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2.1 INTRODUCTION 

 Because binary logic is used in all of today’s digital computers 

and devices, the cost of the circuits that implement it is an 

important factor addressed by.  

 Mathematical methods that simplify circuits rely primarily on 

Boolean algebra.  

 Therefore, this chapter provides a basic vocabulary and a brief 

foundation in Boolean algebra that will enable you to optimize 

simple circuits and to understand the purpose of algorithms used 

by software tools to optimize complex circuits involving millions 

of logic gates. 
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2.2 BASIC DEFINITIONS 

 A SET is collection of  elements having the same property. 

 S: set,  x and y: element or event 

 For example: S = {1, 2, 3, 4} 

» If x = 2, then x S. 

» If y = 5, then y  S. 

 A Binary Operator defines on a set S of elements is a rule that 

assigns, to each pair of elements from S, a unique element from S. 

 For example: given a set S, consider a*b = c and * is a binary operator. 

 If (a, b) through * get c and a, b, cS, then * is a binary operator of S.  

 On the other hand, if * is not a binary operator of S and a, bS, then c  S. 
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2.1 Algebras 

 What is an algebra? 

 Mathematical system consisting of 
» Set of elements (example: N = {1,2,3,4,…}) 

» Set of operators (+, -, ×, ÷) 

» Axioms or postulates (associativity, distributivity, closure, identity 
elements, etc.) 

 Why is it important? 

 Defines rules of “calculations” 

 Note: operators with two inputs are called binary 

 Does not mean they are restricted to binary numbers! 

 Operator(s) with one input are called unary 
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BASIC DEFINITIONS 

 The common postulates used to formulate algebraic structures are: 

1. Closure: a set S is closed with respect to a binary operator if, for every 
pair of elements of S, the binary operator specifies a rule for obtaining a 

unique element of S.  
 For example, N={1,2,3,...} is closed w.r.t. the binary operator +, since, for 

any a, bN, there is a unique cN such that  

» a+b = c 

» But operator – is not closed for N, because 2-3 = -1 and 2, 3N, but (-1)N. 

2. Associative law: a binary operator * on a set S is said to be associative 
whenever 

 (x * y) * z = x * (y * z) for all x, y, zS 

» (x+y)+z = x+(y+z) 

3. Commutative law: a binary operator * on a set S is said to be 
commutative whenever 

 x * y = y * x for all x, yS 

» x+y = y+x 
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BASIC DEFINITIONS 

4. Identity element: a set S is said to have an identity element with 

respect to a binary operation * on S if there exists an element 

eS with the property that 

 e * x = x * e = x  for every xS 

» 0+x = x+0 =x  for every xI   I = {…, -3, -2, -1, 0, 1, 2, 3, …}. 

» 1×x = x×1 =x  for every xI  I = {…, -3, -2, -1, 0, 1, 2, 3, …}. 

5. Inverse: a set having the identity element e with respect to the 

binary operator to have an inverse whenever, for every xS, 

there exists an element yS such that 

 x * y = e 

» The operator + over I, with e = 0, the inverse of an element a is (-a), since 

a+(-a) = 0. 

6. Distributive law: if (*) and (.) are two binary operators on a set 

S, (*) is said to be distributive over (.) whenever 

 x * (y.z) = (x * y).(x * z) 
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x * (y.z) = (x * y).(x * z) 
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George Boole 

Father of Boolean algebra 
 He came up with a type of linguistic algebra, the 

three most basic operations of which were (and still 

are) AND, OR and NOT. It was these three 

functions that formed the basis of his premise, and 

were the only operations necessary to perform 

comparisons or basic mathematical functions.  

 Boole’s system was based on a binary approach, 

processing only two objects - the yes-no, true-false, 

on-off, zero-one approach.  
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George Boole (1815 - 1864) 

 Surprisingly, given his standing in the academic community, Boole's idea was 

either criticized or completely ignored by the majority of his peers.  

