Digital Logic Design Chapter 2

Boolean Algebra and Logic Gate

Digital Logic Design

2.1 INTRODUCTION

- Because binary logic is used in all of today's digital computers and devices, the cost of the circuits that implement it is an important factor addressed by.
 - Mathematical methods that simplify circuits rely primarily on Boolean algebra.
- Therefore, this chapter provides a basic vocabulary and a brief foundation in Boolean algebra that will enable you to optimize simple circuits and to understand the purpose of algorithms used by software tools to optimize complex circuits involving millions of logic gates.

2.2 BASIC DEFINITIONS

■ A **SET** is collection of elements having the same property.

- ◆ S: set, x and y: element or event
- For example: $S = \{1, 2, 3, 4\}$
 - » If x = 2, then $x \in S$.

» If y = 5, then $y \notin S$.

■ A **Binary Operator** defines on a set *S* of elements is a <u>rule</u> that assigns, to each pair of elements from *S*, a unique element from *S*.

- For example: given a set *S*, consider a*b = c and * is a binary operator.
- If (a, b) through * get c and $a, b, c \in S$, then * is a binary operator of S.
- On the other hand, if * is not a binary operator of S and $a, b \in S$, then $c \notin S$.

Digital Logic Design ³

2.1 Algebras

What is an algebra?

Mathematical system consisting of

- » Set of elements (example: $N = \{1, 2, 3, 4, ...\}$)
- » Set of operators $(+, -, \times, \div)$
- » Axioms or postulates (associativity, distributivity, closure, identity elements, etc.)

Digital Logic Design

Why is it important?

Defines rules of "calculations"

Note: operators with two inputs are called *binary*

- Does not mean they are restricted to binary numbers!
- Operator(s) with one input are called <u>unary</u>

BASIC DEFINITIONS

- The common postulates used to formulate algebraic structures are:
- 1. Closure: a set S is closed with respect to a binary operator if, for every pair of elements of S, the binary operator specifies a rule for obtaining a unique element of S.
 - ◆ For example, $N = \{1, 2, 3, ...\}$ is closed w.r.t. the binary operator +, since, for any $a, b \in N$, there is a unique $c \in N$ such that
 - a+b=c
 - » But operator is not closed for *N*, because 2-3 = -1 and $2, 3 \in N$, but $(-1) \notin N$.
- 2. Associative law: a binary operator * on a set S is said to be associative whenever
 - (x * y) * z = x * (y * z) for all x, y, z∈S
 (x+y)+z = x+(y+z)
- **3.** Commutative law: a binary operator * on a set *S* is said to be commutative whenever

BASIC DEFINITIONS

- 4. *Identity element*: a set S is said to have an identity element with respect to a binary operation * on S if there exists an element $e \in S$ with the property that
 - e * x = x * e = x for every x∈S
 » 0+x = x+0 = x for every x∈I I = {..., -3, -2, -1, 0, 1, 2, 3, ...}.
 » 1 × x = x × 1 = x for every x∈I I = {..., -3, -2, -1, 0, 1, 2, 3, ...}.
- 5. *Inverse*: a set having the identity element **e** with respect to the binary operator to have an inverse whenever, for every $x \in S$, there exists an element $y \in S$ such that
 - $\bullet x * y = e$
 - » The operator + over *I*, with e = 0, the inverse of an element *a* is (-*a*), since a+(-a) = 0. $X * (V.Z) = (X * V) \cdot (X * Z)$
- *Distributive law*: if (*) and (.) are two binary operators on a set S, (*) is said to be distributive over (.) whenever *x* * (*y*.*z*) = (*x* * *y*).(*x* * *z*)

Digital Logic Design 6

George Boole

■ Father of Boolean algebra

on-off, zero-one approach.

- He came up with a type of linguistic algebra, the three most basic operations of which were (and still are) <u>AND, OR and NOT</u>. It was these three functions that formed the basis of his premise, and were the only operations necessary to perform comparisons or basic mathematical functions.
- Boole's system was based on a binary approach, processing only two objects - the yes-no, true-false,

George Boole (1815 - 1864)

- Surprisingly, given his standing in the academic community, Boole's idea was either criticized or completely ignored by the majority of his peers.
- Eventually, one bright student, **claude shunnon**(**1916-2001**), picked up the idea and ran with it

2.3 Axiomatic Definition of Boolean Algebra

- Developed by George Boole in 1854
- Huntington postulates (1904) for Boolean algebra :
- \blacksquare *B* = {0, 1} and two binary operations, (+) and (.)
 - Closure with respect to operator (+) and operator (.)
 - ◆ Identity element 0 for operator (+) and 1 for operator (.)
 - Commutativity with respect to (+) and (.)

x+y = y+x, $x \cdot y = y \cdot x$

• Distributivity of (.) over (+), and (+) over (.)

