
Digital Logic Design

Digital Logic Design
Chapter 2

Boolean Algebra and Logic Gate

Digital Logic Design

2.1 INTRODUCTION

 Because binary logic is used in all of today’s digital computers

and devices, the cost of the circuits that implement it is an

important factor addressed by.

 Mathematical methods that simplify circuits rely primarily on

Boolean algebra.

 Therefore, this chapter provides a basic vocabulary and a brief

foundation in Boolean algebra that will enable you to optimize

simple circuits and to understand the purpose of algorithms used

by software tools to optimize complex circuits involving millions

of logic gates.

2

Digital Logic Design

2.2 BASIC DEFINITIONS

 A SET is collection of elements having the same property.

 S: set, x and y: element or event

 For example: S = {1, 2, 3, 4}

» If x = 2, then x S.

» If y = 5, then y S.

 A Binary Operator defines on a set S of elements is a rule that

assigns, to each pair of elements from S, a unique element from S.

 For example: given a set S, consider a*b = c and * is a binary operator.

 If (a, b) through * get c and a, b, cS, then * is a binary operator of S.

 On the other hand, if * is not a binary operator of S and a, bS, then c S.

3

Digital Logic Design

2.1 Algebras

 What is an algebra?

 Mathematical system consisting of
» Set of elements (example: N = {1,2,3,4,…})

» Set of operators (+, -, ×, ÷)

» Axioms or postulates (associativity, distributivity, closure, identity
elements, etc.)

 Why is it important?

 Defines rules of “calculations”

 Note: operators with two inputs are called binary

 Does not mean they are restricted to binary numbers!

 Operator(s) with one input are called unary

4

Digital Logic Design

BASIC DEFINITIONS

 The common postulates used to formulate algebraic structures are:

1. Closure: a set S is closed with respect to a binary operator if, for every
pair of elements of S, the binary operator specifies a rule for obtaining a

unique element of S.
 For example, N={1,2,3,...} is closed w.r.t. the binary operator +, since, for

any a, bN, there is a unique cN such that

» a+b = c

» But operator – is not closed for N, because 2-3 = -1 and 2, 3N, but (-1)N.

2. Associative law: a binary operator * on a set S is said to be associative
whenever

 (x * y) * z = x * (y * z) for all x, y, zS

» (x+y)+z = x+(y+z)

3. Commutative law: a binary operator * on a set S is said to be
commutative whenever

 x * y = y * x for all x, yS

» x+y = y+x

 5

Digital Logic Design

BASIC DEFINITIONS

4. Identity element: a set S is said to have an identity element with

respect to a binary operation * on S if there exists an element

eS with the property that

 e * x = x * e = x for every xS

» 0+x = x+0 =x for every xI I = {…, -3, -2, -1, 0, 1, 2, 3, …}.

» 1×x = x×1 =x for every xI I = {…, -3, -2, -1, 0, 1, 2, 3, …}.

5. Inverse: a set having the identity element e with respect to the

binary operator to have an inverse whenever, for every xS,

there exists an element yS such that

 x * y = e

» The operator + over I, with e = 0, the inverse of an element a is (-a), since

a+(-a) = 0.

6. Distributive law: if (*) and (.) are two binary operators on a set

S, (*) is said to be distributive over (.) whenever

 x * (y.z) = (x * y).(x * z)

6

x * (y.z) = (x * y).(x * z)

Digital Logic Design

George Boole

Father of Boolean algebra
 He came up with a type of linguistic algebra, the

three most basic operations of which were (and still

are) AND, OR and NOT. It was these three

functions that formed the basis of his premise, and

were the only operations necessary to perform

comparisons or basic mathematical functions.

 Boole’s system was based on a binary approach,

processing only two objects - the yes-no, true-false,

on-off, zero-one approach.

7

George Boole (1815 - 1864)

 Surprisingly, given his standing in the academic community, Boole's idea was

either criticized or completely ignored by the majority of his peers.

 Eventually, one bright student, claude shunnon(1916-2001), picked up the

idea and ran with it

Digital Logic Design

2.3 Axiomatic Definition of Boolean Algebra

 Developed by George Boole in 1854

Huntington postulates (1904) for Boolean algebra :

 B = {0, 1} and two binary operations, (+) and (.)

 Closure with respect to operator (+) and operator (.)

 Identity element 0 for operator (+) and 1 for operator (.)

