
Shared Memory Architecture

 1

Shared Memory Architecture

A shared memory computer system consists of a set of independent processors,

a set of memory modules, and an interconnection network as shown in Figure

1-All processors share a global memory (coordination and synchronization).

2-Communication between tasks running on different processors is performed

through writing to and reading from the global memory.

Figure -1 Shared memory systems.

 Two main problems need to be addressed when designing a shared

memory system: performance degradation due to contention, and coherence

problems.

1- Classification of Shared Memory Systems
 An arbitration unit within the memory module passes requests through to

a memory controller. If the memory module is not busy and a single request

arrives, then the arbitration unit passes that request to the memory controller and

the request is satisfied. The module is placed in the busy state while a request is

being serviced. The memory module sends a wait signal, through the memory

controller, to the processor making the new request.

Figure -2 Shared memory via two ports.

 Again, the denied request can be either held to be served next or it

may be repeated some time later. Based on the interconnection network used,

shared memory systems can be categorized in the following categories.

Shared Memory Architecture

 2

1.1- Uniform Memory Access (UMA)

 The interconnection network used in the UMA can be a single bus,

multiple buses, or a crossbar switch. Because access to shared memory is

balanced, these systems are also called SMP (symmetric multiprocessor)

systems. Each processor has equal opportunity to read/write to memory,

including equal access speed.

Figure -3 Bus-based UMA (SMP) shared memory system.

1.2- Nonuniform Memory Access (NUMA)

 In the NUMA system, each processor has part of the shared memory

attached. The memory has a single address space. Therefore, any processor

could access any memory location directly using its real address. However, the

access time to modules depends on the distance to the processor. This results in

a nonuniform memory access time. A number of architectures are used to

interconnect processors to memory modules in a NUMA. Among these are the

tree and the hierarchical bus networks

Figure -4 NUMA shared memory system.

Shared Memory Architecture

 3

1.3- Cache-Only Memory Architecture (COMA)

 Similar to the NUMA, each processor has part of the shared memory in

the COMA. However, in this case the shared memory consists of cache

memory.. There is no memory hierarchy and the address space is made of all the

caches. There is a cache directory (D) that helps in remote cache access.

Figure -5 COMA shared memory system.

2- Bus-Based Symmetric Multiprocessors
 The bus/cache architecture alleviates the need for expensive multiported

memories and interface circuitry as well as the need to adopt a message-passing

paradigm when developing application software. However, the bus may get

saturated if multiple processors are trying to access the shared memory (via the

bus) simultaneously.

 Highspeed caches connected to each processor on one side and the bus on

the other side mean that local copies of instructions and data can be supplied at

the highest possible rate. If the local processor finds all of its instructions and

data in the local cache, we say the hit rate is 100%. The miss rate of a cache is

the fraction of the references that cannot be satisfied by the cache, and so must

be copied from the global memory, across the bus, into the cache, and then

passed on to the local processor.

 Hit rates are determined by a number of factors, ranging from the

application programs being run to the manner in which cache hardware is

implemented.We want to minimize the number of times each local processor

tries to use the central bus. Otherwise, processor speed will be limited by bus

bandwidth.

 We define the variables for hit rate, number of processors, processor

speed, bus speed, and processor duty cycle rates as follows:

- N = number of processors;

- h = hit rate of each cache, assumed to be the same for all caches;

Shared Memory Architecture

 4

- (1 - h) = miss rate of all caches;

- B = bandwidth of the bus, measured in cycles/second;

- I = processor duty cycle, assumed to be identical for all processors, in fetches/

cycle; and

- V = peak processor speed, in fetches/second.

 The maximum number of processors with cache memories that the bus

can support is given by the relation,

()Vh

BI
N

−

1

Example 1 Suppose a shared memory system is constructed from processors

that can execute V = 107 instructions/s and the processor duty cycle I =1. The

caches are designed to support a hit rate of 97%, and the bus supports a peak

bandwidth of B = 106 cycles/s. Then, (1 - h) = 0.03, and the maximum number

of processors N is N ≤ 106/(0.03 * 107) = 3.33. Thus, the system we have in

mind can support only three processors!

 We might ask what hit rate is needed to support a 30-processor system. In

this case, h = 1- BI/NV = 1 - (106(1))/((30)(107)) = 1 - 1/300, so for the system

we have in mind, h = 0.9967. Increasing h by 2.8% results in supporting a factor

of ten more processors.

3- Basic Cache Coherency Methods
 Multiple copies of data, spread throughout the caches, lead to a coherence

problem among the caches. The copies in the caches are coherent if they all

equal the same value. However, if one of the processors writes over the value of

one of the copies, then the copy becomes inconsistent because it no longer

equals the value of the other copies. leading to incorrect final results.

3.1- Cache–Memory Coherence

 In a single cache system, coherence between memory and the cache is

maintained using one of two policies: (1) write-through, and (2) write-back.

