UNIVERSITY OF MUSTANSIRIYAH-COLLEGE OF ENGINEERING –CIVIL ENGINEERING DEPARTMENT

Highway Pavement Lab4

Soil compaction, California Bearing Ratio (CBR) Test

Dr Abeer Khudhur Jameel & Dr Maha O. Al-Mumaiz 10/6/2020

Lab of Highway Pavement California Bearing Ratio (CBR) Test, ASTM D 1883

This test is commonly known as the CBR test and involves the determination of the loaddeformation curve of the soil in the laboratory using the standard CBR testing.

The test is conducted on samples of soil compacted to required standards and immersed in water for four days, during which time the samples are loaded with a surcharge that simulate the estimated weight of pavement material the soil will support.

The objective of the test is to determine the relative strength of a soil with respect to crushed rock, which is considered an excellent coarse base material.

This is obtained by conducting a penetration test on the samples still carrying the simulated load and using a standard CBR equipment. The CBR is defined as the penetration resistance of a sub-grade soil relative to a standard crushed rock.

Purpose:

- 1. To get the bearing ratio which is used in design of pavement of highway and airports
- **2.** Penetration due to known load (pressure)

Apparatus

 6. Surcharge weight 2 wt=5 lb , Φ 5 1/8 in, with center hole of 2 1/8 in diameter 	7. Soil Sample = 5000 gm passing sieve No. 4 drying for 24 hr at 60 °C
8. Balance	Oven
9. Others	

Procedure:

https://www.youtube.com/watch?v=0cAE4cSKo_s&t=2644s

1. Prepare a sufficient amount of dried soil for three trials of the CBR test (about 5 kg for each trial)

2. Measure the dimensions of three molds to find their volumes and record V

3. Weigh the three empty molds to record W1

4. Use the O.M.C found in proctor test to use in determining the weight of the used water

	11.464 1.835
and t	Maximum Dry Density (gm/cc): 2 · 0 60 Optimum Moisture Content(%): 7· 30
1111	Remarks :

Al-Mustansiriyah University College of Engineering Civil Engineering Department

Hals: Hample Soil		Decematic	m Charat		Date Samp Date of Soa Date of Tes	led : 6-7- iking : 8-7-	2018
Type of Compaction : Static / Dynamic Surcharge Weight (gm) : S · O K J Weight of Original Sample :	,	70ser vant	<u>m succi</u>		Soaking Pe MDD : 2 - OMC : 7	nod: 961 060 gml 30 y.	Hours ICL
Description		B	efore Soaki	ng		After Soakin	9
No of Blows		10 Blows	30 Blows	65 Blows	10 Blows	30 Blows	65 Blow
Mould No.		07	08	09			
Volume of Mould (v)	(cc)		1000				
Weight of Mould (m1)	(gm)	6455	6480	6825			
Weight of Mould + Compacted Soil (w2)	(gm)						
Weight of Compacted Soil (w3 = m2 - m1)	(gm)						
Wet Density of soil (D _m) = w3 / v	(grivice)			5			
				Water C	ontent Data	_	1
Container No.							
dampte of Container	(gm)					10.00	

5. Mix the soil sample with The determined amount of water

6. Place the spacer disk on the base plate together with the mold and the collar.

7. Divide the soil sample into five parts for five layers.

 For the first layer, start to compact the soil sample by subjecting a number of blows (for example 10 blows) using the modified hammer. then repeat of the remaining four layers

9. Remove the collar and use the straight edge

10. Weigh the mould+ wet compacted soil after removing the spacer disk to record W2

	э ка				MDD : 2 OMC : 7	100: 961 060 gm	Hours CL	
	-	E	efore Soak	ing	After Soaking			
UH No.		10 Blows	30 Blows	65 Blows	10 Blows	30 Blows	65 Blows	
and the		07	08	09			00 010113	
me of Mould (v)	(cc)	2250	2250	2250				
pht of Mould (m1)	(gm)	6455	6480	1025				
t of Mould + Compacted Soil (w2)	(gm)	10794	0180	68×2				
ht of Compacted Soil (w3 = m2 - m1)	(gm)	107	-					
Density of soil $(D_w) = w3 / v$	(gm/cc)							
ner No.	~						1	
of Container						2		
of Wet Soil + Container						14 A		
of Containers						3		

11. Place the Perforated metal base plate and the two Surcharge weights on the top of the mould filled with the wet compacted soil, and place the all on the loading machine

