Flexural Design by using AISC Tables (Table (3.2) (Zx Table) for W-shapes)

W-shape are stored in descending order by strong-axis flexural strength and then grouped in ascending order by weight with the lights W-shape in each rang in bold. Strong-axis available strength in flexure and shear are given for W-shapes with fy =50.

For compact W-shapes, When Lb≤ Lp, the strong-axis available flexural strength $MP/\Omega \text{ or } \phi MP$, can be determined using the tabulated strength values. When Lp<Lb≤Lr, linearly interpolate between the available strength at Lp and the available strength at Lr as follows:

Limitation of using table (3.2) (Zx table)

ľ

- The W shape is available in table
- Yielding strengthen for steel material must be equal to (fy = 50)
- The laterally un supported length (Lb< Lp) (Zone 1) or range between (Lp<Lb≤Lr) (Zone 2).

LRFD	ASD
$\Phi Mn = Cb[\Phi Mpx - BF(Lb - Lp)] \le \Phi Mpx$	$\frac{Mn}{\Omega} = Cb\left[\frac{Mpx}{\Omega} - BF(Lb - Lp)\right] \le \frac{Mpx}{\Omega}$

<i>F_y</i> = 5	0 ksi		Table 3–2 W Shapes Selection by <i>Z_x</i>								Ζ	x	
	-	M_{px}/Ω_{b}	ф _b М _{px}	M_{rx}/Ω_b	φ _b M _{rx}	M _{rx} BF			·.,		V_{nx}/Ω_{v}	\$, V_nx	
Shape	Z _x	kip-ft	kip-ft	kip-ft	kip-ft	kips	kips	$L_p = L_r$	4,	I,x	kips	kips	
	in. ³	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in.4	ASD	LRFD	
W36×800 ^h	3650	9110	13700	5310	7980	47.5	71.4	14.9	94.8	64700	2030	3040	
W36×652 ^h	2910	7260	10900	4300	6460	46.8	70.4	14.5	77.8	50600	1620	2430	
W40×593 ^h	2760	6890	10400	4090	6140	55.5	83.5	13.4	63.8	50400	1540	2310	
W36×529 ^h	2330	5810	8740	3480	5220	46.5	70.0	14.1	64.4	39600	1280	1920	
W40×503 ^h	2310	5760	8660	3460	5200	54.7	82.2	13.1	55.3	41600	1290	1940	
W36×487 ^h	2130	5310	7990	3200	4800	46.1	69.3	14.0	60.0	36000	1180	1770	
W40×431 ^h	1960	4890	7350	2950	4440	53.6	80.6	12.9	49.0	34800	1110	1660	
W36×441 ^h	1910	4770	7160	2880	4330	45.2	68.0	13.8	55.5	32100	1060	1590	
W27×539 ^h	1890	4720	7090	2740	4120	26.1	39.2	12.9	88.6	25600	1280	1920	
W40×397 ^h	1800	4490	6750	2720	4100	52.3	78.7	12.9	46.6	32000	999	1500	
W40×392 ^h	1710	4270	6410	2510	3780	60.4	90.8	9.33	38.3	29900	1180	1760	
W36×395 ^h	1710	4270	6410	2600	3910	44.7	67.1	13.7	51.0	28500	937	1410	
W40×372 ^h	1680	4190	6300	2550	3830	51.6	77.6	12.7	44.5	29600	943	1410	
W14×730 ^h	1660	4140	6230	2240	3360	7.37	11.1	16.6	275	14300	1380	2060	

Use LRFD method to determine the flexural strength of a W14 \times 68 of A992 steel material by using table (3.2) if :

a. Continuous lateral support.

b. An unbraced length of 20 ft with Cb = 1.0.

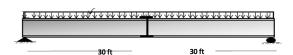
c. An unbraced length of 30 ft with Cb = 1.0.

