Civil Engineering Department 4th stage, 2nd Semester, 2019-2020 2st Lecture: Vertical Alignment

Lecturer:

Dr. Maha Al-Mumaiz

Dr. Abeer K. Jameel

Elevation of point on curve

y=ax²+bx+c general equation of parabola

@ x = 0

y = 0 + 0 + c = Elev. Of PVC

∴ c = Elev. Of PVC

Take the first derivative,

 $\frac{dy}{dx} = 2ax + b$

when x = 0, $\frac{dy}{dx} = g_1$

$$\therefore g_1 = b$$

Take the second derivative,

$$\frac{d^2y}{dx^2} = 2a = r$$

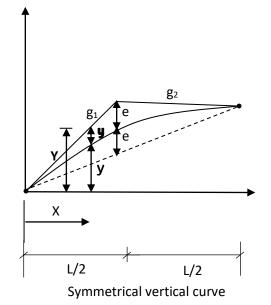
$$\therefore a = \frac{r}{2}$$

Therefore to find the elevation of any point (E_P) , for any distance (x), the equation is:

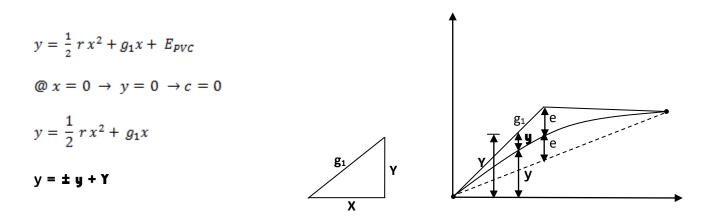
$$y = \frac{1}{2} r x^2 + g_1 x + E_{PVC}$$

Or

$$E_{P} = \frac{1}{2} r x^{2} + g_{1} x + E_{PVC}$$



r= rate of change in grade per station (or 100m)



* $\frac{1}{2} r x^2 = y$ = the difference in elevation between the first tangent and curve.

For parabolic vertical curve, the rate of change in grade is constant, therefore:

$$\frac{d^2 y}{dx^2} = r = constant$$

$$\frac{dy}{dx} = rx + c \qquad (by integration)$$

$$@ x = 0 \rightarrow \frac{dy}{dx} = g_1$$

$$\therefore g_1 = c$$

$$\frac{dy}{dx} = rx + g_1$$

$$@ X = L \rightarrow \frac{dy}{dx} = g_2$$

$$g_2 = rL + g_1$$

$$r = \frac{g_2 - g_1}{L}$$

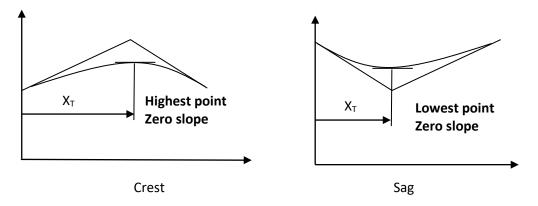
- A = algebraic difference in grades = $g_2 g_1$, %
- r= rate of change in grade per station (or 100m), (% / station) (- crest) (+ sag)
- L= Length of vertical curve measured horizontally, (meter or station)

* $\frac{1}{2} r x^2 = y$ = the difference in elevation between the first tangent and curve.

- $@ x = \frac{L}{2}$
- e = **y**
- $e = \frac{1}{2} r x^2$

$$e = \frac{1}{2} \frac{g_2 - g_1}{L} \left(\frac{L}{2}\right)^2 \to e = \frac{L(g_2 - g_1)\%}{8} \text{ or } e = \frac{L(g_2 - g_1)\%}{800}$$

Highest or Lowest point on the VC.



Distance to highest and lowest points in crest and sag vertical curves

 $X_{T(Turning)}$ = distance to the turning point (highest point: crest) (lowest point: sag)

 $\frac{dy}{dx} = rx + g_1 = 0$

$$x_T = -\frac{g_1}{r} (from PVC) \quad or = \frac{g_2}{r} (from PVT)$$

Elevation of major points of VC.