 Commutativity with respect to (+) and (.)

 x+y = y+x, x·y = y·x

 Distributivity of (.) over (+), and (+) over (.)

 x·(y+z) = (x·y)+(x·z) and x+(y·z) = (x+y)·(x+z)

 Complement for every element x is x’ with x+x’=1, x·x’=0

 There are at least two elements x,yB such that xy

8

Digital Logic Design

Boolean Algebra

Terminology:

 Literal: A variable or its complement

 Product term: literals connected by (·)

 Sum term: literals connected by (+)

9

Digital Logic Design

Postulates of Two-Valued Boolean Algebra

 B = {0, 1} and two binary operations, (+) and (.)

 The rules of operations: AND、OR and NOT.

10

x y X.y

0 0 0

0 1 0

1 0 0

1 1 1

AND

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

OR

x X’

0 1

1 0

NOT

Digital Logic Design

Postulates of Two-Valued Boolean Algebra

3. The commutative laws x+y = y+x, x.y = y.x

4. The distributive laws

11

x y z y+z x．(y+z) x．y x．z (x．y)+(x．z)

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1

Digital Logic Design

Postulates of Two-Valued Boolean Algebra

5. Complement

 x+x'=1 → 0+0'=0+1=1; 1+1'=1+0=1

 x．x'=0 → 0．0'=0．1=0; 1．1'=1．0=0

6. Has two distinct elements 1 and 0, with 0 ≠ 1

 Note

 A set of two elements

 (+) : OR operation; (·) : AND operation

 A complement operator: NOT operation

 Binary logic is a two-valued Boolean algebra

12

Digital Logic Design

2.4 Basic Theorems And Properties Of Boolean Algebra

Duality

 The principle of duality is an important concept. This says that

if an expression is valid in Boolean algebra, the dual of that

expression is also valid.

 To form the dual of an expression, replace all (+) operators with

(·) operators, all (·) operators with (+) operators, all ones with

zeros, and all zeros with ones.

 Following the replacement rules…

a(b + c) = ab + ac

 Form the dual of the expression

a + (bc) = (a + b)(a + c)

 Take care not to alter the location of the parentheses if they are

present.

13

Digital Logic Design

Basic Theorems

14

Digital Logic Design

Boolean Theorems

 Huntington’s postulates define some rules

 Need more rules to modify
 algebraic expressions

 Theorems that are derived from postulates

 What is a theorem?

 A formula or statement that is derived from postulates

(or other proven theorems)

 Basic theorems of Boolean algebra

 Theorem 1 (a): x + x = x (b): x · x = x

 Looks straightforward, but needs to be proven !
15

Post. 1: closure
Post. 2: (a) x+0=x, (b) x·1=x
Post. 3: (a) x+y=y+x, (b) x·y=y·x
Post. 4: (a) x(y+z) = xy+xz,
 (b) x+yz = (x+y)(x+z)
Post. 5: (a) x+x’=1, (b) x·x’=0

Digital Logic Design

 Absorption Property (Covering)

 Theorem 6(a): x + xy = x

 x + xy = x．1 + xy by 2(b)

 = x (1 + y) 4(a)

 = x (y + 1) 3(a)

 = x．1 Th 2(a)

 = x 2(b)

 Theorem 6(b): x (x + y) = x by duality

 By means of truth table (another way to proof)

 x y xy x+xy

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

16

Huntington postulates:

Post. 2: (a) x+0=x, (b) x·1=x
Post. 3: (a) x+y=y+x, (b) x·y=y·x
Post. 4: (a) x(y+z) = xy+xz,
 (b) x+yz = (x+y)(x+z)
Post. 5: (a) x+x’=1, (b) x·x’=0
Th. 2: (a) x+1=1

Digital Logic Design

 DeMorgan’s Theorem

 Theorem 5(a): (x + y)’ = x’y’

 Theorem 5(b): (xy)’ = x’ + y’

 By means of truth table

x y x’ y’ x+y (x+y)’ x’y’ xy x’+y' (xy)’

0 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 0 1 1 0 0 0 1 1

1 1 0 0 1 0 0 1 0 0

17

Digital Logic Design

 Consensus Theorem

1. xy + x’z + yz = xy + x’z

2. (x+y)•(x’+z)•(y+z) = (x+y)•(x’+z) -- (dual)

 Proof:

 xy + x’z + yz

» = xy + x’z + 1.yz 2(a)

» = xy + x’z + (x+x’)yz 5(a)

» = xy + x’z + xyz + x’yz 3(b) &4(a)

» = (xy + xyz) + (x’z + x’zy) Th4(a)

» = x(y + yz) + x’ (z + zy) 4(a)

» = xy + x’z Th6(a)