<u>Solution</u>

Steel fy fu A992 50 65 <u>Section</u> <u>фМрх</u> <u>Zx</u> Bf Lр Lr W14x68 115 431 7.81 8.69 29.3

a. Continuous lateral support. Lb=0 $\phi Mpx = 431 ft. kip$

b. An unbraced length of 20 ft with Cb = 1.0. Lp<Lb≤Lr $\phi Mn = Cb[\phi Mpx - BF(Lb - Lp)] \le \phi Mpx$ $\phi Mn = 1[431 - 7.81(20 - 8.69)] \le 431$ =342.66<431 =342.66 ft.kip



c. An unbraced length of 30 ft with Cb = 1.0.

$$\begin{aligned} \text{lb>Lr} &\longrightarrow \text{Zone 3} \\ 30> 29.3 \\ Mn &= FcrxSx < MP \\ Fcr &= \frac{cb\pi^2 E}{(\frac{lb}{rts})^2} \sqrt{(1+0.078\frac{Jc}{Sxho}(\frac{lb}{rts})^2)} \\ Fcr &= \frac{1x\pi^2 29000}{(\frac{30x12}{2.8})^2} \sqrt{(1+0.078\frac{3.01x1}{103x13.3}(\frac{30x12}{2.8})^2)} \\ &= 33.9 \text{ ksi} \\ Mn &= 33.9x103 < 5750 \\ &= 3492 < 5750 \end{aligned}$$

$$=\frac{3492}{12}$$
 = 291 ft.kip

φMn=0.9x291=261.9 ft. kip

Use ASD method to determine the flexural strength of a W14 \times 74 of A992 steel material if

a. Continuous lateral support.

b. An unbraced length of 15 ft.

c. An unbraced length of 35 ft.

Solution

<u>Steel</u>	<u>fy</u>	<u>fu</u>			
A992	50	65			
Section	Zx	<u>Mpx/Ωb</u>	<u>Bf</u>	<u>Lp</u>	<u>Lr</u>
W14x74	126	314	5.34	8.76	31

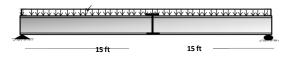
a. Continuous lateral support

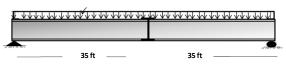
L_b = 0 the beams has full laterally supported

$$L_{b} < L_{p}$$
 Zone 1
 $\frac{Mn}{\Omega b} = \frac{Mpx}{\Omega b} = 314 ft. kip$

b. An unbraced length of 15 ft.

L_b=15 ft Cb=1.3 table 3.1 Lp<Lb≤Lr $\frac{Mn}{\Omega b} = Cb \left[\frac{Mpx}{\Omega b} - BF(Lb - Lp) \right] \le \frac{Mpx}{\Omega b}$ =1.3x (314-5.34(15-8.76))<314 =364.88>314 Use $\frac{Mn}{\Omega b} = 314$


c. An unbraced length of 35 ft.


b>Lr Zone 3

$$Mn = FcrxSx < MP$$

 $Fcr = \frac{cb\pi^2 E}{(\frac{lb}{rts})^2} \sqrt{(1 + 0.078 \frac{Jc}{Sxho} (\frac{lb}{rts})^2)}$
 $Fcr = \frac{1.3x\pi^2 29000}{(\frac{35x12}{2.82})^2} \sqrt{(1 + 0.078 \frac{3.87x1}{112x13.4} (\frac{35x12}{2.82})^2)}$
= 39.2 ksi
 $Mn = 39.2x112 < 6300$
 $= 4390.52 < 6300$
 $= \frac{4390.52}{12} = 365.87$ ft.kip

$$\frac{Mn}{\Omega b} = \frac{Mp}{\Omega b} = \frac{365.87}{1.67} = 219 \, ft. \, kip$$

