
Construction of Root Locus, Stability, and Dominant Poles. 
 

  Root locus is a graphical presentation of the closed-loop poles as a system parameter k is varied.  

  The graph of all possible roots of this equation (K is the variable parameter)  is called the root 

locus. 

  The root locus gives information about the stability and transient response of feedback control 

systems. 

 

Properties and general rules for construction of the Root Loci is as follows: 

 

Rule no. Statement Comments 

Rule 1 

The root locus is 

symmetric about the 

real axis 

Root locus that we construct will always be symmetric 

about the real axis (irrespective of system) 

Rule 2 Total number of loci 

The total number of loci will be equal to max(p,z) 

where p is no: of the open loop poles and z is number 

of open loop zeros 

Rule 3 Real axis loci 

A point that lies on real axis basically lies on the root 

locus only if the total number of real open loop poles 

and open loop zeros present in the RHS of this point is 

odd 

Rule 4 Angle of asymptotes 

Total number of branches of the root locus tending 

towards infinity is equal to  p – z. The angle of 

asymptotes gives us the direction along which these p-z 

branches approach infinity. 

Rule 5 centroid 

Centroid is a point on real axis , through which the 

asymptotes pass. 

Rule 6 Breakaway point 

A break away point on the root locus is a point where 

the two poles will meet. Once they meet, they divide 

(split) i.e break away from the real axis. 

Rule 7 

Angle of departure / 

arrival 

This gives us angles along which complex poles will 

depart( and complex zeros arrive) from their original 

position 

Rule 8 

Intersection with the 

imaginary axis 

This gives us points on imaginary axis which the given 

root locus cut through while moving to right half of the 

s plane 

 

Root Locus and Stability. 

The most important problem in linear control systems concerns stability. That is, under what 

conditions will a system become unstable? If it is unstable, how should we stabilize the system? 

   



How do you determine the stability of a root locus? 

 The root locus procedure should produce a graph of where the poles of the system are for all values 

of gain K. When any or all of the roots of  D (denominator)  are in the unstable region, the system is 

unstable. When any of the roots are in the marginally stable region, the system is marginally stable 

(oscillatory). When all of the roots of D are in the stable region, then the system is stable. 

It is important to note that a system that is stable for gain K1 may become unstable for a different 

gain K2. Some systems may have poles that cross over from stable to unstable multiple times, giving 

multiple gain values for which the system is unstable. 

The roots of the characteristic equation are called closed loop poles. The location of such roots or 

poles on the s-plane will indicate the condition of stability as shown in Fig. 1. 

 

Fig. 1. Stability condition based on the location of the closed loop poles 

Example 1: First-Order System 

Find the root-locus of the open-loop system: 

𝐺(𝑠)𝐻(𝑠) =  
𝐾

1 + 2𝑠
 

 

 

 

 

From this image, we can see that for all values of gain (K) this system is stable. 

Example 2: Third Order System 

𝐺(𝑠)𝐻(𝑠) =  
𝐾

(𝑠 + 1)(𝑠 + 2)(𝑠 + 3)
 

If we look at the characteristic equation, we can 

quickly solve for the single pole of the system: 

S= -1/2 

We plot that point on our root-locus graph, and 

everything on the real axis to the left of that 

single point is on the root locus (from the rules, 

above). Therefore, the root locus of our system 

looks like this: 



 

 

 

We can see that for low values of gain the system is stable, but for higher values 

of gain, the system becomes unstable. 

Example: Complex-Conjugate Zeros 

𝐺(𝑠)𝐻(𝑠) =  
𝐾(𝑠2 + 4.5𝑠 + 5.625)

𝑠(𝑠 + 1)(𝑠 + 2)
 

 

 

We can see from this graph that the system is stable for all values of K. 

Dominant pole : 

What is the dominant pole? 

Dominant pole is a pole which is more near to origin than other poles in the system. 

  The poles near to the jw axis are called the dominant poles. Or, get the closed-loop TF from 

Open loop TF. Determine the poles of the denominators.  

  The poles which have very small real parts or near to the jw axis have small damping ratio. 

These poles are the dominant poles of the system 

Is this system stable? 

To answer this question, we can plot the root-

locus. First, we draw the poles on the graph at 

locations -1, -2, and -3. The real-axis between the 

first and second poles is on the root-locus, as well 

as the real axis to the left of the third pole. We 

know also that there is going to be breakaway 

from the real axis at some point. The origin of 

asymptotes is located at: -2 

We know that the breakaway occurs between the 

first and second poles, so we will estimate the 

exact breakaway point. Drawing the root-locus 

gives us the graph below. 

If we look at the denominator, we have 

poles at the origin, -1, and -2. Following , 

we know that the real-axis between the first 

two poles, and the real axis after the third 

pole are all on the root-locus. We also 

know that there is going to be a breakaway 

point between the first two poles, so that 

they can approach the complex conjugate 

zeros. If we use the quadratic equation on 

the numerator, we can find that the zeros 

are located at: 

S= (-2.25± j0.75) 

 

If we draw our graph, we get the 
following: 

 



The dominant pole approximation is a method for approximating a (more complicated) high order 

system with a (simpler) system of lower order if the location of the real part of some of the 

system poles are sufficiently close to the origin compared to the other poles. 