 Eventually, one bright student, claude shunnon(1916-2001),  picked up the 

idea and ran with it 
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2.3 Axiomatic Definition of Boolean Algebra 

 Developed by George Boole in 1854 

Huntington postulates (1904) for Boolean algebra : 

 B = {0, 1} and two binary operations, (+) and (.) 

 Closure with respect to operator (+) and operator (.) 

 Identity element 0 for operator (+) and 1 for operator (.) 

 Commutativity with respect to (+) and (.)   

  x+y = y+x,   x·y = y·x 

 Distributivity of (.) over (+),  and (+) over (.) 

   x·(y+z) = (x·y)+(x·z)   and   x+(y·z) = (x+y)·(x+z) 

 Complement for every element x  is x’ with x+x’=1,  x·x’=0 

 There are at least two elements x,yB  such that  xy 
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Boolean Algebra 

Terminology: 

 Literal: A variable or its complement 

 Product term: literals connected by (·) 

 Sum term: literals connected by (+) 
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Postulates of Two-Valued Boolean Algebra 

 B = {0, 1} and two binary operations, (+) and (.) 

 The rules of operations: AND、OR and NOT. 
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x y X.y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

AND 

x y x+y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

OR 

x X’ 

0 1 

1 0 

NOT 
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Postulates of Two-Valued Boolean Algebra 

3. The commutative laws  x+y = y+x,  x.y = y.x 

4. The distributive laws 
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x y z y+z x．(y+z) x．y x．z (x．y)+(x．z) 

0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 

0 1 0 1 0 0 0 0 

0 1 1 1 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 1 1 1 0 1 1 

1 1 0 1 1 1 0 1 

1 1 1 1 1 1 1 1 
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Postulates of Two-Valued Boolean Algebra 

5. Complement 

 x+x'=1 → 0+0'=0+1=1; 1+1'=1+0=1 

 x．x'=0 → 0．0'=0．1=0; 1．1'=1．0=0 

6. Has two distinct elements 1 and 0, with 0 ≠ 1 

  

 Note 

 A set of two elements 

 (+) : OR operation;  (·) : AND operation 

 A complement operator: NOT operation 

 Binary logic is a two-valued Boolean algebra 
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2.4 Basic Theorems And Properties Of Boolean Algebra 

Duality 

 The principle of duality is an important concept.  This says that 

if an expression is valid in Boolean algebra, the dual of that 

expression is also valid. 

 To form the dual of an expression, replace all (+) operators with 

(·) operators, all (·) operators with (+) operators, all ones with 

zeros, and all zeros with ones. 

 Following the replacement rules… 

a(b + c) = ab + ac 

 Form the dual of the expression 

a + (bc) = (a + b)(a + c) 

 Take care not to alter the location of the parentheses if they are 

present. 
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Basic Theorems 
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Boolean Theorems 

 Huntington’s postulates define some rules 

 

 

 

 

 Need more rules to modify  
 algebraic expressions 

 Theorems that are derived from postulates 

 What is a theorem? 

 A formula or statement that is derived from postulates 

(or other proven theorems) 

 Basic theorems of Boolean algebra 

 Theorem 1 (a): x + x = x   (b): x · x = x 

 Looks straightforward, but needs to be proven ! 
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Post. 1:  closure 
Post. 2:  (a) x+0=x,  (b) x·1=x 
Post. 3:  (a) x+y=y+x, (b) x·y=y·x 
Post. 4:  (a) x(y+z) = xy+xz,  
    (b) x+yz = (x+y)(x+z) 
Post. 5:  (a) x+x’=1,  (b) x·x’=0 
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 Absorption Property (Covering) 

 Theorem 6(a): x + xy = x 

 x + xy = x．1 + xy    by 2(b) 

 = x (1 + y)            4(a) 

 = x (y + 1)           3(a) 

 = x．1        Th 2(a) 

 = x            2(b) 

 

 Theorem 6(b): x (x + y) = x by duality 

 By means of truth table (another way to proof ) 

 x y xy x+xy 

0 0 0 0 

0 1 0 0 

1 0 0 1 

1 1 1 1 

16 

Huntington postulates: 
 