 $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$ and $x + (y \cdot z) = (x+y) \cdot (x+z)$

- Complement for every element x is x' with x+x'=1, $x \cdot x'=0$
- There are at least two elements $x, y \in B$ such that $x \neq y$

Boolean Algebra

Terminology:

- *Literal:* A variable or its complement
- *Product term:* literals connected by (\cdot)
- ◆ *Sum term:* literals connected by (+)

Postulates of Two-Valued Boolean Algebra

B = {0, 1} and two binary operations, (+) and (.)
 The rules of operations: AND, OR and NOT.
 AND OR

X	у	X.y
0	0	0
0	1	0
1	0	0
1	1	1

NOT

X	X
0	1
1	0

Digital Logic Design¹⁰

Postulates of Two-Valued Boolean Algebra

- 3. The commutative laws x+y = y+x, x.y = y.x
- 4. The distributive laws

x	y	z	y+z	$x \cdot (y+z)$	x . y	<i>x</i> . <i>z</i>	$(x \cdot y) + (x \cdot z)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Digital Logic Design¹¹

Postulates of Two-Valued Boolean Algebra

5. Complement

•
$$x + x' = 1 \rightarrow 0 + 0' = 0 + 1 = 1; 1 + 1' = 1 + 0 = 1$$

- ◆ $x : x'=0 \rightarrow 0 : 0'=0 : 1=0; 1 : 1'=1 : 0=0$
- 6. Has two distinct elements 1 and 0, with $0 \neq 1$
- Note
 - A set of two elements
 - (+): OR operation; (\cdot) : AND operation
 - A complement operator: NOT operation
 - Binary logic is a two-valued Boolean algebra

Digital Logic Design¹²

2.4 Basic Theorems And Properties Of Boolean Algebra Duality

- The principle of *duality* is an important concept. This says that if an expression is valid in Boolean algebra, the dual of that expression is also valid.
- To form the dual of an expression, replace all (+) operators with
 (·) operators, all (·) operators with (+) operators, all ones with zeros, and all zeros with ones.
- Following the replacement rules...
 a(b + c) = ab + ac
- Form the dual of the expression

 $\mathbf{a} + (\mathbf{b}\mathbf{c}) = (\mathbf{a} + \mathbf{b})(\mathbf{a} + \mathbf{c})$

Take care not to alter the location of the parentheses if they are present.

Basic Theorems

Table 2.1

Postulates and Theorems of Boolean Algebra

Postulate 2	(a) $x + 0 = x$	(b) $x \cdot 1 = x$
Postulate 5	(a) $x + x' = 1$	(b) $x \cdot x' = 0$
Theorem 1	(a) $x + x = x$	(b) $x \cdot x = x$
Theorem 2	(a) $x + 1 = 1$	(b) $x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Postulate 3, commutative	(a) $x + y = y + x$	(b) $xy = yx$
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$	(b) $x(yz) = (xy)z$
Postulate 4, distributive	(a) $x(y+z) = xy + xz$	(b) $x + yz = (x + y)(x + z)$
Theorem 5, DeMorgan	(a) $(x + y)' = x'y'$	(b) $(xy)' = x' + y'$
Theorem 6, absorption	(a) $x + xy = x$	(b) $x(x + y) = x$

Boolean Theorems

Huntington's postulates define some rules

Post. 1: closure Post. 2: (a) x+0=x, (b) $x\cdot 1=x$ Post. 3: (a) x+y=y+x, (b) $x\cdot y=y\cdot x$ Post. 4: (a) x(y+z) = xy+xz, (b) x+yz = (x+y)(x+z)Post. 5: (a) x+x'=1, (b) $x\cdot x'=0$

Need more rules to modify algebraic expressions

• Theorems that are derived from postulates

- What is a theorem?
 - A formula or statement that is derived from postulates (or other proven theorems)
- Basic theorems of Boolean algebra
 - Theorem 1 (a): x + x = x (b): $x \cdot x = x$
 - Looks straightforward, but needs to be proven !

