. If any coefficients are missing, they may be

replaced by zeros in the array.)

.s“_' 13 5||s* 1 3 35
# 2 4 0|5 2 & & Thesecondrowis divided
1 2 0 by
15 s 1 3
1 - st =3
s 5 s5
Example #4

Check whether this system is stable or not.

2(s® +25+25)
H(s)= 5 3 -
(5) s* +5%+35° + 952 +165+10

The characteristic equation is:



§ 45" +357 4057 + 165 +10=0

Construct the Routh array
g3 1 | 3 16 0
5* N W _ :
3 —1x3-9x1__ﬁ M-ﬁ 0 0
—Gx0-0Gx1 —5x10-0x1
2 —_—1l r—=lﬁ 0 0
J 10x6-10x(=6) _, | 10x0-0x(-6) _, 0 0
10 10
80 12;-:1{}1—2{];-;[1(}]=m 0 0 0

There are 2 sign changes. There are 2 poles on the right half of the S-plane.

Therefore, the system is unstable.




If, however, the sign of the coefficient above the zero (g) is opposite that below it, it

indicates that there is one sign change. For example, for the equation

P =35+2
The array of coefficients is
, 5 1 -3
One sign change: 2 Dme ”
2
R "
One sign change: o 9

There are two sign changes of the coefficients in the first column. This agrees with
the correct result indicated by the factored form of the polynomial equation.
F-3s+2=(s - 1)¥(s+2)=0
2- If all the coefficients in any derived row are zero, it indicates that there are
roots of equal magnitude lying radially opposite in the s plane, that is, two real
roots with equal magnitudes and opposite signs and/or two conjugate

imaginary roots.

In such a case, the evaluation of the rest of the array can be continued by forming an
auxiliary polynomial with the coefficients of the last row and by using the
coefficients of the derivative of this auxiliary polynomial in the next row. Such roots
with equal magnitudes and lying radially opposite in the s plane can be found by
solving the auxiliary polynomial, which is always even.

Example #6
Consider the following equation:

g+ 25 + 2yt - 4Bt ~ 255 - H0 =10
The array of coefficients is

£ 1 8 -2

st 2 48 -50 « Auxiliary polynomial P(s)
s 0 0



The terms in the s° row are all zero. (Note that such a case occurs only in an odd

numbered row.) The auxiliary polynomial is then formed from the coefficients of

the s* row. The auxiliary polynomial P(s) is

P} = 25" + 485* — 50
dP (s)
ds
s 24 =25
$ 2 48 -50

= Bs® + 96s

s 8 96 « Coefficients of dP(s)/ds
s 24 -5
st1127 0

b -50

We see that there is one change in sign in the first column of the new array. Thus,
the original equation has one root with a positive real part. By solving for roots of

the auxiliary polynomial equation,
25 | 4852 50 =0

=1, g - 25

§=+£1, §=4/5