Elev. PVI = Elev. PVC \pm g₁ (L/2)

Elev. PVT = Elev. PVI $\pm g_2$ (L/2)

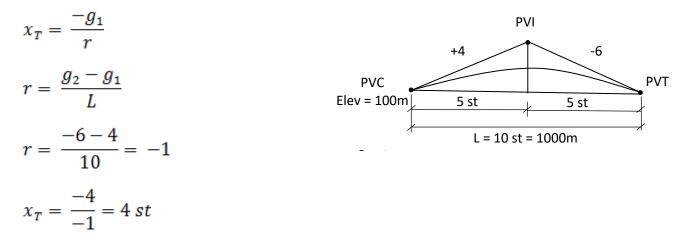
Station of major points of VC.

St. PVI = St. PVC + (L/2)

St. PVT = St. PVI + (L/2)

Example 1:

Find the elevation of the highest point (turning point) on the curve?



Lecture 2 2019-2020

$$E_{P} = \frac{1}{2}rx^{2} + g_{1}x + Elev.PVC$$
$$E_{P} = \frac{1}{2}(-1)(4)^{2} + 4 * 4 + 100$$

= 108m

Example 2:

Find the length of the curve?

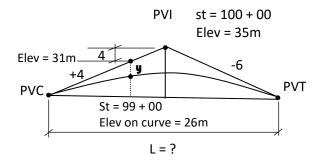
$$y = 31 - 26 = 5 m$$

$$5 = \frac{1}{2}r x^{2}$$

$$= \frac{1}{2}\frac{10}{L}(\frac{L}{2} - 1)^{2}$$

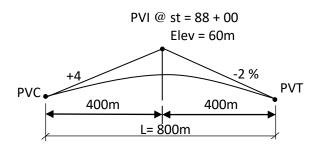
L = 7.5 st

 $r = \frac{|g_2 - g_1|}{L}$



Example 3: Find the elevation on curve every one station, then find the station and elevation of highest point.

Solution:



St. PVI = St. PVC + (L/2)

Station of PVC = 88+00 - 4+00 = 84+00

Elev. PVI = Elev. PVC + g_1 (L/2)

Elevation of PVC = $60 - g_1 * (L/2)$

= 60 – 4 *4 = 44m

St. PVT = St. PVI + (L/2)

Station of PVT = 88+00 + 4+00 = 92+00

Elev. PVT = Elev. PVI - g_2 (L/2)

Elevation of PVT = $60 - 2^* 4 = 52m$

$$r = \frac{g_2 - g_1}{L}$$
$$r = \frac{-2 - (+4)}{8} = -\frac{6}{8} = -0.75$$

$$x_T = \frac{-g_1}{r} = \frac{-(+4)}{-\left(\frac{6}{8}\right)} = (5+33)st$$

$$\therefore X_T @ station = (84 + 00) + (5 + 33)$$

$$E_{XT} = E_{PVC} + g_1 x + \frac{1}{2} r x^2$$
$$E_{XT} = 44 + 4 * (5.33) + \frac{1}{2} * \left(-\frac{6}{8}\right) * (5.33)^2$$
$$= 54.67m$$

Station	X	<i>g</i> ₁ <i>X</i>	X ²	$\frac{1}{2}rX^2$	$g_1 X + \frac{1}{2} r X^2$	Elevation
PVC 84+00	0	0	0	0	0	44+00
85+00	1	4	1	-0.375	3.625	47.625
86+00	2	8	4	-1.5	6.5	50.5
87+00	3	12	9	-3.375	8.625	52.625
PVI 88+00	4	16	16	$\frac{AL}{8} = e = -6$	10	54
89+00	5	20	25	-9.375	10.625	54.625
* 89+33	5.33	21.32	28.4	-10.65	10.67	* 54.67
90+00 continue	6	24	36	-13.5	10.5	54.5

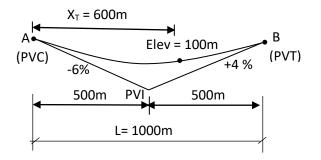
Example 4: Find the lowest point of the sag curve knowing that: $g_1 = -6\%$, $g_2 = +4\%$, elevation of intersection of two grades = 88 m and the length of symmetrical curve = 1000m.