Digital Logic Design¹⁵

Absorption Property (Covering)

Theorem $6(a): x + x$	y = x	Huntington postulates:
$ x + xy = x \cdot 1 + xy $ $ = x (1 + y) $	$\frac{0y}{4(a)}$	Post. 2 : (a) <i>x</i> + <i>0</i> = <i>x</i> , (b) <i>x</i> · <i>1</i> = <i>x</i>
=x(y+1)	3(a)	Post. 3 : (a) $x+y=y+x$, (b) $x \cdot y=y \cdot x$ Post. 4 : (a) $x(y+z) = xy+xz$.
$= x \cdot 1$	Th $2(a)$ 2(b)	(b) $x+yz = (x+y)(x+z)$
$-\lambda$	2(0)	Post. 5 : (a) $x+x = 1$, (b) $x \cdot x = 0$ Th. 2 : (a) $x+1=1$

- Theorem 6(b): x(x + y) = x by duality
- By means of truth table (another way to proof)

x	y	xy	x+xy
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Digital Logic Design

DeMorgan's Theorem

Theorem 5(a): (x + y)' = x'y'

Theorem 5(b):
$$(xy)' = x' + y'$$

By means of truth table

x	у	<i>x</i> '	у,	<i>x+y</i>	(x+y)'	<i>x'y'</i>	xy	x'+y'	(xy)'
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

Digital Logic Design

Consensus Theorem

 $AT1 + \bar{A}T2 = T1 T2$ xy + x'z + yz = xy + x'zAT1+ \overline{A} T2+T1 T2 = AT1+ \overline{A} T 1. $(x+y) \cdot (x'+z) \cdot (y+z) = (x+y) \cdot (x'+z) - (dual)$ 2. **Proof:** xy + x'z + yz= xy + x'z + 1.yz2(a)**»** = xy + x'z + (x+x')yz5(a)**»** = xy + x'z + xyz + x'yz3(b) & 4(a)**»** = (xy + xyz) + (x'z + x'zy)Th4(a)**>>** = x(y + yz) + x'(z + zy)4(a)**»** = xy + x'zTh6(a) **>>** QED (2 true by duality). **»**

Digital Logic Design¹⁸

Operator Precedence

- The operator precedence for evaluating Boolean Expression is
 - Parentheses
 - NOT
 - AND
 - ♦ OR
- Examples
 - x y' + z
 (x y + z)'

A Boolean function

- Binary variables
- Binary operators OR and AND
- Unary operator NOT
- Parentheses
- Examples

$$\bullet F_2 = x + y'z$$

- $F_3 = x' y' z + x' y z + x y'$
- $\bullet F_4 = x y' + x' z$

Digital Logic Design²⁰

A Boolean function \bullet A \cdot B = B \cdot A === A + B = B + A • A.(B.C) = (A.B).C = = A+(B+C) = (A+B)+C+ A + 0 = A $== A \cdot 0 = 0$ === A . 1 = A \bullet A + 1 = 1 • A + $(\bar{A}) = 1$ $=== A . (A)^{-} = 0$ \bullet A + A = A $=== A \cdot A = A$ $(\bar{A}) = A$ $A \cdot (B+C) = AB + AC == A + (B \cdot C) = (A+B)(A+C)$

Digital Logic Design²¹

Digital Logic Design²²

 $\square The truth table of <math>2^n$ entries (n=number of variables)

x	y	Z	F_1	F_2	F_3	F_4	
0	0	0	0	0	0	0	$F_1 = x y z'$
0	0	1	0	1	1	1	$F_2 = x + y'z$
0	1	0	0	0	0	0	$F_3 = x' y' z + x' y z + x$ F = x y' + x' z
0	1	1	0	0	1	1	$r_4 = xy + xz$
1	0	0	0	1	1	1	
1	0	1	0	1	1	1	
1	1	0	1	1	0	0	
1	1	1	0	1	0	0	

