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Shared Memory Architecture 

 
A shared memory computer system consists of a set of independent processors, 

a set of memory modules, and an interconnection network as shown in Figure 

1-All processors share a global memory (coordination and synchronization).  

2-Communication between tasks running on different processors is performed 

through writing to and reading from the global memory.  

  

 
Figure -1 Shared memory systems. 

 

 Two main problems need to be addressed when designing a shared 

memory system: performance degradation due to contention, and coherence 

problems.  

1- Classification of Shared Memory Systems 
 An arbitration unit within the memory module passes requests through to 

a memory controller. If the memory module is not busy and a single request 

arrives, then the arbitration unit passes that request to the memory controller and 

the request is satisfied. The module is placed in the busy state while a request is 

being serviced. The memory module sends a wait signal, through the memory 

controller, to the processor making the new request. 

 
Figure -2 Shared memory via two ports. 

 

  Again, the denied request can be either held to be served next or it 

may be repeated some time later. Based on the interconnection network used, 

shared memory systems can be categorized in the following categories. 
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1.1- Uniform Memory Access (UMA) 

 The interconnection network used in the UMA can be a single bus, 

multiple buses, or a crossbar switch. Because access to shared memory is 

balanced, these systems are also called SMP (symmetric multiprocessor) 

systems. Each processor has equal opportunity to read/write to memory, 

including equal access speed. 

  
Figure -3 Bus-based UMA (SMP) shared memory system. 

 

1.2- Nonuniform Memory Access (NUMA) 

 In the NUMA system, each processor has part of the shared memory 

attached. The memory has a single address space. Therefore, any processor 

could access any memory location directly using its real address. However, the 

access time to modules depends on the distance to the processor. This results in 

a nonuniform memory access time. A number of architectures are used to 

interconnect processors to memory modules in a NUMA. Among these are the 

tree and the hierarchical bus networks 

 
Figure -4 NUMA shared memory system. 
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1.3- Cache-Only Memory Architecture (COMA) 

 Similar to the NUMA, each processor has part of the shared memory in 

the COMA. However, in this case the shared memory consists of cache 

memory.. There is no memory hierarchy and the address space is made of all the 

caches. There is a cache directory (D) that helps in remote cache access.  

 
Figure -5 COMA shared memory system. 

 

2- Bus-Based Symmetric Multiprocessors 
  The bus/cache architecture alleviates the need for expensive multiported 

memories and interface circuitry as well as the need to adopt a message-passing 

paradigm when developing application software. However, the bus may get 

saturated if multiple processors are trying to access the shared memory (via the 

bus) simultaneously. 

 Highspeed caches connected to each processor on one side and the bus on 

the other side mean that local copies of instructions and data can be supplied at 

the highest possible rate. If the local processor finds all of its instructions and 

data in the local cache, we say the hit rate is 100%. The miss rate of a cache is 

the fraction of the references that cannot be satisfied by the cache, and so must 

be copied from the global memory, across the bus, into the cache, and then 

passed on to the local processor.  

 Hit rates are determined by a number of factors, ranging from the 

application programs being run to the manner in which cache hardware is 

implemented.We want to minimize the number of times each local processor 

tries to use the central bus. Otherwise, processor speed will be limited by bus 

bandwidth. 

 We define the variables for hit rate, number of processors, processor 

speed, bus speed, and processor duty cycle rates as follows: 

- N = number of processors; 

- h = hit rate of each cache, assumed to be the same for all caches; 
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- (1 - h) = miss rate of all caches; 

- B = bandwidth of the bus, measured in cycles/second; 

- I = processor duty cycle, assumed to be identical for all processors, in fetches/ 

cycle; and 

- V = peak processor speed, in fetches/second. 

 The maximum number of processors with cache memories that the bus 

can support is given by the relation, 

( )Vh

BI
N

−
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Example 1 Suppose a shared memory system is constructed from processors 

that can execute V = 107 instructions/s and the processor duty cycle I =1. The 

caches are designed to support a hit rate of 97%, and the bus supports a peak 

bandwidth of B = 106 cycles/s. Then, (1 - h) = 0.03, and the maximum number 

of processors N is N ≤ 106/(0.03 * 107) = 3.33. Thus, the system we have in 

mind can support only three processors! 