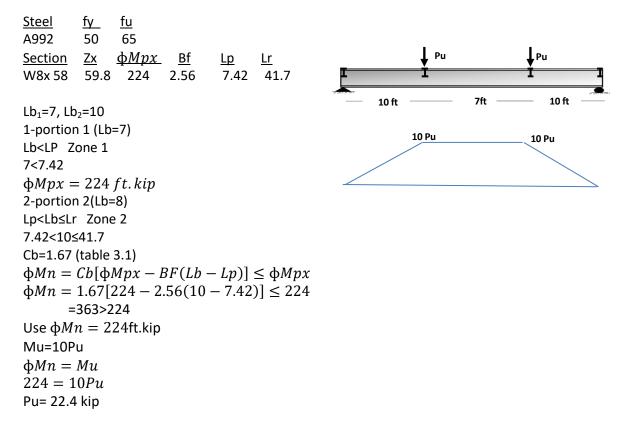
12

Determine the LRFD design moment capacity of W24x62 with A992 steel material if the laterally unsupported length (Lb=8ft), assume Cb=1

Solution

Steel fy fu A992 50 65 Zx <u>фМрх</u> Section Bf Lp Lr W24x62 153 24.1 4.87 14.4 574

```
Lp<Lb≤Lr (Zone 2)
```



 $\phi Mn = Cb[\phi Mpx - BF(Lb - Lp)] \le \phi Mpx$ $\phi Mn = 1[574 - 24.1(8 - 4.87)] \le 574$ =498.6

=498.6 ft.kip

Homework

Determine the ASD allowable moment capacity of W24x62 with A992 steel material if the laterally unsupported length (Lb=8ft), assume Cb=1

Example

Consider the flexural requirements only to determine the allowable point load (Pu), use A992 steel material and W8x58, neglected the self-weight effect. Use LRFD method

I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR MINOR AXIS

This section applies to I-shaped members and channels bent about their minor axis. The nominal flexural strength, *Mn*, shall be the lower value obtained according to the *limit states* of *yielding* (plastic *moment*) and flange *local buckling*.

1. Yielding

 $Mn = Mp = Fy Zy \le 1.6Fy Sy \tag{F6-1}$

2. Flange Local Buckling

(a) For sections with compact flanges the limit state of yielding shall apply.

User Note: All current ASTM A6 W, S, M, C and MC shapes except W21×48, W14×99, W14×90, W12×65, W10×12, W8×31, W8×10, W6×15, W6×9, W6×8.5, and M4×6 have compact flanges at $Fy \leq 50$ ksi.

(b) For sections with non-compact flanges

$$Mn = [Mp - (Mp - 0.7Fy Sy) \left(\frac{\lambda - \lambda p f}{\lambda r f - \lambda p f}\right)]$$
(F6-2)

(c) For sections with slender flanges	
Mn = Fcr Sy	(F6-3)
Where:-	
$Fcr = \frac{0.69E}{(bf/2tf)^2}$	(F6-4)
$\lambda = b/t$	
$\lambda p f = \lambda p$, the limiting slenderness for a compact flat	nge, Table B4.1

 $\lambda r f = \lambda r$, the limiting slenderness for a non-compact flange, Table B4.1

Sy for a channel shall be taken as the minimum section modulus

Flexural Design by using AISC Tables (Table (3.4) (Zy Table) for W-shapes)

W-shape are stored in descending order by weak-axis flexural strength and then grouped in ascending order by weight with the lights W-shape in each rang in bold. Weak-axis available strength in flexure are given for W-shapes with fy =50 ksi(ASTM992).Cb is taken as unity.

For compact W-shapes, When $\lambda \leq \lambda p$, the weak-axis available flexural strength $/\Omega \text{ or } \Phi MPy$, can be determined using the tabulated strength values. For non -compact Wshape When $\lambda p < \lambda \leq \lambda r$, linearly interpolate between the available strength at λp and the available strength at λr as follows:

Limitation of using table (3.4) (Zy table)

- The W shape is available in table
- Yielding strengthen for steel material must be equal to (fy = 50)
- For compact section ($\lambda < \lambda$ p)and non-compact section ($\lambda p < \lambda \le \lambda r$)