12. Weight the empty container then weigh with a sample of the used soil in the test to record (the weight of the empty container) and (the weight of the container +wet soil)

of Mould (v)	(cc)	2250	2250			
Mould (md)		30	2250	2250		
mould (m1)	(gm)	6455	CLOO	1000		
eight of Mould + Compacted Soil (w2)	(gm)	6955	6480	6825		
eight of Mould + Compacted Soil (w2) light of Compacted Soil (w3 = m2 - m1)	(gm) (gm)	6955 10790	6480	6825		
eight of Mould (m1) eight of Mould + Compacted Soil (w2) eight of Compacted Soil (w3 = m2 - m1) t Density of soil (Dw) = w3 / v	(gm) (gm) (gm)	6955	6480	6825		
eight of Mould (m1) eight of Mould + Compacted Soil (w2) ight of Compacted Soil (w3 = m2 - m1) t Density of soil (D _w) = w3 / v	(gm) (gm) (gm) (gm/cc)	6455	6480	6825		
eight of Mould (m1) eight of Mould + Compacted Soil (w2) hight of Compacted Soil (w3 = m2 - m1) t Density of soil (D_w) = w3 / v ainer No,	(gm) (gm) (gm) (gm/cc)	6455 10790	6480	6825 Water Co	ontent Data	
eight of Mould (m1) eight of Mould + Compacted Soil (w2) ight of Compacted Soil (w3 = m2 - m1) Density of soil (D_w) = w3 / v ainer No. ht of Container	(gm) (gm) (gm) (gm/cc)	6455 10790 A-1 60:21	6480	Water Co	ontent Data	
eight of Mould (m1) eight of Mould + Compacted Soil (w2) ight of Compacted Soil (w3 = m2 - m1) t Density of soil (D _w) = w3 / v aliner No. ht of Container ht of Wet Soil + Container	(gm) (gm) (gm) (gm/cc) (gm) (gm)	6455 10790 A-1 60.21	6480	Water Co	entent Data	
eight of Mould (m1) eight of Mould + Compacted Soil (w2) ight of Compacted Soil (w3 = m2 - m1) t Density of soil (D _w) = w3 / v ainer No. ht of Container ht of Wet Soil + Container ht of Container + Oven dry soil	(gm) (gm) (gm/cc) (gm/cc) (gm) (gm) (gm)	6455 10790 A-1 60·21 33	6480	Water Co	ontent Data	
eight of Mould (m1) eight of Mould + Compacted Soil (w2) ight of Compacted Soil (w3 = m2 - m1) Density of soil (D_w) = w3 / v ainer No. ht of Container ht of Container ht of Wet Soil + Container at of Container + Oven dry soil t of Water	(gm) (gm) (gm) (gm/cc) (gm) (gm) (gm) (gm)	6455 10790 A-1 60·21 33	6480	Water Co	ontent Data	

13. Repeat the steps from 4 to 13 twice for different number of blows (for example 30 and 56)

14. Put the wet soil samples in the oven for 24 hours

15. Record the weight of the container + dry soil

		1	Water Content Data						
Container No.		A-1	A-2	A-3	A-19				
Neight of Container	(gm)	60.21	60.85	60.71					
Veight of Wet Soil + Container	(gm)	337.18	316.08	339.82	360.08				
Veight of Container + Oven dry soll	(gm)								
Veight of Water	(gm)								
Veight of oven dry soil	(gm)	1							
Vater content	(%)		11000		10				
Py Density of soil (D.) =100 x Dw / (100 + w)	(om/cc)								

16. Immerse the mould and weights in water allowing free access of water to the top and bottom of the specimen. Take initial measurements for swell and allow the specimen to soak for 96 h.

At the end of 96 h, take final swell measurements and calculate the swell as a percentage of the initial height of the specimen.

17. Remove the free water and allow the specimen to drain downward for 15 min

	1	1			II	-	#
						t	
Description	1986		Before Soa	king		Attor Social	10 kg 👩 🕐
International In		10 Blow	s 30 Blow	65 Blows	10 Blows	30 Blows	65 Plan
		07	08	09	07		OS BIOW.
counter of Mobild (v)	(cc)	2250	2250	2250	2250		
eight of Mould (m1)	(gm)	6455	6480	6825	Luce		
hight of Mould + Compacted Soil (w2)	(gm)	10790	10350	11890	10970		
light of Compacted Soil (w3 = m2 - m1)	(gm)		10 ac	11010	10 14 0		
Density of soil (D _w) = w3 / v	(gm/cc)						
ainer Mo			1	Water Co	ntent Data		
		A-1	A-2	A-3	Buiu		
in di Container	(gm)	60.21	60.85	60.71			
Nt of Wet Soit + Container	(gm)	337.18	316.08	339.82			
if of Container + Oven dry soil	(gm)						
t of Water	(mp)						
of page dou soul	and and a			and the second second			

18. Seat the penetration piston with the smallest possible load, but in no case in excess of 10 lbf (44 N). Set both the stress and penetration gages to zero. This initial load is required to ensure satisfactory seating of the piston and shall be considered as the zero load when determining the load penetration relation.

Apply the load on the penetration piston so that the rate of penetration is approximately 0.05 in. (1.27 mm)/min. Record the load readings at penetrations of 0.025 in. (0.64 mm), 0.050 in. (1.27 mm), 0.075 in. (1.91 mm), 0.100 in. (2.54 mm), 0.125 in. (3.18 mm), 0.150 in. (3.81 mm), 0.175 in. (4.45 mm), 0.200 in. (5.08 mm), 0.300 in. (7.62 mm), 0.400 in. (10.16 mm) and 0.500 in. (12.70 mm).