Two Boolean expressions may specify the same function
 F₃ = F₄

Digital Logic Design²³

- Simplify the following expressions:
- $(\overline{A.B}) (\overline{A} + B) (\overline{B} + B) = \overline{A}$

$$\bullet = (\overline{A} + \overline{B})(\overline{A} + B) = \overline{A}$$

- $(\mathbf{A} + \mathbf{C})(\mathbf{A}\mathbf{D} + \mathbf{A}\overline{\mathbf{D}}) + \mathbf{A}\mathbf{C} + \mathbf{C}$
- $\bullet = (\mathbf{A} + \mathbf{C})(\mathbf{A}\mathbf{D} + \mathbf{A}\overline{\mathbf{D}}) + \mathbf{C}$
- $\bullet = (\mathbf{A} + \mathbf{C}) (\mathbf{A}) + \mathbf{C}$
- $\bullet = \mathbf{A} + \mathbf{C}$

•
$$\overline{A}$$
 (A + B) + (B + AA)(A + \overline{B})
• = \overline{A} (A + B) + (B + A)(A + \overline{B})
• = \overline{A} (A + B) + A
• = (\overline{A} B) + A

$$\bullet = \mathbf{A} + \mathbf{B}$$

Digital Logic Design²⁴

A Boolean function \bullet A \bullet B = B \bullet A === A + B = B + A • A.(B.C) = (A.B).C == A+(B+C) = (A+B)+C $=== A \cdot 0 = 0$ $\mathbf{A} + \mathbf{0} = \mathbf{A}$ $== A \cdot 1 = A$ + A + 1 = 1 $\mathbf{A} + (\overline{A}) = 1$ $=== A \cdot (\overline{A}) = 0$ $== A \cdot A = A$ $\mathbf{A} + \mathbf{A} = \mathbf{A}$ $(\overline{\overline{A}}) = A$ • A (B+C) = AB + AC == A + (B C) = (A+B)(A+C) $(A + B)(A + \overline{B}) = A === (A B) + (A \overline{B}) = A$

Digital Logic Design²⁵

A Boolean function $AB+A\overline{B} = A == (A+B)(A+\overline{B} = A)$ $A+(\overline{A} B) = A+B == A . (\overline{A} + B) = A . B$ $\overline{(A+B)} = \overline{A} . \overline{B} == \overline{(A . B)} = \overline{A} + \overline{B}$

- $\diamond \mathbf{A} + \mathbf{A}\mathbf{B} = \mathbf{A} \qquad === \mathbf{A} \cdot (\mathbf{A} + \mathbf{B}) = \mathbf{A}$
- $\bullet \mathbf{AT1} + \overline{\mathbf{A}}\mathbf{T2} + \mathbf{T1} \mathbf{T2} = \mathbf{AT1} + \overline{\mathbf{A}}\mathbf{T2}$
- $\bullet AB + \overline{A}C + BC = AB + \overline{A}C ,$
- $\bullet (A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$
- $AT1 + \overline{A}T2 = T1 T2$
 - $AB+\overline{A}C=BC = (A+B)(\overline{A}+C)=B+C$

 $\bullet AB + \overline{A}C = (A + C)(\overline{A} + B) = = (A + B)(\overline{A} + C) = (A C) + (\overline{A} B)$

Boolean Functions with logic gates

Digital Logic Design²⁷

Find the Boolean algebra expression for the following system.

Digital Logic Design²⁹

Find the Boolean algebra expression for the following system.

Digital Logic Design³⁰

Algebraic Manipulation

- When a Boolean expression is implemented with logic gates, each <u>term</u> requires a gate and each variable (<u>Literal</u>) within the term designates an input to the gate. (F3 has 3 terms and 8 literal)
- To minimize Boolean expressions, minimize the number of literals and the number of terms → a circuit with less equipment
 - It is a hard problem (no specific rules to follow)
- Example 2.1
 - 1. x(x'+y) = xx' + xy = 0 + xy = xy
 - 2. x+x'y = (x+x')(x+y) = 1 (x+y) = x+y
 - 3. (x+y)(x+y') = x+xy+xy'+yy' = x(1+y+y') = x
 - 4. xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + yzx' = xy(1+z) + x'z(1+y) = xy + x'z
 - 5. (x+y)(x'+z)(y+z) = (x+y)(x'+z), by duality from function 4. (*consensus theorem* with duality)

Digital Logic Design³¹

Complement of a Function

An interchange of 0's for 1's and 1's for 0's in the value of *F*

- By DeMorgan's theorem
- $\bullet (A + B + C)' = A'B'C'$

 Generalization: a function is obtained by interchanging AND and OR operators and complementing each literal.
 (A+B+C+D+...+F)' = A'B'C'D'...F'
 (ABCD...F)' = A'+ B'+C'+D'...+F'

Digital Logic Design

- Example 2.3: a simpler procedure
 - Take the dual of the function and complement each literal

1.
$$F_1 = x'yz' + x'y'z$$
.