FLEXURAL DESIGN TABLES

$F_v = 5$	i0 ks	i	-	Table 3- W		ape)		Z	
,				Sele		-					У
Shape Z,		M _{gy} /Ω _g	¢ ₃ M ₅₇ kip-ft	Shape	z,	M _{py} /Ω _b φ _b M _{py} kip-ft kip-ft		Shape	z,	$M_{gg}/\Omega_{g} \phi_{g}/$	
anape	in. ³	ASD	LRFD	Snape	in. ³	ASD	kip-ft LRFD	Snape	in. ³	kip-ft ASD	kip-f
W14×159	146	364	548	W14×109	92.7	231	348	W12-87	60.4	151	227
W12×190	143	357	536	W21×147	92.6	231	347	W36×135	59.7	149	224
W40×278	140	348	523	W36×182	90.7	226	340	W33×130	59.5	148	223
W30<191	138	344	518	W40×183	88.3	220	331	W30×132	58.4	146	219
W40×199	137	342	514	W18×143	85.4	213	320	W27×129	57.6	144	216
W36×256	137	342	514	W12×120	85.4	213	320	W18×97	55.3	138	207
W24×207	137	342	514	W33×169	84.4	211	317	W16×100	54.9	137	206
W27×194	136	339	510	W36×170	83.8	209	314				
W21×201	133	332	499					W12<79	54.3	135	204
W14×145	133	332	499	W14>99 ¹ W21×132	83.6	207	311 309	W30×124 W10×88	54.0	135	203
W40×264	133	329	4905	W24×132	82.3	205	309	W33×118	53.1	132 128	199
W18×211	132	329	4905	W36×160	77.3	193	290	W27×114	49.3	123	185
W24×192	126	314	435	W18×130	76.7	193	288	W30×116	49.2	123	185
W12×170	126	314	473	W40×167	76.0	190	285				
W30×173	123	307	461	W21×122	75.6	189	283	W12<72	49.2	123	185
W36×232	122	304	458					W18×86	48.4	121	182
W27×178	122	304	458	W14>-90 ^r	75.6	181	273	W16×89	-48.1	120	180
W21×182	119	297	446	W12×106	75.1	187	282	W10×77	45.9	115	172
W18×192	119	297	446	W33×152	73.9	184	277	W14×82	44.8	112	168
W40×235	118	294	443	W24×117	71.4	178	268	W12~65	44.1	107	161
W24×176	115	287	431	W36×150 W10×112	69.2	177	266 260	W30×108	43.9	110	165
W14×132	113	282	424	W18×119	69.1	172	259	W27×102	43.4	106	163
W12×152	1111	277	416	W21×111	68.2	170	256	W18×76	42.2	105	158
W27×161	109	272	409	W30×148	68.0	170	255	W24×103	41.5	104	156
W21×166	108	269	405	W12×96	67.5	168	253	W16×77	41.1	103	154
W36×210	107	267	401	W33×141	66.9	167	251	W14×74	40.5	101	152
W18×175	106	264	396	W24×104	62.4	156	234	W10×68	40.1	100	150
W40×211	105	262	394	W40×149	62.2	155	233	W27×94	38.8	96.8	146
W24×162	105	262	394	W21×101	61.7	154	231	W30×99	38.6	96.3	145
				W10×100	61.0	152	229	W24×94	37.5	93.6	141
W14×120	102 98.0	254 245	383 368	W18×106	60.5	151	227	W14×68 W16×67	36.9	92.1	138
W12×136 W36×194	98.0	245	368					WIGND/	35.5	88.6	133
W27×146	97.7	244	366			I					
W18×158	94.8	237	356								
W24×146	93.2	233	350		1	· ·					
	33.2	233	350								
ASD		RFD	100	exceeds compa							

Example

Using AISC requirements to determine the design moment capacity of $W10 \times 30$ steel beam has 20 ft long and is subjected to bending about its weak axis only, use LRFD method

<u>Steel</u> fy fu A992 65 50 <u>bf/2t</u>f <u>Section</u> Sy Zy 5.75 W10x30 5.7 8.84 $\lambda < 0.38 \sqrt{\frac{E}{fy}}$ 5.7<915 compact section $Mn = Mp = Fy Zy \le 1.6Fy Sy$ (F 6.1) -Mp=50x 8.84=442/12=36.83 ft.kip control Mn=-_1.6x50x5.75=460/12=38.3 ft.kip