When a task running on a processor P requests the data in memory location X,

for example, the contents of X are copied to the cache, where it is passed on to

P. When P updates the value of X in the cache, the other copy in memory also

needs to be updated in order to maintain consistency. In write-through, the

memory is updated every time the cache is updated, while in write-back, the

memory is updated only when the block in the cache is being replaced. TABLE

-1 shows the write-through versus write-back policies.

TABLE -1 Write-Through vs. Write-Back

Shared Memory Architecture

 5

3.2- Cache–Cache Coherence

 In multiprocessing system, when a task running on processor P requests

the data in global memory location X, for example, the contents of X are copied

to processor P’s local cache, where it is passed on to P. Now, suppose processor

Q also accesses X. What happens if Q wants to write a new value over the old

value of X?

 There are two fundamental cache coherence policies: (1) write-invalidate,

and (2) write-update. Write-invalidate maintains consistency by reading from

local caches until a write occurs. When any processor updates the value of X

through a write, posting a dirty bit for X invalidates all other copies. For

example, processor Q invalidates all other copies of X when it writes a new

value into its cache. This sets the dirty bit for X. Q can continue to change X

without further notifications to other caches because Q has the only valid copy

of X. However, when processor P wants to read X, it must wait until X is

updated and the dirty bit is cleared. Write-update maintains consistency by

immediately updating all copies in all caches. All dirty bits are set during each

write operation. After all copies have been updated, all dirty bits are cleared.

TABLE -2 shows the write-update versus write-invalidate policies.

TABLE -2 Write-Update vs. Write-Invalidate

3.3- Shared Memory System Coherence

 The four combinations to maintain coherence among all caches and

global memory are:

. Write-update and write-through;

. Write-update and write-back;

. Write-invalidate and write-through;

. Write-invalidate and write-back.

 If we permit a write-update and write-through directly on global memory

location X, the bus would start to get busy and ultimately all processors would

Shared Memory Architecture

 6

be idle while waiting for writes to complete. In write-update and write-back,

only copies in all caches are updated. On the contrary, if the write is limited to

the copy of X in cache Q, the caches become inconsistent on X. Setting the dirty

bit prevents the spread of inconsistent values of X, but at some point, the

inconsistent copies must be updated.

4- Snooping Protocols
 Snooping protocols are based on watching bus activities and carry out the

appropriate coherency commands when necessary. Global memory is moved in

blocks, and each block has a state associated with it, which determines what

happens to the entire contents of the block. The state of a block might change as

a result of the operations Read-Miss, Read-Hit, Write-Miss, and Write-Hit. A

cache miss means that the requested block is not in the cache or it is in the cache

but has been invalidated.

 Snooping protocols differ in whether they update or invalidate shared

copies in remote caches in case of a write operation. They also differ as to

where to obtain the new data in the case of a cache miss. In what follows we go

over some examples of snooping protocols that maintain cache coherence.

4.1 Write-Invalidate and Write-Through

 In this simple protocol the memory is always consistent with the most

recently updated cache copy. Multiple processors can read block copies from

main memory safely until one processor updates its copy. At this time, all cache

copies are invalidated and the memory is updated to remain consistent. The

block states and protocol are summarized in TABLE -3.

Example 2 Consider a bus-based shared memory with two processors P and Q

as shown in Figure -6. Let us see how the cache coherence is maintained using

Write- Invalidate Write-Through protocol. Assume that that X in memory was

originally set to 5 and the following operations were performed in the order

given:

(1) P reads X; (2) Q reads X; (3) Q updates X; (4) Q reads X; (5) Q updates X;

(6) P updates X; (7) Q reads X.

 TABLE -4 shows the contents of memory and the two caches after the

execution of each operation when Write-Invalidate Write-Through was used for

cache coherence. The table also shows the state of the block containing X in P’s

cache and Q’s cache.

TABLE -3 Write-Invalidate Write-Through Protocol
State Description

Valid [VALID] The copy is consistent with global memory.

Invalid [INV] The copy is inconsistent.

Event Actions

Read-Hit Use the local copy from the cache.

Read-Miss Fetch a copy from global memory. Set the state of this copy to Valid.

Write-Hit Perform the write locally. Broadcast an Invalid command to all caches.

Shared Memory Architecture

 7

Update the global memory.

Write-Miss Get a copy from global memory. Broadcast an invalid command to all

caches. Update the global memory. Update the local copy and set its

state to Valid.

Block

replacement

Since memory is always consistent, no write-back is needed when a

block is replaced.

Figure -6 A bus-based shared memory system with two processors P and Q.