 We might ask what hit rate is needed to support a 30-processor system. In 

this case, h = 1- BI/NV = 1 - (106(1))/((30)(107)) = 1 - 1/300, so for the system 

we have in mind, h = 0.9967. Increasing h by 2.8% results in supporting a factor 

of ten more processors. 

 

3- Basic Cache Coherency Methods 
 Multiple copies of data, spread throughout the caches, lead to a coherence 

problem among the caches. The copies in the caches are coherent if they all 

equal the same value. However, if one of the processors writes over the value of 

one of the copies, then the copy becomes inconsistent because it no longer 

equals the value of the other copies. leading to incorrect final results.  

3.1- Cache–Memory Coherence 

 In a single cache system, coherence between memory and the cache is 

maintained using one of two policies: (1) write-through, and (2) write-back. 

When a task running on a processor P requests the data in memory location X, 

for example, the contents of X are copied to the cache, where it is passed on to 

P. When P updates the value of X in the cache, the other copy in memory also 

needs to be updated in order to maintain consistency. In write-through, the 

memory is updated every time the cache is updated, while in write-back, the 

memory is updated only when the block in the cache is being replaced. TABLE 

-1 shows the write-through versus write-back policies. 

TABLE -1 Write-Through vs. Write-Back 
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3.2- Cache–Cache Coherence 

 In multiprocessing system, when a task running on processor P requests 

the data in global memory location X, for example, the contents of X are copied 

to processor P’s local cache, where it is passed on to P. Now, suppose processor 

Q also accesses X. What happens if Q wants to write a new value over the old 

value of X? 

 There are two fundamental cache coherence policies: (1) write-invalidate, 

and (2) write-update. Write-invalidate maintains consistency by reading from 

local caches until a write occurs. When any processor updates the value of X 

through a write, posting a dirty bit for X invalidates all other copies. For 

example, processor Q invalidates all other copies of X when it writes a new 

value into its cache. This sets the dirty bit for X. Q can continue to change X 

without further notifications to other caches because Q has the only valid copy 

of X. However, when processor P wants to read X, it must wait until X is 

updated and the dirty bit is cleared. Write-update maintains consistency by 

immediately updating all copies in all caches. All dirty bits are set during each 

write operation. After all copies have been updated, all dirty bits are cleared. 

TABLE -2 shows the write-update versus write-invalidate policies. 

TABLE -2 Write-Update vs. Write-Invalidate 

 
3.3- Shared Memory System Coherence 

 The four combinations to maintain coherence among all caches and 

global memory are: 

. Write-update and write-through; 

. Write-update and write-back; 

. Write-invalidate and write-through; 

. Write-invalidate and write-back. 

 If we permit a write-update and write-through directly on global memory 

location X, the bus would start to get busy and ultimately all processors would 
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be idle while waiting for writes to complete. In write-update and write-back, 

only copies in all caches are updated. On the contrary, if the write is limited to 

the copy of X in cache Q, the caches become inconsistent on X. Setting the dirty 

bit prevents the spread of inconsistent values of X, but at some point, the 

inconsistent copies must be updated. 

4- Snooping Protocols 
 Snooping protocols are based on watching bus activities and carry out the 

appropriate coherency commands when necessary. Global memory is moved in 

blocks, and each block has a state associated with it, which determines what 

happens to the entire contents of the block. The state of a block might change as 

a result of the operations Read-Miss, Read-Hit, Write-Miss, and Write-Hit. A 

cache miss means that the requested block is not in the cache or it is in the cache 

but has been invalidated. 

 Snooping protocols differ in whether they update or invalidate shared 

copies in remote caches in case of a write operation. They also differ as to 

where to obtain the new data in the case of a cache miss. In what follows we go 

over some examples of snooping protocols that maintain cache coherence. 

