Construction of Root Locus, Stability, and Dominant Poles.

Root locus is a graphical presentation of the closed-loop poles as a system parameter k is varied.

The graph of all possible roots of this equation (K is the variable parameter) is called the root
locus.

The root locus gives information about the stability and transient response of feedback control
systems.

Properties and general rules for construction of the Root Loci is as follows:

Rule no. Statement Comments
The root locus is
symmetric about the | Root locus that we construct will always be symmetric
Rule 1 real axis about the real axis (irrespective of system)
The total number of loci will be equal to max(p,z)
where p is no: of the open loop poles and z is number
Rule 2 Total number of loci of open loop zeros
A point that lies on real axis basically lies on the root
locus only if the total number of real open loop poles
and open loop zeros present in the RHS of this point is
Rule 3 Real axis loci odd
Total number of branches of the root locus tending
towards infinity is equal to p — z. The angle of
asymptotes gives us the direction along which these p-z
Rule 4 Angle of asymptotes | branches approach infinity.
Centroid is a point on real axis , through which the
Rule 5 centroid asymptotes pass.
A break away point on the root locus is a point where
the two poles will meet. Once they meet, they divide
Rule 6 Breakaway point (split) i.e break away from the real axis.
This gives us angles along which complex poles will
Angle of departure / | depart( and complex zeros arrive) from their original
Rule 7 arrival position
This gives us points on imaginary axis which the given
Intersection with the | root locus cut through while moving to right half of the
Rule 8 imaginary axis s plane

Root Locus and Stability.

The most important problem in linear control systems concerns stability. That is, under what

conditions will a system become unstable? If it is unstable, how should we stabilize the system?




How do you determine the stability of a root locus?

The root locus procedure should produce a graph of where the poles of the system are for all values
of gain K. When any or all of the roots of D (denominator) are in the unstable region, the system is
unstable. When any of the roots are in the marginally stable region, the system is marginally stable
(oscillatory). When all of the roots of D are in the stable region, then the system is stable.

It is important to note that a system that is stable for gain K; may become unstable for a different
gain K,. Some systems may have poles that cross over from stable to unstable multiple times, giving
multiple gain values for which the system is unstable.

The roots of the characteristic equation are called closed loop poles. The location of such roots or
poles on the s-plane will indicate the condition of stability as shown in Fig. 1.
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Fig. 1. Stability condition based on the location of the closed loop poles
Example 1: First-Order System

Find the root-locus of the open-loop system:

GEIH(S) = 15755

If we look at the characteristic equation, we can
quickly solve for the single pole of the system: 0.2

S=-1/2

-0.8 -0.6 -0.4 -0.2

We plot that point on our root-locus graph, and
everything on the real axis to the left of that

single point is on the root locus (from the rules, i

above). Therefore, the root locus of our system
looks like this:

From this image, we can see that for all values of gain (K) this system is stable.
Example 2: Third Order System

K

G(s)H(s) = (s+1(s+2)(s+3)




Is this system stable?

To answer this question, we can plot the root-
locus. First, we draw the poles on the graph at
locations -1, -2, and -3. The real-axis between the
first and second poles is on the root-locus, as well
as the real axis to the left of the third pole. We
know also that there is going to be breakaway
from the real axis at some point. The origin of
asymptotes is located at: -2

We know that the breakaway occurs between the
first and second poles, so we will estimate the
exact breakaway point. Drawing the root-locus
gives us the graph below.

We can see that for low values of gain the system is stable, but for higher values
of gain, the system becomes unstable.

Example: Complex-Conjugate Zeros

K(s2 + 4.5s + 5.625)
s(s+1D(s+2)

G(s)H(s) =

If we look at the denominator, we have
poles at the origin, -1, and -2. Following,
we know that the real-axis between the first
two poles, and the real axis after the third
pole are all on the root-locus. We also
know that there is going to be a breakaway
point between the first two poles, so that
they can approach the complex conjugate
zeros. If we use the quadratic equation on
the numerator, we can find that the zeros
are located at:

S=(-2.25+ 10.75)

We can see from this graph that the system is stable for all values of K.

Dominant pole :

What is the dominant pole?
Dominant pole is a pole which is more near to origin than other poles in the system.

The poles near to the jw axis are called the dominant poles. Or, get the closed-loop TF from
Open loop TF. Determine the poles of the denominators.

The poles which have very small real parts or near to the jw axis have small damping ratio.
These poles are the dominant poles of the system



The dominant pole approximation is a method for approximating a (more complicated) high order
system with a (simpler) system of lower order if the location of the real part of some of the
system poles are sufficiently close to the origin compared to the other poles.