φMn=φMp=0.9x36.83=33.147 ft.kip

or by use table (3.4) φMn=33.2 ft.kip 3-23

Using AISC requirements to determine the design moment capacity of $W12x65^{f}$ steel beam has 20 ft long and is subjected to bending about its weak axis only, use LRFD method

$$\frac{\text{Steel}}{\text{A992}} \quad \frac{\text{fy}}{50} \quad \frac{\text{fu}}{65}$$

$$\frac{\text{Section}}{\text{W10x30}} \quad \frac{\text{bf/2tf}}{9.92} \quad \frac{\text{Sy}}{29.1} \quad \frac{\text{Zy}}{44.1}$$

$$\lambda = 9.92$$

$$\lambda p f = 0.38 \sqrt{\frac{E}{fy}} \quad \lambda p, \text{ the limiting slenderness for a compact flange, Table B4.1}$$

$$= 9.15$$

$$\lambda r f = \sqrt{\frac{E}{fy}} \quad \lambda r, \text{ the limiting slenderness for a compact flange, Table B4.1}$$

$$= 24$$

$$\lambda p f < \lambda \leq \lambda r f \quad (non-compact section)$$

$$9.15f < 9.92 \leq 24$$

$$Mp = - \left[\frac{50x \ 44.1 = 2205 \ in.kip \quad control}{1.6x50x29.1 = 2328 \ in.kip} \right]$$

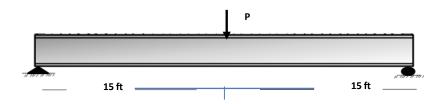
$$Mn = \left[Mp - (Mp - 0.7Fy \ Sy) \left(\frac{\lambda - \lambda p \ f}{\lambda r \ f - \lambda p \ f} \right) \right]$$

$$Mn = \left[2205 - (2205 - 0.7x50x29.1) \left(\frac{9.92 - 9.15}{24 - 9.15} \right) \right]$$

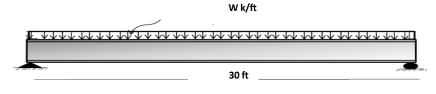
$$Mn = 2143.5in \ kip = 2143.5/12 = 178.625 \ ft.kip$$

$$Mn = -0.9x178.625 = 160.763 \ ft.kip$$

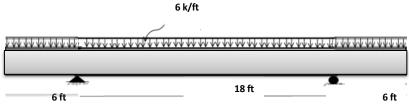
$$Mn = \phi Mp = 161 \ ft.kip$$

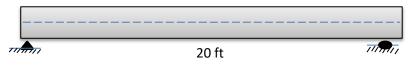

Example

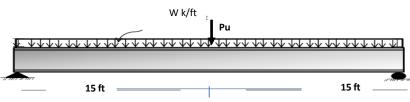
Using AISC requirements to determine the design moment capacity of W12x58 steel beam has 20 ft long and is subjected to bending about its weak axis only, use ASD method


Homework

1-Using AISC requirements to determine the design moment capacity of W18x97 with A992 steel material if the laterally unsupported length (Lb=38ft), assume Cb=1.useLRFD method


2- Consider the flexural requirements only to determine the allowable point live load (P), use A992 steel material and W10x77, neglected the self-weight effect. Use ASD method


3-W 40x149 has continuous lateral support. If the live load is twice the dead load, what is the maximum total service load (W (k/ft)) that can be supported? Use A992 steel material and LRFD method.


4- W 12x35 has continuous lateral support. The live load is 4k/ft and the dead load is 2 k/ft including self-weight .Use A992 steel material and ASD method is the section adequate?

5-Using AISC requirements to determine the design moment capacity of W12x58 steel beam has 20 ft long, use ASD method

6- Consider the flexural requirements only to determine the allowable point live load (Pu), use A992 steel material and W10x77, The live load is 2k/ft and the dead load is 1 k/ft, use LRFD method