The dual of F_1 is (x'+y+z')(x'+y'+z).

Complement each literal: $(x+y'+z)(x+y+z') = F_1'$

2.
$$F_2 = x(y'z' + yz)$$
.

The dual of F_2 is x+(y'+z')(y+z).

Complement each literal: $x'+(y+z)(y'+z') = F_2'$

Digital Logic Design³³

Terminology

Terminology:

♦ Literal: variable / complement = A, B, C ...

 Product term: (A.B), (AC)+(AD)+B
 Sum of product : (A.B)+(C.D), (A.B)+(C.D)+(A.D)
 Canonical Sum of product : (A.B.C.D)+(A.B.C.D)+(A.B.C.D)

 Sum term: (A+B), (B+C)(C+A)(A+D).A
 Product of sum : (A+B).(C+D), (A+B).(C+D).(A+D)
 Canonical Product of sum : (X+Y+Z).(X+Y+Z).(X+Y+Z)

Digital Logic Design³⁴

2.6 Canonical and Standard Forms

Minterms and Maxterms

- A minterm (standard product): an AND term consists of all literals in their normal form or in their complement form.
 - For example, two binary variables *x* and *y*,
 - » *xy*, *xy'*, *x'y*, *x'y'*
 - It is also called a standard product.
 - *n* variables can be combined to form 2^n minterms.
- A maxterm (standard sums): an OR term
 - It is also call a standard sum.
 - $\diamond 2^n$ maxterms.

Minterms and Maxterms

Each maxterm is the complement of its corresponding minterm, and vice versa.

Table 2.3

Minterms and Maxterms for Three Binary Variables

			Minterms		Мах	terms
x	y	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	<i>M</i> ₇

Digital Logic Design³⁶

Minterms and Maxterms

An Boolean function can be expressed by

- A truth table
- Sum of minterms for each combination of variables that produces a (1) in the function.

•
$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$$
 (Minterms)

• $f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$ (Minterms) Table 2.4

Functions of Three Variables

x	y	z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Minterms and Maxterms

□ The complement of a Boolean function

- The minterms that produce a 0
- $f_1' = m_0 + m_2 + m_3 + m_5 + m_6 = x'y'z' + x'yz' + xy'z + xyz'$ • $f_1 = (f_1')'$
- $= (x+y+z)(x+y'+z) (x+y'+z') (x'+y+z')(x'+y'+z) = M_0 M_2 M_3 M_5 M_6$
- $f_2 = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z) = M_0 M_1 M_2 M_4$
- Any Boolean function can be expressed asterms).
- A product of maxterms ("product" meaning the ANDing of terms).
- A sum of minterms ("sum" meaning the ORing of Both boolean functions are said to be in Canonical form.

Sum of Minterms

- Sum of minterms: there are 2ⁿ minterms and 2²ⁿ combinations of functions with *n* Boolean variables.
- **Example 2.4:** express F = A + B'C as a sum of minterms.
 - F = A + B'C = A (B + B') + B'C = AB + AB' + B'C = AB(C+C') + AB'(C+C') + (A+A')B'C = ABC + ABC' + AB'C + AB'C' + A'B'C

Table 2.5

- $F = A'B'C + AB'C' + AB'C + ABC' + ABC = m_1 + m_4 + m_5 + m_6 + m_7$
- $F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$
- or, built the truth table first

ruth Ta	Die Tor F	= A + I	5°C
A	B	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Digital Logic Design

Product of Maxterms

Product of maxterms: using distributive law to expand.

• x + yz = (x + y)(x + z) = (x+y+zz')(x+z+yy') = (x+y+z)(x+y+z')(x+y'+z) = M0, M1, M2

X	Y	Ζ	Minterm	
0	0	0	0	$X' \cdot Y' \cdot Z' = X + Y + Z$
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Digital Logic Design⁴⁰

Product of Maxterms

Example 2.5: express F	= xy + x'z as a produc	tof
maxterms.		