» QED (2 true by duality).
18

Digital Logic Design

Operator Precedence

The operator precedence for evaluating Boolean

Expression is

 Parentheses

 NOT

 AND

 OR

Examples

 x y' + z

 (x y + z)'

19

Digital Logic Design

 2.5 Boolean Functions

A Boolean function

 Binary variables

 Binary operators OR and AND

 Unary operator NOT

 Parentheses

Examples

 F1= x y z'

 F2 = x + y'z

 F3 = x' y' z + x' y z + x y'

 F4 = x y' + x' z

20

Digital Logic Design

 2.5 Boolean Functions

21

Digital Logic Design

 2.5 Boolean Functions

22

Digital Logic Design

Boolean Functions

 The truth table of 2n entries (n=number of variables)

 Two Boolean expressions may specify the same function

 F3 = F4

23

x y z F1 F2 F3 F4

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0

F1= x y z'

F2 = x + y'z

F3 = x' y' z + x' y z + x y'

F4 = x y' + x' z

Digital Logic Design

Examples

24

Digital Logic Design

 2.5 Boolean Functions

25

Digital Logic Design

 2.5 Boolean Functions

26

Digital Logic Design

Boolean Functions with logic gates

 The main logic gates

27

A F

0 0

1 1

A F

0 1

1 0

A B F

0 0 0

0 1 0

1 0 0

1 1 1
A B F

0 0 0

0 1 1

1 0 1

1 1 1

A

B

A

B

F = A .B AND Gate

F = A+B OR Gate

Buffer F = A A

Inverter A

Digital Logic Design

Boolean Functions

Implementation with logic gates

 F4 is more economical

28

F4 = x y' + x' z

F3 = x' y' z + x' y z + x y'

F2 = x + y'z

Digital Logic Design

Examples

Find the Boolean algebra expression for the

following system.

29

Digital Logic Design

Examples

Find the Boolean algebra expression for the

following system.

30

Digital Logic Design

Algebraic Manipulation

 When a Boolean expression is implemented with logic gates, each

term requires a gate and each variable (Literal) within the term

designates an input to the gate. (F3 has 3 terms and 8 literal)

 To minimize Boolean expressions, minimize the number of

literals and the number of terms → a circuit with less equipment

 It is a hard problem (no specific rules to follow)

 Example 2.1

1. x(x'+y) = xx' + xy = 0+xy = xy

2. x+x'y = (x+x')(x+y) = 1 (x+y) = x+y

3. (x+y)(x+y') = x+xy+xy'+yy' = x(1+y+y') = x

4. xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + yzx + yzx' = xy(1+z) +

x'z(1+y) = xy +x'z

5. (x+y)(x'+z)(y+z) = (x+y)(x'+z), by duality from function 4. (consensus

theorem with duality)

31

Digital Logic Design

Complement of a Function

An interchange of 0's for 1's and 1's for 0's in the value of

F

 By DeMorgan's theorem

 (A+B+C)' = A'B'C'

Generalization: a function is obtained by interchanging

AND and OR operators and complementing each literal.

 (A+B+C+D+ ... +F)' = A'B'C'D'... F'

 (ABCD ... F)' = A'+ B'+C'+D' ... +F'

32

Digital Logic Design

Examples

 Example 2.2

 F1' = (x'yz' + x'y'z)' = (x'yz')' (x'y'z)' = (x+y'+z) (x+y+z')

 F2' = [x(y'z'+yz)]' = x' + (y'z'+yz)' = x' + (y'z')' (yz)‘

 = x' + (y+z) (y'+z')

 = x' + yz‘+y'z

 Example 2.3: a simpler procedure

 Take the dual of the function and complement each literal

1. F1 = x'yz' + x'y'z.

 The dual of F1 is (x'+y+z') (x'+y'+z).

 Complement each literal: (x+y'+z)(x+y+z') = F1'

2. F2 = x(y' z' + yz).

 The dual of F2 is x+(y'+z') (y+z).

 Complement each literal: x'+(y+z)(y' +z') = F2'

33

Digital Logic Design

Terminology

34

Digital Logic Design

2.6 Canonical and Standard Forms

Minterms and Maxterms

A minterm (standard product): an AND term consists of

all literals in their normal form or in their complement

form.

 For example, two binary variables x and y,

» xy, xy', x'y, x'y'

 It is also called a standard product.

 n variables can be combined to form 2n minterms.

A maxterm (standard sums): an OR term

 It is also call a standard sum.

 2n maxterms.