 

4.1 Write-Invalidate and Write-Through 

 In this simple protocol the memory is always consistent with the most 

recently updated cache copy. Multiple processors can read block copies from 

main memory safely until one processor updates its copy. At this time, all cache 

copies are invalidated and the memory is updated to remain consistent. The 

block states and protocol are summarized in TABLE -3. 

 

Example 2 Consider a bus-based shared memory with two processors P and Q 

as shown in Figure -6. Let us see how the cache coherence is maintained using 

Write- Invalidate Write-Through protocol. Assume that that X in memory was 

originally set to 5 and the following operations were performed in the order 

given: 

(1) P reads X; (2) Q reads X; (3) Q updates X; (4) Q reads X; (5) Q updates X; 

(6) P updates X; (7) Q reads X.  

 TABLE -4 shows the contents of memory and the two caches after the 

execution of each operation when Write-Invalidate Write-Through was used for 

cache coherence. The table also shows the state of the block containing X in P’s 

cache and Q’s cache. 

TABLE -3 Write-Invalidate Write-Through Protocol 
State Description 

Valid [VALID] The copy is consistent with global memory. 

Invalid [INV] The copy is inconsistent. 

Event Actions 

Read-Hit  Use the local copy from the cache. 

Read-Miss  Fetch a copy from global memory. Set the state of this copy to Valid. 

Write-Hit Perform the write locally. Broadcast an Invalid command to all caches. 
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Update the global memory. 

Write-Miss Get a copy from global memory. Broadcast an invalid command to all 

caches. Update the global memory. Update the local copy and set its 

state to Valid. 

Block 

replacement 

Since memory is always consistent, no write-back is needed when a 

block is replaced. 

 
Figure -6 A bus-based shared memory system with two processors P and Q. 

 

TABLE -4 Example 2 (Write-Invalidate Write-Through) 

 
4.2- Write-Invalidate and Write-Back (Ownership Protocol) 

 In this protocol a valid block can be owned by memory and shared in 

multiple caches that can contain only the shared copies of the block. Multiple 

processors can safely read these blocks from their caches until one processor 

updates its copy. At this time, the writer becomes the only owner of the valid 

block and all other copies are invalidated. The block states and protocol are 

summarized in TABLE -5. 

 

TABLE -5 Write-Invalidate Write-Back Protocol 

 
State Description 

Shared  Data is valid and can be read safely. Multiple copies can be in 
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(Read-Only) [RO] this state. 

Exclusive  

(Read-Write) [RW] 

Only one valid cache copy exists and can be read from and 

written to safely. Copies in other caches are invalid. 

Invalid [INV] The copy is inconsistent. 

Event Action 

Read-Hit Use the local copy from the cache. 

Read-Miss If no Exclusive (Read-Write) copy exists, then supply a copy from 

global memory. Set the state of this copy to Shared (Read-Only). If an 

Exclusive (Read-Write) copy exists, make a copy from the cache that 

set the state to Exclusive (Read-Write), update global memory and 

local cache with the copy. Set the state to Shared (Read- Only) in both 

caches. 

Write-Hit If the copy is Exclusive (Read-Write), perform the write locally. If the 

state is Shared (Read-Only), then broadcast an Invalid to all caches. 

Set the state to Exclusive (Read-Write). 

Write-Miss Get a copy from either a cache with an Exclusive (Read-Write) copy, 

or from global memory itself. Broadcast an Invalid command to all 

caches. Update the local copy and set its state to Exclusive (Read-

Write). 

Block 

replacement 

If a copy is in an Exclusive (Read-Write) state, it has to be written 

back to main memory if the block is being replaced. If the copy is in 

Invalid or Shared (Read-Only) states, no write-back is needed when a 

block is replaced. 