$\bullet F = xy + x'z = (xy + x')(xy + z)$
$\bullet = (x + x')(y + x')(x + z)(y + z)$
$\bullet = (x'+y)(x+z)(y+z)$
$\bullet x' + y = x' + y + zz'$
$\bullet = (x' + y + z)(x' + y + z')$
• $F = (x+y+z)(x+y'+z)(x'+y+z)(x'+z$
$\bullet = M_0 M_2 M_4 M_5$
• $F(x, y, z) = \Pi(0, 2, 4, 5)$

	X	Y	Ζ	Minterm	Maxterm
	0	0	0	0	1
	0	0	1	1	0
	0	1	0	0	1
	0	1	1	1	0
	1	0	0	0	1
-7')	1	0	1	0	1
~)	1	1	0	1	0
	1	1	1	1	0

Digital Logic Design⁴¹

Conversion between Canonical Forms

The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function.

•
$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

- Thus, $F'(A, B, C) = \Sigma(0, 2, 3)$
- By DeMorgan's theorem

 $F(A, B, C) = \Pi(0, 2, 3)$

 $F'(A, B, C) = \Pi(1, 4, 5, 6, 7)$

• $m_j' = M_j$

- **I** To convert from one canonical form to another: <u>interchange</u> the symbols Σ and Π and list those numbers <u>missing</u> from the original form
 - » Σ of 1's
 - » П of 0's

Digital Logic Design⁴²

• Example

$$\bullet F = xy + x'z$$

•
$$F(x, y, z) = \Sigma(1, 3, 6, 7)$$

•
$$F(x, y, z) = \Pi(0, 2, 4, 6)$$

Table 2.6Truth Table for F = xy + x'z

x	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Digital Logic Design⁴³

Standard Forms

- In canonical forms each minterm or maxterm must contain all the variables either complemented or uncomplemented, thus these forms are very seldom the ones with the least number of literals.
- Standard forms: the terms that form the function may obtain one, two, or any number of literals, .There are two types of standard forms:
 - Sum of products: $F_1 = y' + xy + x'yz'$
 - Product of sums: $F_2 = x(y'+z)(x'+y+z')$
- A Boolean function may be expressed in a nonstandard form

 $\bullet \ F_3 = AB + C(D + E)$

- But it can be changed to a standard form by using The distributive law F3 = AB + C(D + E) = AB + CD + CE
 - $\bullet F3 = AB + C(D + E) = AB + CD + CE$

Digital Logic Design⁴⁴

Implementation

Two-level implementation

(b) Product of Sums

Multi-level implementation

(a) AB + C(D + E)

Digital Logic Design⁴⁵

2.7 Other Logic Operations

- \blacksquare 2ⁿ rows in the truth table of n binary variables.
- \blacksquare 2^{2ⁿ} functions for n binary variables.
- 16 functions of two binary variables.

 F_0 F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_9 F_{10} F_{11} F_{12} F_{13} F_{14} F_{15} X y 0 1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1

Table 2.7Truth Tables for the 16 Functions of Two Binary Variables

All the new symbols except for the exclusive-OR symbol are not in common use by digital designers.

Digital Logic Design⁴⁶

Boolean Expressions

Table 2.8

Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
Boolean Functions $F_{0} = 0$ $F_{1} = xy$ $F_{2} = xy'$ $F_{3} = x$ $F_{4} = x'y$ $F_{5} = y$ $F_{6} = xy' + x'y$ $F_{7} = x + y$ $F_{7} = x + y$ $F_{8} = (x + y)'$ $F_{9} = xy + x'y'$ $F_{10} = y'$ $F_{11} = x + y'$ $F_{12} = x'$ $F_{13} = x' + y$	$ \begin{array}{r} x \cdot y \\ x/y \\ x/y \\ y/x \\ x \oplus y \\ x + y \\ x + y \\ x \downarrow y \\ (x \oplus y)' \\ y' \\ x \subset y \\ x' \\ x \supset y \end{array} $	NameNullANDInhibitionTransferInhibitionTransferExclusive-ORORNOREquivalenceComplementImplicationComplementImplication	CommentsBinary constant 0 x and y x, but not y x y, but not y y y, but not x
$F_{14} = (xy)'$ $F_{15} = 1$	$x \uparrow y$	NAND Identity	Not-AND Binary constant 1

Digital Logic Design⁴⁷

2.8 Digital Logic Gates

- Boolean expression: AND, OR and NOT operations
- Constructing gates of other logic operations
 - The feasibility and economy;
 - The possibility of extending gate's inputs;
 - The basic properties of the binary operations (commutative and associative);
 - The ability of the gate to implement Boolean functions.