35

Digital Logic Design

Minterms and Maxterms

Each maxterm is the complement of its corresponding

minterm, and vice versa.

36

Digital Logic Design

Minterms and Maxterms

An Boolean function can be expressed by

 A truth table

 Sum of minterms for each combination of variables that

produces a (1) in the function.

 f1 = x'y'z + xy'z' + xyz = m1 + m4 +m7 (Minterms)

 f2 = x'yz+ xy'z + xyz'+xyz = m3 + m5 +m6 + m7 (Minterms)

37

Digital Logic Design

Minterms and Maxterms

The complement of a Boolean function

 The minterms that produce a 0

 f1' = m0 + m2 +m3 + m5 + m6 = x'y'z'+x'yz'+x'yz+xy'z+xyz'

 f1 = (f1')'

 = (x+y+z)(x+y'+z) (x+y'+z') (x'+y+z')(x'+y'+z) = M0 M2 M3

M5 M6

 f2 = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z)=M0M1M2M4

Any Boolean function can be expressed asterms).

 A product of maxterms (“product” meaning the ANDing of

terms).

 A sum of minterms (“sum” meaning the ORing of Both

boolean functions are said to be in Canonical form.

 38

Digital Logic Design

Sum of Minterms

 Sum of minterms: there are 2n minterms and 22n combinations of

functions with n Boolean variables.

 Example 2.4: express F = A+B’C as a sum of minterms.

 F = A+B'C = A (B+B') + B'C = AB +AB' + B'C = AB(C+C') + AB'(C+C')

+ (A+A')B'C = ABC+ABC'+AB'C+AB'C'+A'B'C

 F = A'B'C +AB'C' +AB'C+ABC'+ ABC = m1 + m4 +m5 + m6 + m7

 F(A, B, C) = S(1, 4, 5, 6, 7)

 or, built the truth table first

39

Digital Logic Design

Product of Maxterms

Product of maxterms: using distributive law to expand.

 x + yz = (x + y)(x + z) = (x+y+zz')(x+z+yy') =
(x+y+z)(x+y+z')(x+y'+z) = M0, M1, M2

40

X Y Z Minterm

0 0 0 0 X ’ . Y ’ . Z ’ = X + Y + Z

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Digital Logic Design

Product of Maxterms

Example 2.5: express F = xy + x'z as a product of
maxterms.

 F = xy + x'z = (xy + x')(xy +z)

 = (x+x')(y+x')(x+z)(y+z)

 = (x'+y)(x+z)(y+z)

 x'+y = x' + y + zz'

 = (x'+y+z)(x'+y+z')

 F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')

 = M0M2M4M5

 F(x, y, z) = P(0, 2, 4, 5)

41

X Y Z Minterm Maxterm

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 0 1

1 1 0 1 0

1 1 1 1 0

Digital Logic Design

Conversion between Canonical Forms

 The complement of a function expressed as the sum of minterms

equals the sum of minterms missing from the original function.

 F(A, B, C) = S(1, 4, 5, 6, 7)

 Thus, F‘ (A, B, C) = S(0, 2, 3)

 By DeMorgan's theorem

 F(A, B, C) = P(0, 2, 3)

 F'(A, B, C) =P(1, 4, 5, 6, 7)

 mj' = Mj

 To convert from one canonical form to another: interchange the

symbols S and Pand list those numbers missing from the

original form

» S of 1's

» P of 0's

42

Digital Logic Design

 Example

 F = xy + xz

 F(x, y, z) = S(1, 3, 6, 7)

 F(x, y, z) = P (0, 2, 4, 6)

43

Digital Logic Design

Standard Forms

 In canonical forms each minterm or maxterm must contain all

the variables either complemented or uncomplemented, thus

these forms are very seldom the ones with the least number of

literals.

 Standard forms: the terms that form the function may obtain

one, two, or any number of literals, .There are two types of

standard forms:

 Sum of products: F1 = y' + xy+ x'yz'

 Product of sums: F2 = x(y'+z)(x'+y+z')

 A Boolean function may be expressed in a nonstandard form

 F3 = AB + C(D + E)

 But it can be changed to a standard form by. using. The

distributive law

 F3 = AB + C(D + E) = AB + CD + CE

44

F3 = AB + C(D + E) = AB + CD + CE

Digital Logic Design

Implementation

 Two-level implementation

 Multi-level implementation

45

F1 = y' + xy+ x'yz' F2 = x(y'+z)(x'+y+z')

Digital Logic Design

2.7 Other Logic Operations

 2n rows in the truth table of n binary variables.

 22n
 functions for n binary variables.