 

Example 3 Consider the shared memory system of Figure -6 and the following 

operations: (1) P reads X; (2) Q reads X; (3) Q updates X; (4) Q reads X; (5) Q 

updates X; (6) P updates X; (7) Q reads X. TABLE -6 shows the contents of 

memory and the two caches after the execution of each operation when Write-

Invalidate Write-Back was used for cache coherence. The table also shows the 

state of the block containing X in P’s cache and Q’s cache. 

TABLE -6 Example 3 (Write-Invalidate Write-Back) 
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4.3- Write-Once 

 This write-invalidate protocol, which was proposed by Goodman in 1983, 

uses a combination of write-through and write-back. Write-through is used the 

very first time a block is written. Subsequent writes are performed using write-

back. The block states and protocol are summarized in TABLE -7. 

TABLE -7 Write-Once Protocol 
State Description 

Invalid [INV] The copy is inconsistent. 

Valid [VALID] The copy is consistent with global memory.. 

Reserved [RES] Data have been written exactly once and the copy is consistent 

with global memory. There is only one copy of the global 

memory block in one local cache. 

Dirty [DIRTY] Data have been updated more than once and there is only one 

copy in one local cache. When a copy is dirty, it must be 

written back to global memory. 

Event Action 

Read-Hit Use the local copy from the cache. 

Read-Miss If no Dirty copy exists, then supply a copy from global memory. Set 

the state of this copy to Valid. If a dirty copy exists, make a copy from 

the cache that set the state to Dirty, update global memory and local 

cache with the copy. Set the state to VALID in both caches. 

Write-Hit If the copy is Dirty or Reserved, perform the write locally, and set the 

state to Dirty. If the state is Valid, then broadcast an Invalid command 

to all caches. Update the global memory and set the state to Reserved. 

Write-Miss Get a copy from either a cache with a Dirty copy or from global 

memory itself. Broadcast an Invalid command to all caches. Update 

the local copy and set its state to Dirty. 

Block 

replacement 

If a copy is in a Dirty state, it has to be written back to main memory 

if the block is being replaced. If the copy is in Valid, Reserved, or 

Invalid states, no write-back is needed when a block is replaced. 

Example 4 Consider the shared memory system of Figure -6 and the following 

operations: (1) P reads X; (2) Q reads X; (3) Q updates X; (4) Q reads X; (5) Q 

updates X; (6) P updates X; (7) Q reads X. TABLE -8 shows the contents of 

memory and the two caches after the execution of each operation when Write-

Once was used for cache coherence. The table also shows the state of the block 

containing X in P’s cache and Q’s cache. 

 

TABLE -8 Example 4 (Write-Once Protocol) 
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4.4- Write-Update and Partial Write-Through 

 In this protocol an update to one cache is written to memory at the same 

time it is broadcast to other caches sharing the updated block. These caches 

snoop on the bus and perform updates to their local copies. There is also a 

special bus line, which is asserted to indicate that at least one other cache is 

sharing the block. The block states and protocol are summarized in TABLE -9. 

 

TABLE -9 Write-Update Partial Write-Through Protocol 
State Description 

Valid Exclusive 

[VAL-X] 

This is the only cache copy and is consistent with global 

memory. 

Shared [SHARE] There are multiple cache copies shared. All copies are 

consistent with memory. 

Dirty [DIRTY] This copy is not shared by other caches and has been updated. 

It is not consistent with global memory. (Copy ownership.) 

Event Action 

Read-Hit Use the local copy from the cache. State does not change. 

Read-Miss If no other cache copy exists, then supply a copy from global 

memory. Set the state of this copy to Valid Exclusive. If a cache copy 

exists, make a copy from the cache. Set the state to Shared in both 

caches. If the cache copy was in a Dirty state, the value must also be 

written to memory. 

Write-Hit Perform the write locally and set the state to Dirty. If the state is 

Shared, then broadcast data to memory and to all caches and set the 

state to Shared. If other caches no longer share the block, the state 

changes from Shared to Valid Exclusive. 

Write-Miss The block copy comes from either another cache or from global 

memory. If the block comes from another cache, perform the update 

and update all other caches that share the block and global memory. 