Al-Mustansiriyah University College of Engineering Civil Engineering Department

Lect. 4 2019-2020

	01		Proving Ring	Constant (kg	Div) S.	87.6	Penetration R	ato : 1-2	smmli
No. of Blows		10			30			65	
Mould No.		Mould No.			Mould No.			Mould No.	
Penetration (mm)	Proving Ring Reading (Div)	Load in (kg)	Corrected Load (kg)	Proving Ring Reading	Load in (kg)	Corrected Load (kg)	Proving Ring Reading	Load in (kg)	Correct Load (kg)
0.00	-	-	-	-	-	-	-	-	-
0.50	16			14			15		
1.00	24			28			37		
1.50	26			37			54		
2.00	30			45			66		
2.50	33			51			74		
3.00	20			56			84		
3.00	02			12			100		

56 73

12

19. If the sample was to be soacked , take other samples for determining Water content after compaction

Description	/	F	Sefore Soaki	00				
No of Blows		10 Blows	30 Blows	65 Blows	10 Blows	65 Blows		
Mould No.		07	08	09	07	08	09	
Volume of Mould (v)	(cc)	2250	2250	2250	2250	2250	2250	
Weight of Mould (m1)	(gm)	6455	6480	6825	6455	6480	6825	
Weight of Mould + Compacted Soil (w2)	(gm)	10790	11350	11890	10995	11440	11865	
Weight of Compacted Soil (w3 = m2 - m1)	(gm)	4335	4870	5065	4540	4960	5040	
Wet Density of soil (D _w) = w3 / v	(gm/cc)	1.927	2.164	2.251	2.018	2.204	2240	
		Water Content Data						
Container No.		A-1	A-2	A-3	A-19	A-20	A-21	
Neight of Container	(gm)	60.21	60.88	6073	61.17	63.00	60.83	
reight of Wet Soil + Container	(gm)	337.18	300.43	317.60	359.84	270.61	215.3	
Neight of Container + Oven dry soll	(gm)	318:16	284.13	299.69	329.55	253.08	203.03	
Weight of Water	(gm)	19.02	16.30	17.91	30.29	17.53	12.35	
Weight of oven dry soil	(gm)	2 57.95	223.25	238.96	2 6 8 38	190.08	142.20	
Water content	(%)	7.37	7.30	7.49	11.29	9.22	8. 68	
Dry Density of soil (D _a) =100 x Dw / (100 + w)	(gm/cc)	1.794	2.017	2.094	1.813	2.018	2.061	
	1500000	97.09	19.70	101.65	22.01	97.96	100.05	

Calculation:

1. % swelling=
$$\frac{Change in sample height}{initial height of sample}$$

- Adjustment of the load penetration reading Load (KN) = reading *calibration factor Load (Ib) = Load (KN) * 224.8
 Penetration (mm) = reading * 0.001 in * 25.4167 mm/in
- Weight of compacted soil = weight of (mold + compacted soil) weight of empty mold
- 4. %W= (Weight of water / weight of dry soil)* 100
- 5. Find the average of the %W
- 6. Find the wet density of the soil = $\gamma wet\left(\frac{gm}{cm3}\right) = \frac{weight of the comacted soil}{Mold volume}$
- 7. Find the Dry density of the soil sample = $\gamma dry \left(\frac{gm}{cm^3}\right) = \frac{\gamma wet}{1+\frac{w}{100}}$
- 8. Draw the standard curve connecting the penetration with load using the following data

Penetration (in)	Load (Ib)	Pressure (psi)
0.1	3000	1000
0.2	4500	1500
0.3	5700	1900
0.4	6900	2300
0.5	7800	2600

- 9. Draw the actual curve connecting the penetration with load using the actual data obtained from the lab test to determine the specified CBR
- 10. Draw the actual curve connecting the CBR values with dry unit weight to determine the specified dry density

- 11. CBR (0.1 in) = $\frac{Penetration \ load \ at \ 0.1 \ in}{standard \ load \ at \ 0.1 \ in}$ (100) Standard load =3000 Ib = 1000 psi = 13.35 kN
- 12. CBR (0.2 in)= $\frac{Penetration \ load \ at \ 0.2 \ in}{standard \ load \ at \ 0.1 \ in}$ (100) Standard load =5500 Ib = 1500 psi = 20.43 kN
- 13. Use the larger CBR
- 14. CBR used must be less than the calculated CBR

10.00	73	428.95	92	540.59	144	84 614	
12.50	85	499.46	103	605.23	154	904.90	
CBR of specimen	at 2.50 mm	14.08		21.90		31-75	
CBR of specimen (Standard 2055 H	at 5.00 mm	13.38		21.90		33.33	