Standard Gates

Consider the 16 functions in Table 2.8

- **Two** functions produce a constant : (F_0 and F_{15}).
- Four functions with unary operations: complement and transfer: $(F_3, F_5, F_{10} \text{ and } F_{12})$.

The other ten functions with binary operators

Eight function are used as standard gates : complement (F₁₂), transfer (F₃), AND (F₁), OR (F₇), NAND (F₁₄), NOR (F₈), XOR (F₆), and equivalence (XNOR) (F₉).

Digital Logic Design

- Complement: inverter.
- Transfer: buffer (increasing drive strength).
- Equivalence: XNOR.

Summary of Logic Gates

Name	Graphic symbol	Algebraic function	Truth table
AND	x F	F = xy	$\begin{array}{c ccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$
OR	x y F	F = x + y	$\begin{array}{c ccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$
Inverter	x F	F = x'	$\begin{array}{c c} x & F \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$
Buffer	xF	F = x	$\begin{array}{c c} x & F \\ \hline 0 & 0 \\ 1 & 1 \\ \end{array}$

Figure 2.5 Digital logic gates

Digital Logic Design⁵⁰

Summary of Logic Gates

			x	у	F
		E = (rv)'	0	0	1
NAND	y / /	I' = (XY)	0	1	1
			1	0	1
			1	1	0
			х	у	F
	x		0	0	1
NOR		$F = (x + y)^{r}$	Ő	1	0
			1	0	0
			1	1	0
			х	у	F
		$E = x y' \pm x' y$	0	0	0
Exclusive-OR	$x \rightarrow H$	$\Gamma = XV \pm XV$	0		_
(XOR)	$x \longrightarrow F$		0	1	1
(XOR)	x y F	$\begin{aligned} F &= xy + xy \\ &= x \oplus y \end{aligned}$	0 1	1 0	1 1
(XOR)	x y F	$\begin{aligned} F &= xy + xy \\ &= x \oplus y \end{aligned}$	0 1 1	1 0 1	1 1 0
(XOR)	x y F	$\begin{aligned} T &= xy + xy \\ &= x \oplus y \end{aligned}$	0 1 1 x	1 0 1 <i>y</i>	1 1 0 <i>F</i>
Exclusive-OR (XOR) Exclusive-NOR		$F = xy + x'y$ $= x \oplus y$ $F = xy + x'y'$	$\begin{array}{c} 0\\ 0\\ 1\\ 1\\ \end{array}$	1 0 1 <i>y</i>	1 1 0 <i>F</i>
Exclusive-OR (XOR) Exclusive-NOR	x y F	$F = xy + x'y'$ $= x \oplus y$ $F = xy + x'y'$ $= (x \oplus y)'$	$\begin{array}{c} 0\\ 0\\ 1\\ 1\\ \end{array}$	1 0 1 <i>y</i> 0 1	$ \begin{array}{c} 1\\ 1\\ 0\\ F\\ 1\\ 0\\ \end{array} $
Exclusive-OR (XOR) Exclusive-NOR or equivalence	$x \rightarrow F$ $x \rightarrow F$ $y \rightarrow F$	$F = xy + x'y'$ $= x \oplus y$ $F = xy + x'y'$ $= (x \oplus y)'$		1 0 1 <i>y</i> 0 1 0	$ \begin{array}{c} 1\\ 1\\ 0\\ F\\ 1\\ 0\\ 0\\ \end{array} $
Exclusive-OR (XOR) Exclusive-NOR or equivalence	$x \xrightarrow{y} F$	$F = xy + x'y'$ $= x \oplus y$ $F = xy + x'y'$ $= (x \oplus y)'$		1 0 1 <i>y</i> 0 1 0 1 0	1 0 <i>F</i> 1 0 0 1

Figure 2.5 Digital logic gates

Digital Logic Design⁵¹

Multiple Inputs

Multiple NOR = a complement of OR gate, Multiple NAND = a complement of AND.

- The cascaded NAND operations = sum of products.
- The cascaded NOR operations = product of sums.

52

Multiple Inputs

- The XOR and XNOR gates are commutative and associative.
- Multiple-input XOR gates are uncommon?
- XOR is an odd function: it is equal to 1 if the inputs variables have an odd number of 1's.