 16 functions of two binary variables.

 All the new symbols except for the exclusive-OR symbol are

not in common use by digital designers.

46

Digital Logic Design

Boolean Expressions

47

Digital Logic Design

2.8 Digital Logic Gates

Boolean expression: AND, OR and NOT operations

Constructing gates of other logic operations

 The feasibility and economy;

 The possibility of extending gate's inputs;

 The basic properties of the binary operations

(commutative and associative);

 The ability of the gate to implement Boolean functions.

48

Digital Logic Design

Standard Gates

Consider the 16 functions in Table 2.8

 Two functions produce a constant : (F0 and F15).

 Four functions with unary operations: complement and

transfer: (F3, F5, F10 and F12).

 The other ten functions with binary operators

Eight function are used as standard gates :

complement (F12), transfer (F3), AND (F1), OR (F7),

NAND (F14), NOR (F8), XOR (F6), and equivalence

(XNOR) (F9).

 Complement: inverter.

 Transfer: buffer (increasing drive strength).

 Equivalence: XNOR.
49

Digital Logic Design

Summary of Logic Gates

50 Figure 2.5 Digital logic gates

Digital Logic Design
51

Figure 2.5 Digital logic gates

Summary of Logic Gates

Digital Logic Design

Multiple Inputs

 Multiple NOR = a complement of OR gate, Multiple NAND

= a complement of AND.

 The cascaded NAND operations = sum of products.

 The cascaded NOR operations = product of sums.

52

Figure 2.7 Multiple-input and cascated NOR and

NAND gates

Digital Logic Design

Multiple Inputs

 The XOR and XNOR gates are commutative and associative.

 Multiple-input XOR gates are uncommon?

 XOR is an odd function: it is equal to 1 if the inputs variables

have an odd number of 1's.

53 Figure 2.8 3-input XOR gate

Digital Logic Design

Examples

 Draw a truth table for the following

expressions:

F= A+BC

A = A . (B + B) = AB + AB
 = (AB + AB) (C + C)
 = ABC + A B C+ABC + A B C
BC = BC . (A + A)
 = ABC + A B C

A + BC =ABC +ABC+ABC +ABC+ ABC + ABC

 = ABC + A B C+ABC + A B C + A B C

A + BC = (3, 4, 5, 6, 7)
 = m3 + m4 + m5 + m6 + m7

54

A B C BC F

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

تعتبر من هذه المجاميع كل مجموعة في : ملاحظة

A = واحد وA = صفر لانهاminterm ولذلك

ABC = 111 = Value 1

A B C= 101 = Value 1

ABC = 110 = Value 1

A B C = 101= Value 1

 وهكذا بالنسبة للبقية

Digital Logic Design

Examples

55

A B C A+B A+C F

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 1 1 1

1 0 0 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 1 1 1

Digital Logic Design

Examples

56

P T Z PT P+Z F

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 0 1 0

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 1 1 1

1 1 1 1 1 1

Digital Logic Design

Positive and Negative Logic

Positive and Negative Logic

 Two signal values <=> two

logic values

 Positive logic: H=1; L=0

 Negative logic: H=0; L=1

Consider a TTL gates

 A positive logic AND gate

 A negative logic OR gate

57

Figure 2.9 Signal assignment and logic polarity

Digital Logic Design

Positive and Negative Logic

58 Figure 2.10 Demonstration of positive and negative logic

Digital Logic Design

2.9 Integrated Circuits

Level of Integration

An IC (a chip)

Examples:

 Small-scale Integration (SSI): < 10 gates

 Medium-scale Integration (MSI): 10 ~ 100 gates

 Large-scale Integration (LSI): 100 ~ xk gates

 Very Large-scale Integration (VLSI): > xk gates

VLSI

 Small size (compact size)

 Low cost

 Low power consumption

 High reliability

 High speed

59

Digital Logic Design

Digital Logic Families

Digital logic families: circuit technology

 TTL: transistor-transistor logic (dying?)

 ECL: emitter-coupled logic (high speed, high power

consumption)

 MOS: metal-oxide semiconductor (NMOS, high density)

 CMOS: complementary MOS (low power)

 BiCMOS: high speed, high density

60

Digital Logic Design

Digital Logic Families

The characteristics of digital logic families

 Fan-out: the number of standard loads that the output of a

typical gate can drive.

 Power dissipation.

 Propagation delay: the average transition delay time for

the signal to propagate from input to output.

 Noise margin: the minimum of external noise voltage that

caused an undesirable change in the circuit output.

61