Solution:

$$r = \frac{g_2 - g_1}{L}$$

$$r = \frac{4 - (-6)}{10} = 1 \frac{\%}{sta}$$

$$x_T = \frac{-g_1}{r} = \frac{-(-6)}{1} = 6.00 \text{ stations from PVC}$$



Elev. PVI = Elev. PVC -
$$g_1(L/2)$$

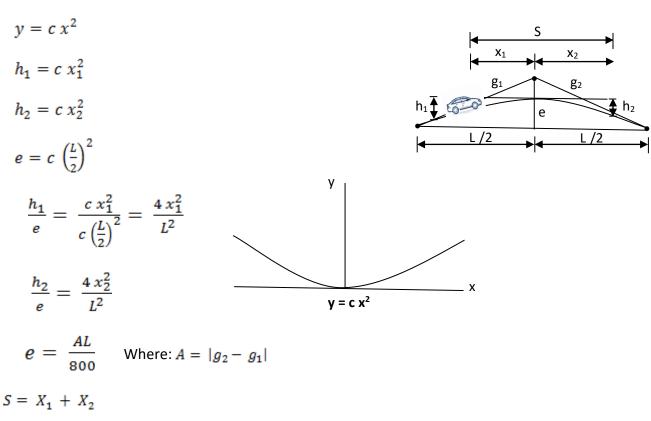
 $E_A = E_{PVC} = 88 + 6 * 5 = 118m$

$$E_{X_T} = E_{PVC} + g_1 x + \frac{1}{2} r x^2$$
$$E_{X_T} = 118 + (-6 * 6) + \frac{1}{2} * (1) * (6)^2$$
$$= 118 - 36 + 18 = 100m$$

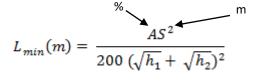
Minimum length of parabolic curve:

→ Crest curve:

(1) Safety requirement \longrightarrow to provide sight distance (clear sight either for stopping or passing)



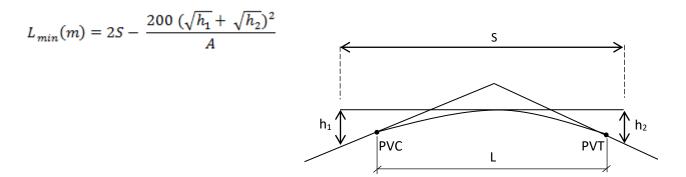
a) Sight distance is included within the limits of the curve ($S \le L_{min}$)



*h*₁: height of driver eye above pavement surface (m)

h₂: height of hazardous object (m)

b) Sight distance is greater than the length of the curve (S > L $_{min}$)



* <u>For safety</u>:

 \rightarrow S stopping: $h_1 = 1.08m$, $h_2 = 0.6m$ (height of object)

$$200 \; (\sqrt{h_1} + \sqrt{h_2})^2 = 658$$

 \rightarrow S passing: $h_1 = 1.08 \text{ m}$, $h_2 = 1.08 \text{ m}$ (height of vehicle)

$$200 \ (\sqrt{h_1} + \sqrt{h_2})^2 = 864$$

* We can use $\underline{\mathbf{K}}$ value for the calculation of L_{min}

K: rate of vertical curvature: m%

K is the length of curve per 1 percent change in grade

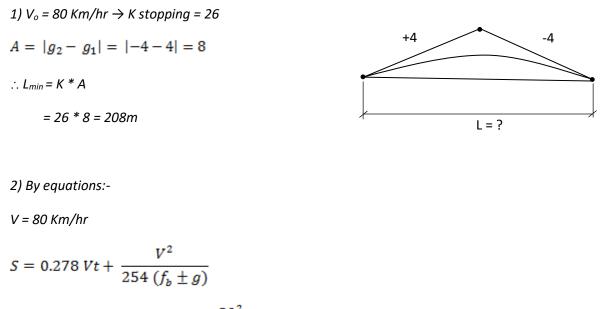
K = F(V)

 $L \min (m) = K.A$

	Minimum (K) for Crest curve			
V (Km/hr)	Safe stopping	Safe passing		
130	124	769		
110	74	617		
80	26	338		
50	7	138		