Why is a dominant pole required in control systems? 

  Dominant pole is significantly required in stability analysis, because it is that location which gives 

an idea where the root locus is progressing- towards right or towards left. It is also called near poles. 

  In fact, there is a region of boundary for considering the significant and insignificant region. If we 

considering a pole at σ1, then its insignificant pole, say σ2, must be 5 or 10 times far away from of 

that σ1 

 

In root locus plot, contribution of σ1 is more helpful than the farther σ2 pole. Adding more nearer 

poles stabilizes the system. 

For example 

 

 

 

 

Reduction of a second order system to first order: 

Consider an overdamped second order system (and its step response). 

H(s) =  K  
α⋅β 

(s+α)(s+β) 
     If the magnitude of β is very large compared to α  

we can write approximations for the transfer function (assuming s is sufficiently small comparted to 

β), as well as an approximation for the step response. 



H(s) ≈  K  
α ⋅ β 

(s + α)(β)
=  K 

α

(s + α)
 

Hdp(s)  =  K 
α

(s+α)
 

Note that H(0) is unchanged for the exact and approximate transfer functions.  where Hdp(s) 

represents the dominant pole approximation. Note that the numerator of the approximation is chosen 

such that H(0)=Hdp(0).  

Example 2, Second order:  

H(s) =  K  
0.2 

(s+0.2)(s+1)
         

Hdp(s)  =  K 
0.2

(s+0.2)
 

 

  

 

 

 

 

 

 

 

 

 

 

 

Example 6: Third order, complex poles dominate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pole-Zero plot: On the pole-zero plot 

the pole at s=-α is shown in red, and that 

for s=-β is blue.  Since α is so much 

closer to the origin in dominates the 

response.  Note that when we say the 

poles are far apart, it is not physical 

distance that is of interest, but the ratio 

of the pole locations. 

Time domain: The step response plot shows three plots: the magenta plot is the exact response, the 

red plot is the approximation assuming the pole at -α dominates (note that the red and magenta plots 

are very close to each other, so the dominant pole approximation is a good one), and the blue plot is 

the approximation assuming that the pole at -β dominates. The exact response has two exponentials, a 

fast one with a relatively short time constant of 1/β and a much slower exponential with time constant 

1/α. If we look at the overall resonse, the fast exponential comes to equilibrium much more quickly 

than the slow explonential. From the perspective of the overall response, the faster exponential comes 

to equilibrium (i.e., has decayed to zero) instantaneously compared to the slower exponential. 

Therefore, the slower response (due to the pole closer to the origin — at s=-α) dominates.    

H(s) =    
10∗17 

(s+10)(𝑠2+2s+17)
   , Hdp(s)  =   

17

(𝑠2+2s+17)
 

Note that the numerator of the approximation is chosen such that H(0)=Hdp(0). 

  



Numerical example: 

Consider the transfer function   H(s) =    
20

(s+3)(s+30)
   

Since we have one pole at s=-3, and one pole at s=-30, the pole at s=-3 will dominate, so the 

denominator of the transfer function is (s+3) and the dominant pole approximation has the form       

Hdp(s)  =  
?

(s+3)
 

In order to find the correct value for the numerator we set H(0)=Hdp(0). 

H(0) =    
20

(3)(30)
=

2

9
     

Note: this ensures that the final value to a step input is equal for the exact and approximate systems. 

In order for this equation to hold, the numerator of the approximation must be equal to 2/3, so 

 Hdp(s) =
2

(3)(s+3)
  , 

 

Application Of Root Locus. 

What is the application of root locus? 

   This is a technique used as a stability criterion in the field of classical control theory developed by 

Walter R. Evans which can determine stability of the system. The root locus plots the poles of the 

closed loop transfer function in the complex s-plane as a function of a gain parameter (pole–zero 

plot) 

   The effects of gains on the system response, overshoot and the stability can be determined. 

 

 

 

Hdp(0) =
2

(3)(3)
   



 
 

Design using mag. and angle cond. 

For Example. 

 

 

 

 

 

 

 

 



 

 

 

 



 

Open Loop Response 

 

 

 

Closed Loop Response 

 

 
For example 

 

 



 

 

 

Root Locus In Matlab: 

What is root locus in Matlab? 

rlocus( sys ) calculates and plots the root locus of the SISO model sys . The root locus returns the 

closed-loop pole trajectories as a function of the feedback gain k (assuming negative feedback). Root 

loci are used to study the effects of varying feedback gains on closed-loop pole locations. 

 

 



 

Another matlab code 

num = [1]; 

den = conv(conv([1 0],[1 2]),[1 4]); 

sys = tf(num,den); 

rlocus (sys); 

 

 

 



 
 
Another method (matlab code) to plot the root locus in matlab, 

matlab code 

num = [1 2]; 

den = conv([1 1],[1 6 18]); 

sys = tf(num,den); 

rlocus (sys); 

 

 
Exercise :    plot the root locus in matlab for the following system.  

 
 