Why is a dominant pole required in control systems?
Dominant pole is significantly required in stability analysis, because it is that location which gives
an idea where the root locus is progressing- towards right or towards left. It is also called near poles.

In fact, there is a region of boundary for considering the significant and insignificant region. If we
considering a pole at 61, then its insignificant pole, say 62, must be 5 or 10 times far away from of

that 61
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In root locus plot, contribution of o1 is more helpful than the farther 62 pole. Adding more nearer
poles stabilizes the system.

For example
The transfer function representing the system is then

_w(s) 1
Gp(s) = va(s)  s2+6s+5

Which corresponds

Go(s)
Ve 1 w
_—

52 + 65+ 5

open loop ch. eq.
A(s) =52 +6s+5=(s+1)(s+5)

Poles are located at. —— . and
(s =1 s=25

X
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Dominant pole‘

Imag Axis

Def : Poles closest to the jw axis are the
dominant poles (if the system is stable). 5 5 4
Dominant pole corresponds to the slowest

mode

Reduction of a second order system to first order:
Consider an overdamped second order system (and its step response).

_ o-B . .
H(s) = K GG If the magnitude of B is very large compared to a

we can write approximations for the transfer function (assuming s is sufficiently small comparted to
B), as well as an approximation for the step response.



_«B e
s+0P)  (G+w

o
Hdp(s) =K (s+a)
Note that H(0) is unchanged for the exact and approximate transfer functions. where Hgp(S)
represents the dominant pole approximation. Note that the numerator of the approximation is chosen

such that H(0)=Hgp(0).
Example 2, Second order:

H(s) = K

H(S) =K 0.2 pole—zero = Unit Step Response, y,(t)

(s+0.2)(s+1) e

1
02 8 1.4
(s+0.2)

Hdp(S) = K

Pole-Zero plot: On the pole-zero plot 2 :
the pole at s=-a is shown in red, and that ¢ o 2
for s=-B is blue. Since o is so much e
closer to the origin in dominates the
response. Note that when we say the
poles are far apart, it is not physical — 1 -0

yy(t)
o0

distance that is ofinterest, but the ratio S ' I 0 3 6 9 12 15 18 21 24 27 30 33 36 3

of the pole locations.

Time domain: The step response plot shows three plots: the magenta plot is the exact response, the
red plot is the approximation assuming the pole at -a dominates (note that the red and magenta plots
are very close to each other, so the dominant pole approximation is a good one), and the blue plot is
the approximation assuming that the pole at -p dominates. The exact response has two exponentials, a
fast one with a relatively short time constant of 1/ and a much slower exponential with time constant
1/a. If we look at the overall resonse, the fast exponential comes to equilibrium much more quickly
than the slow explonential. From the perspective of the overall response, the faster exponential comes
to equilibrium (i.e., has decayed to zero) instantaneously compared to the slower exponential.
Therefore, the slower response (due to the pole closer to the origin — at s=-a;) dominates.

Example 6: Third order, complex poles dominate

17

10%17
H(S) = ,Hdp(S) = m

(s+10)(s2+2s+17)

Note that the numerator of the approximation is chosen such that H(0)=H4,(0).

pole—zero

Unit Step Response, y, (1)
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Numerical example:

20

Consider the transfer function H(s) = GG

Since we have one pole at s=-3, and one pole at s=-30, the pole at s=-3 will dominate, so the
denominator of the transfer function is (s+3) and the dominant pole approximation has the form

?

Ha(s) = 5

In order to find the correct value for the numerator we set H(0)=Hgp(0).
20 2

HO = Gaw =5

Note: this ensures that the final value to a step input is equal for the exact and approximate systems.
In order for this equation to hold, the numerator of the approximation must be equal to 2/3, so
2

2
Hao(S) = Germ © Hep(0) = 3)3)

Application Of Root Locus.

What is the application of root locus?

This is a technique used as a stability criterion in the field of classical control theory developed by
Walter R. Evans which can determine stability of the system. The root locus plots the poles of the
closed loop transfer function in the complex s-plane as a function of a gain parameter (pole-zero

plot)
The effects of gains on the system response, overshoot and the stability can be determined.