Set the state to Shared. If the copy comes from memory, perform the 

write and set the state to Dirty. 
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Block 

replacement 

If a copy is in a Dirty state, it has to be written back to main memory 

if the block is being replaced. If the copy is in Valid Exclusive or 

Shared states, no write-back is needed when a block is replaced. 
 

Example 5 Consider the shared memory system of Figure -6 and the following 

operations: (1) P reads X; (2) P updates X; (3) Q reads X; (4) Q updates X; (5) 

Q reads X; (6) Block X is replaced in P’s cache; (7) Q updates X; (8) P updates 

X. TABLE -10 shows the contents of memory and the two caches after the 

execution of each operation when Write-Update Partial Write-Through was 

used for cache coherence. The table also shows the state of the block containing 

X in P’s cache and Q’s cache. 

 

TABLE -10 Example 5 (Write-Update Partial Write-Through) 
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5- Directory Based Protocols 
 Owing to the nature of some interconnection networks and the size of the 

shared memory system, updating or invalidating caches using snoopy protocols 

might become unpractical. For example, when a multistage network is used to 

build a large shared memory system, the broadcasting techniques used in the 

snoopy protocols becomes very expensive. In such situations, coherence 

commands need to be sent to only those caches that might be affected by an 

update. This is the idea behind directory-based protocols.  

 

Cache coherence protocols that somehow store information on where copies of 

blocks reside are called directory schemes. A directory is a data structure that 

maintains information on the processors that share a memory block and on its 

state. The information maintained in the directory could be either centralized or 

distributed. A Central directory maintains information about all blocks in a 

central data structure. While Central directory includes everything in one 

location, it becomes a bottleneck and suffers from large search time. To 

alleviate this problem, the same information can be handled in a distributed 

fashion by allowing each memory module to maintain a separate directory. In a 

distributed directory, the entry associated with a memory block has only one 

pointer one of the cache that requested the block. 

 

5.1- Protocol Categorization 

 A directory entry for each block of data should contain a number of 

pointers to specify the locations of copies of the block. Each entry might also 

contain a dirty bit to specify whether or not a unique cache has permission to 

write this memory block. Most directory-based protocols can be categorized 

under three categories: full-map directories, limited directories, and chained 

directories. 

 

Full-Map Directories In a full-map setting, each directory entry contains N 

pointers, where N is the number of processors. Therefore, there could be N 

cached copies of a particular block shared by all processors. For every memory 

block, an N-bit vector is maintained, where N equals the number of processors 

in the shared memory system. Each bit in the vector corresponds to one 

processor. If the i th bit is set to one, it means that processor i has a copy of this 

block in its cache. Figure -7 illustrates the fully mapped scheme. In the figure 

the vector associated with block X in memory indicates that X is in Cache C0 

and Cache C2. Clearly the space is not utilized efficiently in this scheme, in 

particular if not many processors share the same block. 

Limited Directories Limited directories have a fixed number of pointers per 

directory entry regardless of the number of processors. Restricting the number 
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of simultaneously cached copies of any block should solve the directory size 

problem that might exist in full-map directories. Figure -8 illustrates the limited 

directory scheme. In this example, the number of copies that can be shared is 

restricted to two 

Figure -7 Fully mapped directory. 

 

This is why the vector associated with block X in memory has only two 

locations. The vector indicates that X is in Cache C0 and Cache C2. 

 

 
Figure -8 Limited directory (maximum sharing = 2). 

 

Chained Directories Chained directories emulate full-map by distributing the 

directory among the caches. They are designed to solve the directory size 

problem without restricting the number of shared block copies. Chained 

directories keep track of shared copies of a particular block by maintaining a 

chain of directory pointers. 

 Figure -9 shows that the directory entry associated with X has a pointer to 

Cache C2, which in turn has a pointer to Cache C0. That is, block X exists in 

the two Caches C0 and Cache C2. The pointer from Cache C0 is pointing to 

terminator (CT), indicating the end of the list. 
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Figure -9 Chained directory. 

 

 

 

 

 

 

 

 

 