Figure 2.8 3-input XOR gate

Digital Logic Design⁵³

Draw a truth table for the following expressions:

F = A + BC

- $A = A \cdot (B+B) = AB + AB$ = (AB + AB) (C + C)= ABC + ABC + ABC + ABC
- $BC = BC \cdot (A + A)$ = ABC + A B C

A + BC = ABC + ABC + ABC + ABC + ABC + ABC= ABC + A B C + ABC + A B C + A B CA + BC = (3, 4, 5, 6, 7)= m3 + m4 + m5 + m6 + m7

А	B	С	BC	F
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

ملاحظة : في كل مجموعة من هذه المجاميع تعتبر
Minterm ولذلك في
$$A = -$$
 صفر لانها minterm ولذلك
 $ABC = 111 = Value 1$
 $ABC = 101 = Value 1$
 $ABC = 110 = Value 1$
 $ABC = 101 = Value 1$
و هكذا بالنسبة للبقية

Digital Logic Design

Α	В	С	A+B	A+C	F
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Draw a truth table for the following expressions:

 $\mathbf{E}_{(\mathbf{A} + \mathbf{D})}$

$$(A+B) = (A+B) \cdot (C + \overline{C})$$
$$= (A+B+C) \cdot (A+B+\overline{C})$$
$$(A+C) = (A+C) \cdot (B + \overline{B})$$
$$= (A+B+C) \cdot (A+\overline{B}+C)$$

(A+B)(A+C)

ملاحظة : في كل مجموعة من هذه
المجاميع تعتبر A = صفر و
$$\overline{A}$$
 =
المجاميع تعتبر A = صفر و \overline{A} =
واحد لانها maxterm ولذلك
($A + B + C$) = 000 = Value 0
($A + B + \overline{C}$) = 001 = Value 0
($A + \overline{B} + C$) = 010 = Value 0
و هكذا للبقية

 $(A+B)(A+C) = \prod (0, 1, 2) = M0 . M1 . M2$

= (A+B+C) (A+B+ \overline{C})+ (A+B+C) (A+ \overline{B} +C)

 $= (A+B+C) (A+B+\overline{C}) + (A+\overline{B}+C)$

Digital Logic Design⁵⁵

Draw	a	truth	table	for	the	following	5
expres	ssi	ions:					

	F=PT(P+Z)
PT(P+Z	Z) = PPT + PTZ
	= PT + PTZ
PT	$= (P.T). (Z + \overline{Z})$
	$= PTZ + PT\overline{Z}$
PT(P+Z	$Z) = PTZ + PTZ + PT\overline{Z}$

 $PT(P+Z) = \sum(6,7) = m6 + m7$

Р	Т	Ζ	РТ	P+Z	F
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	1	1	1

ملاحظة : في كل مجموعة من هذه المجاميع تعتبر A = e واحد و $\overline{A} =$ صفر لانها minterm ولذلك

PTZ = 111 = Value 1

Digital Logic Design⁵⁶

Positive and Negative Logic

Positive and Negative Logic	Logic value 1
 Two signal values <=> two logic values 	
 Positive logic: H=1; L=0 Negative logic: H=0; L=1 	0 —
 Consider a TTL gates A positive logic AND gate 	(a) Logic value
 A negative logic OR gate 	0
	1 -
	(b)

(b) Negative logic

Digital Logic Design⁵⁷

Figure 2.9 Signal assignment and logic polarity

Positive and Negative Logic

58

2.9 Integrated Circuits

Level of Integration

- An IC (a chip)
- Examples:
 - Small-scale Integration (SSI): < 10 gates</p>
 - ◆ Medium-scale Integration (MSI): 10 ~ 100 gates
 - ◆ Large-scale Integration (LSI): 100 ~ xk gates
 - Very Large-scale Integration (VLSI): > xk gates

Digital Logic Design

VLSI

- Small size (compact size)
- Low cost
- Low power consumption
- High reliability
- High speed

Digital Logic Families

- Digital logic families: circuit technology
 - TTL: transistor-transistor logic (dying?)
 - ECL: emitter-coupled logic (high speed, high power consumption)
 - MOS: metal-oxide semiconductor (NMOS, high density)
 - CMOS: complementary MOS (low power)
 - BiCMOS: high speed, high density

Digital Logic Families

The characteristics of digital logic families

- Fan-out: the number of standard loads that the output of a typical gate can drive.
- Power dissipation.
- Propagation delay: the average transition delay time for the signal to propagate from input to output.
- Noise margin: the minimum of external noise voltage that caused an undesirable change in the circuit output.