Consider the system

Forward
transfer

Actuating - .
= function

Input signal Output
R(s) - (s C(s)
= KG(s)
I][I R(s) KG(s) Cl(s)
- 1 + KG(s) H(s)
Fi(s)
Feedback
transfer
function
For the given system the closed loop transfer function is
KdG(s)
<1+ KG(s)H(s) >
.
h teristi ~
g Z;i%ﬁgrs.' ' KG(s)H(s) = —1 _Magnitude
! [ criteria
(KH(s)G(s)) =7+ 2km
JAngle

criteria



Consider G(s)H (s) = —hi

|sallsa + 2)|

|sa + 1]

=1

}00—90—01,:71‘:*:2/“7

s(s + 2)
e Magnitude
& criteria
s, A 5
N
A - ;3 s-plane
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1\ B0 - 72
LW = Angle
\ S - -
pe e criteria
o
—3 -2 —1 O
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Design using mag. and angle cond.

For Example.

s+ 1
s(s +3)(s + 4)

G(s)H(s) =

Angle Condition

If angle of G(s)H(s) at s = p is equal to
+180°(2k + 1), the point p is on root locus.

ZLG()H(s)|_, =, —6,— 6,6,

o

Test point

.:65

Magnitude Condition

If lengths A, By, B> and B3 measured from the
test point to the poles and zeros satisfy the
magnitude condition, the point p is on root
locus.

‘s+1

s=p _ A
s+3|_,[s+4_,  BB.B

G()H(s), , =

E

s=p
o

05}

3‘5

3
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/

Example : Find the value of K which places closed loop
pole at -5 for the system D

Gp(3s) =

Characteristic polynomial

(s + 1)(s +4)

s+ 2

1+ I

-
p—

X
®
X

éElmag;/\x(is 4 i

o4
-oq

The root locus
Note that -5 lies on the root locus

(s+ 1)(s +4)

“Bl

Angles are measured counterclockwise




Magnitude Condition

s+ 2

el = o e I e e

|s=—5: 1

- —3 e
Angle condition
Angle[Gp(s)] |s=—s= —180
= Angle(s + 2) — Angle(s +4) — Angle(s + 1) |s——s5= —180
= Angle(—3) — Angle(—1) — Angle(—4) = —180
= 180 — (180 + 180) = —180  Angle condition satisfied
(Example):
R(s) K (.(S)._
_>®_> ss+ 1) (s+2) "
} K
(SYH(s)=———
GRS = +2)
Angle Condition:
ZG(s)H (5) = /£ — K Magnitude Condition:
s(s+1)(s+2) ‘(ﬂ( VH( )‘ K !
LGS)H(s)=4LK -Zs—-ZL(s+1)-ZL(s+2) A= s(s+1)(s+2) -
|£K —Ls—Z(s+1)—ZL(s+2)=x180°(2k + l)l
(Example):
check whether s = —0.25 is on the root locus or not
GOHH(S)=—————
($)H() s(s+1)(s+2)
Angle Condition
ZG(S)H(S)‘.::—U.% =<4K 5=-025 a 5=-025 (s +1)‘s:—(]25 —Z(s+2) 5=-025

ZG(s)H(s)

=—/(-0.25)— £(0.75) - £(1.75)

s= 025

ZG(s)H(s)| _,,,=—180°—0°-0°
ZG(S)H(s)|__,,, =+180°(2k +1)

s = —0.25 is on the root locus



Magnitude Condition

Now we know from angle condition that the point s = —0.25 is on the rot locus. But we will
find the gain that satisfy the magnitude condition:
Kk
s(s+1)(s+2) ‘_,__o.zs
K I
(-025)(-025+1)(-0.25+2) .
K o
(~0.25)(0.75)(1.75)

K =0.328

1

Open Loop Response

Note that for the open loop system

R(s) Y(s) . _ ;
—l—T}—‘ (}1)(3) . (5’—'— 1}(3—'—3)

For the unit step input we have

Closed Loop Response

The step response of the closed loop system is

R(s) +‘[ K v | Gy (9) > . Y(s)

Slep Response

K=30 As the values
K=10 : of K changes
3 K=4 the transient
L4 Ve response
sl / K=1 changes
21 rl,-'ll;I e N
a Jlll:,/’
o Z 1 = o
Timea {(s&a.]
For example
o o Plant

Controller

R(s) A?— K G(s) = 5[52_3] Y (s)

Proportional feedback controller




Y(s)  KG(s) K

R(s) 1+ KG(s) s2+3s+K

WWe want to examine how the behavwvior of the
system wvaries as K changes, so let's try sewveral
wvalues of K. Let’'s arbitrarily try K=1, 10 and
100 so that we hawve a wide range of K values.

Stap Response

Siep Responsa ) Elep Hesponse

Amplitude

Aerplitude

N g 10 15 2 % 05 1 1f 7 25 115 i 5 2 3

Ys) 1 ~ Y(s) 10 Y(s) 100
R(s) s2+3s+1 (K=D) R(s) ~ s2+3s+10

; (K=100)

Root Locus In Matlab:

What is root locus in Matlab?

rlocus( sys ) calculates and plots the root locus of the SISO model sys . The root locus returns the
closed-loop pole trajectories as a function of the feedback gain k (assuming negative feedback). Root
loci are used to study the effects of varying feedback gains on closed-loop pole locations.