TABLE -4 Example 2 (Write-Invalidate Write-Through)

4.2- Write-Invalidate and Write-Back (Ownership Protocol)

 In this protocol a valid block can be owned by memory and shared in

multiple caches that can contain only the shared copies of the block. Multiple

processors can safely read these blocks from their caches until one processor

updates its copy. At this time, the writer becomes the only owner of the valid

block and all other copies are invalidated. The block states and protocol are

summarized in TABLE -5.

TABLE -5 Write-Invalidate Write-Back Protocol

State Description

Shared Data is valid and can be read safely. Multiple copies can be in

Shared Memory Architecture

 8

(Read-Only) [RO] this state.

Exclusive

(Read-Write) [RW]

Only one valid cache copy exists and can be read from and

written to safely. Copies in other caches are invalid.

Invalid [INV] The copy is inconsistent.

Event Action

Read-Hit Use the local copy from the cache.

Read-Miss If no Exclusive (Read-Write) copy exists, then supply a copy from

global memory. Set the state of this copy to Shared (Read-Only). If an

Exclusive (Read-Write) copy exists, make a copy from the cache that

set the state to Exclusive (Read-Write), update global memory and

local cache with the copy. Set the state to Shared (Read- Only) in both

caches.

Write-Hit If the copy is Exclusive (Read-Write), perform the write locally. If the

state is Shared (Read-Only), then broadcast an Invalid to all caches.

Set the state to Exclusive (Read-Write).

Write-Miss Get a copy from either a cache with an Exclusive (Read-Write) copy,

or from global memory itself. Broadcast an Invalid command to all

caches. Update the local copy and set its state to Exclusive (Read-

Write).

Block

replacement

If a copy is in an Exclusive (Read-Write) state, it has to be written

back to main memory if the block is being replaced. If the copy is in

Invalid or Shared (Read-Only) states, no write-back is needed when a

block is replaced.

Example 3 Consider the shared memory system of Figure -6 and the following

operations: (1) P reads X; (2) Q reads X; (3) Q updates X; (4) Q reads X; (5) Q

updates X; (6) P updates X; (7) Q reads X. TABLE -6 shows the contents of

memory and the two caches after the execution of each operation when Write-

Invalidate Write-Back was used for cache coherence. The table also shows the

state of the block containing X in P’s cache and Q’s cache.

TABLE -6 Example 3 (Write-Invalidate Write-Back)

Shared Memory Architecture

 9

4.3- Write-Once

 This write-invalidate protocol, which was proposed by Goodman in 1983,

uses a combination of write-through and write-back. Write-through is used the

very first time a block is written. Subsequent writes are performed using write-

back. The block states and protocol are summarized in TABLE -7.

TABLE -7 Write-Once Protocol
State Description

Invalid [INV] The copy is inconsistent.

Valid [VALID] The copy is consistent with global memory..

Reserved [RES] Data have been written exactly once and the copy is consistent

with global memory. There is only one copy of the global

memory block in one local cache.

Dirty [DIRTY] Data have been updated more than once and there is only one

copy in one local cache. When a copy is dirty, it must be

written back to global memory.

Event Action

Read-Hit Use the local copy from the cache.

Read-Miss If no Dirty copy exists, then supply a copy from global memory. Set

the state of this copy to Valid. If a dirty copy exists, make a copy from

the cache that set the state to Dirty, update global memory and local

cache with the copy. Set the state to VALID in both caches.

Write-Hit If the copy is Dirty or Reserved, perform the write locally, and set the

state to Dirty. If the state is Valid, then broadcast an Invalid command

to all caches. Update the global memory and set the state to Reserved.

Write-Miss Get a copy from either a cache with a Dirty copy or from global

memory itself. Broadcast an Invalid command to all caches. Update

the local copy and set its state to Dirty.

Block

replacement

If a copy is in a Dirty state, it has to be written back to main memory

if the block is being replaced. If the copy is in Valid, Reserved, or

Invalid states, no write-back is needed when a block is replaced.

Example 4 Consider the shared memory system of Figure -6 and the following

operations: (1) P reads X; (2) Q reads X; (3) Q updates X; (4) Q reads X; (5) Q

updates X; (6) P updates X; (7) Q reads X. TABLE -8 shows the contents of

memory and the two caches after the execution of each operation when Write-

Once was used for cache coherence. The table also shows the state of the block

containing X in P’s cache and Q’s cache.

TABLE -8 Example 4 (Write-Once Protocol)

Shared Memory Architecture

 10

4.4- Write-Update and Partial Write-Through

 In this protocol an update to one cache is written to memory at the same

time it is broadcast to other caches sharing the updated block. These caches

snoop on the bus and perform updates to their local copies. There is also a

special bus line, which is asserted to indicate that at least one other cache is

sharing the block. The block states and protocol are summarized in TABLE -9.

TABLE -9 Write-Update Partial Write-Through Protocol
State Description

Valid Exclusive

[VAL-X]

This is the only cache copy and is consistent with global

memory.