Example 1: Find the length of curve to provide safe stopping distance ($V_0 = 80$ Km/hr) (rural area) (wet pavement condition)

Solution:



$$S = 0.278 * 80 * 2.5 + \frac{80^2}{254 (0.35 - 0.04)} = 137m$$

Let $S \leq L_{min}$

$$L_{min} = \frac{A S^2}{658} = \frac{8 * 137^2}{658} = 228m$$

عند التصميم لل (passing) نحسب d₁, d₂, d₃, d₄ و نعوض المجموع ب S

→ Sag curve:

A- Min length of curve for → Safety requirements ① ناحذ الاکبر Comfort requirements ② B- Max length of curve for → drainage requirement

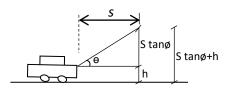
1. <u>Safety requirements</u>

Distance of Head light = S stopping

هنا ناخذ مسافة التوقف فقط و ليس الاجتياز Passing

a) $S \leq L_{min}$

A = algebraic difference in grades = $|g_2 - g_1|$ = المجموع الجبري للميلين

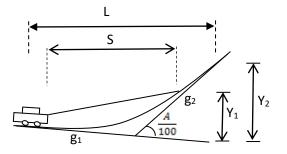


h: height of head light beam = 0.6m

 Θ : upward divergence of head light beam center $\approx 1^{\circ}$

 $Y_1 = cS^2$ $Y_2 = cL^2$ $\frac{Y_1}{Y_2} = \frac{S^2}{L^2}$ $Y_1 = Y_2 \frac{S^2}{L^2}$

 $y = cx^2$



$$Y_{1} = \frac{A}{100} \frac{L}{2} \frac{S^{2}}{L^{2}} = h + S \tan\theta$$
$$L_{min}(m) = \frac{A S^{2}}{200 (h + S \tan\theta)}$$

h: 0.6 m

The required sight distance must be provided S_{stopping}

$$S = 0.278 Vt + \frac{V^2}{254 (f_b \pm g)}$$

b) $S > L_{min}$

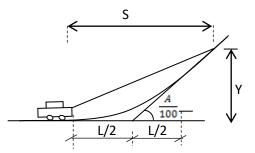
$$\left(S - \frac{L}{2}\right) * \frac{A}{100} = h + S \tan\theta$$

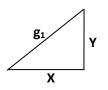
$$L_{min}(m) = 2S - \frac{200 (h + S \tan \theta)}{A}$$

• We can calculate L from K value

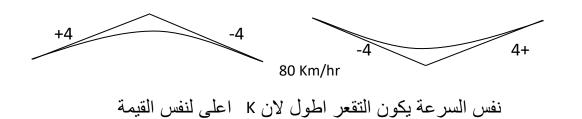
 $L_{min} = K^*A$

V (Km/hr)	Minimum K for sag curve (safety)
50	13
80	30
110	55
130	73





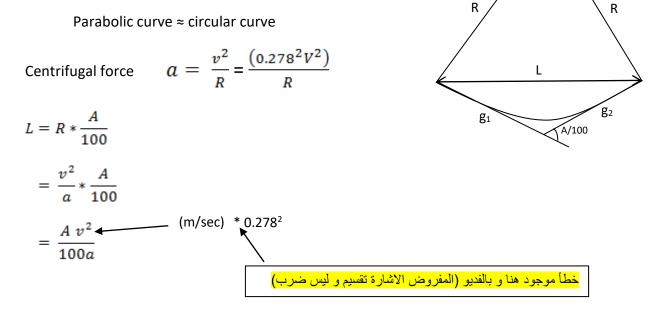
A/100



2. Comfort (convenience) requirement:

- Convenience = gravitational force + centrifugal force

نفترض القوس جزء من دائرة لاغراض الاشتقاق



$$L_{min}(m) = \frac{A V^2}{1300 a} m/sec^2$$

For comfort: a (0.3-0.4)

3. Max L for drainage:

L_{max} = A * k (0.44-0.66)

Low grades, better efficiency of surface drainage

Where K exceed 0.66 efficient drainage system is required.