Consider the system
R(s) _*._‘_4{ K ‘ N

where 1
G = G+ D

Gp(s} > » Y(s)

Open loop polesareat s =0.s = —2,s =4 X
o I
Closed loop transfer function Y (s) _ 3(S+2)(f'1+4)
£(s) 11+ Ks(s+2)(s+4)

Characteristic Eq. A (s) =1+ K (s +2) (s +4)

Step 1 : Pole Zero plot

jw jw
X W= >> Ruiers ——
-2 (o] -4 -2 g

Step 2 : Centroids and Asymptotes (RD=3)

a X

0—2—4—-0 e
Centroid = = —'2 centroid P
= v T
Step 3 : Break away point T,

( We might not need this :) .. Why? )



Step 4 : Plot the root locus

= Locus must be symmetric to T
real axis A e
= 3 open loop zeros are at ///
infinity %2 L /7 ]
-~
= < conjugate
= s, \ pairs
3 ~ e
matlab code = \\\4
figure: “f \\\ ]
num = [1]7 =
S = [an (5 G - = - 7 Real Axis ° ’ :
rlocus (num, denum) 7 »~
Break away point
Another matlab code
num = [1];
den = conv(conv([1 0],[1 2]),[1 4]);
sys = tf(num,den);
rlocus (sys);
Same system with 1
—,(s5) =
»(s) (s + 1)(s + 3)
open loop poles at s = —1, —3
. KF—1
closed loop transfer function 1;((‘;)) = 5 ;“)(31*‘3)
(s 4+ K —1
characteristic equation (e1iCe+3)
1
A 14+ K—
(s) (s+ 1){(s+ 3)
pole zero plot
jw jw
e > -
-3 1 (o] 3 -1 a
Centroid and asymptotes cantraid
centroid = e = —2 . jo
2 i/
e H < ‘
-3 H -1 o
RD=2-0=2 H
Draw the root locus plot 2; il
1.4 1
C 1
1
matlab code % E : -
figure;: g >€ T
num = [1]; _*3_-‘ :
denum = [1 4 3]; » I
[/
rlocus (num, denum) 7 -3 L
= - “  Real Axis ! ®

Given the unity feedback system

R(s) t] K G, (s) ’T > Y(s)

with

G (s) s+ 2 Open loop zeros s — —2
x s) = S « P
g (s + 1)(s2 + 65 + 18) Open loop poles & = —1,—3 £ 3j
Pole Zero plot b jw X iw
N
~3-2-1 o
X
Centroid and cortrom
Asymptotes _3_3_1—_(—2 5 '
centroid = > (=2) =3 X! w
RD =2 e



Draw the root locus obeying the rules defined

10 .
aF '
st ]
1
@ °r 1
= =2f :
= -~
g° T 2 g ><
== I
= N
I
matlab code “r :
figure; B 1
num = [1 21:; -afF
10
denum = [1 7 24 18]; - -3 -2 -1 ) 1
Real Axis
rlocus (num, denum) ;

Another method (matlab code) to plot the root locus in matlab,
matlab code

num =[1 2];

den = conv([1 1],[1 6 18]);

sys = tf(num,den);

rlocus (sys);

Same block diagram with 3

(& > — =
» (=) s(s +3)(s+3— 77.4)(5 + 3 + 57.4)
Characteristic polynomial
1
A(s) =1 V5
() e B (53— 373 O A
Pole Zero Plot . X jw
Jjw s
X > 3 * 5
o -3 ag
-3 X
Centroid and Asymptotes o
—3—3—3— (0 —9
centroid = o ©) _ 5 — —2-25 53¢ ‘/',. e
RD =4 s377 sl o

Draw the root locus obeying the rules defined

G\j T
-
~ -~
- S e -1
~ -~
L . -~
=" ~. 7 .
L =2] \V
g S —
1= ’/ ~
2 P \\ 4
// .
a .
matlab code - -
figure: -5/ b
Pt e q [~
- -3 =2 -1 [+] 1 2
denum = (1 9@ 82 192 0] Real Axis

rlocus (num, denum}) 7

Exercise : plot the root locus in matlab for the following system.

1
s(s +1D(s +5)(s +10)

a=conv([1 0], [1 1])
b=conv([1 5], [1 10])
D=conv(a,b)

N=1

sys=tf(N, D)
rlocus(sys)