Shared [SHARE] There are multiple cache copies shared. All copies are

consistent with memory.

Dirty [DIRTY] This copy is not shared by other caches and has been updated.

It is not consistent with global memory. (Copy ownership.)

Event Action

Read-Hit Use the local copy from the cache. State does not change.

Read-Miss If no other cache copy exists, then supply a copy from global

memory. Set the state of this copy to Valid Exclusive. If a cache copy

exists, make a copy from the cache. Set the state to Shared in both

caches. If the cache copy was in a Dirty state, the value must also be

written to memory.

Write-Hit Perform the write locally and set the state to Dirty. If the state is

Shared, then broadcast data to memory and to all caches and set the

state to Shared. If other caches no longer share the block, the state

changes from Shared to Valid Exclusive.

Write-Miss The block copy comes from either another cache or from global

memory. If the block comes from another cache, perform the update

and update all other caches that share the block and global memory.

Set the state to Shared. If the copy comes from memory, perform the

write and set the state to Dirty.

Shared Memory Architecture

 11

Block

replacement

If a copy is in a Dirty state, it has to be written back to main memory

if the block is being replaced. If the copy is in Valid Exclusive or

Shared states, no write-back is needed when a block is replaced.

Example 5 Consider the shared memory system of Figure -6 and the following

operations: (1) P reads X; (2) P updates X; (3) Q reads X; (4) Q updates X; (5)

Q reads X; (6) Block X is replaced in P’s cache; (7) Q updates X; (8) P updates

X. TABLE -10 shows the contents of memory and the two caches after the

execution of each operation when Write-Update Partial Write-Through was

used for cache coherence. The table also shows the state of the block containing

X in P’s cache and Q’s cache.

TABLE -10 Example 5 (Write-Update Partial Write-Through)

Shared Memory Architecture

 12

5- Directory Based Protocols
 Owing to the nature of some interconnection networks and the size of the

shared memory system, updating or invalidating caches using snoopy protocols

might become unpractical. For example, when a multistage network is used to

build a large shared memory system, the broadcasting techniques used in the

snoopy protocols becomes very expensive. In such situations, coherence

commands need to be sent to only those caches that might be affected by an

update. This is the idea behind directory-based protocols.

Cache coherence protocols that somehow store information on where copies of

blocks reside are called directory schemes. A directory is a data structure that

maintains information on the processors that share a memory block and on its

state. The information maintained in the directory could be either centralized or

distributed. A Central directory maintains information about all blocks in a

central data structure. While Central directory includes everything in one

location, it becomes a bottleneck and suffers from large search time. To

alleviate this problem, the same information can be handled in a distributed

fashion by allowing each memory module to maintain a separate directory. In a

distributed directory, the entry associated with a memory block has only one

pointer one of the cache that requested the block.

5.1- Protocol Categorization

 A directory entry for each block of data should contain a number of

pointers to specify the locations of copies of the block. Each entry might also

contain a dirty bit to specify whether or not a unique cache has permission to

write this memory block. Most directory-based protocols can be categorized

under three categories: full-map directories, limited directories, and chained

directories.

Full-Map Directories In a full-map setting, each directory entry contains N

pointers, where N is the number of processors. Therefore, there could be N

cached copies of a particular block shared by all processors. For every memory

block, an N-bit vector is maintained, where N equals the number of processors

in the shared memory system. Each bit in the vector corresponds to one

processor. If the i th bit is set to one, it means that processor i has a copy of this

block in its cache. Figure -7 illustrates the fully mapped scheme. In the figure

the vector associated with block X in memory indicates that X is in Cache C0

and Cache C2. Clearly the space is not utilized efficiently in this scheme, in

particular if not many processors share the same block.

Limited Directories Limited directories have a fixed number of pointers per

directory entry regardless of the number of processors. Restricting the number

Shared Memory Architecture

 13

of simultaneously cached copies of any block should solve the directory size

problem that might exist in full-map directories. Figure -8 illustrates the limited

directory scheme. In this example, the number of copies that can be shared is

restricted to two

Figure -7 Fully mapped directory.

This is why the vector associated with block X in memory has only two

locations. The vector indicates that X is in Cache C0 and Cache C2.

Figure -8 Limited directory (maximum sharing = 2).

Chained Directories Chained directories emulate full-map by distributing the

directory among the caches. They are designed to solve the directory size

problem without restricting the number of shared block copies. Chained

directories keep track of shared copies of a particular block by maintaining a

chain of directory pointers.

 Figure -9 shows that the directory entry associated with X has a pointer to

Cache C2, which in turn has a pointer to Cache C0. That is, block X exists in

the two Caches C0 and Cache C2. The pointer from Cache C0 is pointing to

terminator (CT), indicating the end of the list.

Shared Memory Architecture

 14

Figure -9 Chained directory.