Post. 2: (a) x+0=x,  (b) x·1=x 
Post. 3: (a) x+y=y+x, (b) x·y=y·x 
Post. 4: (a) x(y+z) = xy+xz,  
   (b) x+yz = (x+y)(x+z) 
Post. 5: (a) x+x’=1,  (b) x·x’=0 
Th. 2:   (a) x+1=1 
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 DeMorgan’s Theorem 

 Theorem 5(a): (x + y)’ = x’y’ 

 Theorem 5(b): (xy)’ = x’ + y’ 

 By means of truth table 

x y x’ y’ x+y (x+y)’ x’y’ xy x’+y' (xy)’ 

0 0 1 1 0 1 1 0 1 1 

0 1 1 0 1 0 0 0 1 1 

1 0 0 1 1 0 0 0 1 1 

1 1 0 0 1 0 0 1 0 0 
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 Consensus Theorem 

1. xy + x’z + yz = xy + x’z 

2. (x+y)•(x’+z)•(y+z) = (x+y)•(x’+z)  -- (dual) 

 Proof: 

 xy + x’z + yz  

» = xy + x’z + 1.yz   2(a) 

» = xy + x’z + (x+x’)yz   5(a) 

» = xy + x’z + xyz + x’yz  3(b) &4(a) 

» = (xy + xyz) + (x’z + x’zy)  Th4(a) 

» = x(y + yz) + x’ (z + zy)   4(a) 

» = xy + x’z    Th6(a)  

» QED (2 true by duality). 
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Operator Precedence 

The operator precedence for evaluating Boolean 

Expression is 

 Parentheses  

 NOT 

 AND 

 OR 

Examples 

 x y' + z 

 (x y + z)' 
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 2.5 Boolean Functions 

A Boolean function 

 Binary variables 

 Binary operators OR and AND 

 Unary operator NOT 

 Parentheses 

Examples 

 F1= x y z' 

 F2 = x + y'z 

 F3  = x' y' z + x' y z + x y' 

 F4 = x y' + x' z 
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 2.5 Boolean Functions 


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 2.5 Boolean Functions 


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Boolean Functions 

 The truth table of 2n entries (n=number of variables) 
 

 

 

 

 

 

 

 

 

 

 

 

 


 Two Boolean expressions may specify the same function 

 F3 = F4 
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x y z F1 F2 F3 F4 

0 0 0 0 0 0 0 

0 0 1 0 1 1 1 

0 1 0 0 0 0 0 

0 1 1 0 0 1 1 

1 0 0 0 1 1 1 

1 0 1 0 1 1 1 

1 1 0 1 1 0 0 

1 1 1 0 1 0 0 

F1= x y z' 

F2 = x + y'z 

F3  = x' y' z + x' y z + x y' 

F4 = x y' + x' z 
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Examples  


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 2.5 Boolean Functions 


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 2.5 Boolean Functions 


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Boolean Functions with logic gates 

 The main logic gates 
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A F 

0 0 

1 1 

A F 

0 1 

1 0 

A B F 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
A B F 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

A 

B 

A 

B 

F = A .B AND Gate 

F = A+B OR Gate 

Buffer F = A A 

Inverter A 
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Boolean Functions 

Implementation with logic gates 

 F4 is more economical 
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F4 = x y' + x' z 

F3  = x' y' z + x' y z + x y' 

F2 = x + y'z 
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Examples 

Find the Boolean algebra expression for the 

following system. 
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Examples 

Find the Boolean algebra expression for the 

following system. 
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Algebraic Manipulation 

 When a Boolean expression is implemented with logic gates, each 

term requires a gate and each variable (Literal) within the term 

designates an input to the gate. (F3 has 3 terms and 8 literal) 

 To minimize Boolean expressions, minimize the number of 

literals and the number of terms → a circuit with less equipment 

 It is a hard problem (no specific rules to follow) 

 Example 2.1 

1. x(x'+y) = xx' + xy = 0+xy = xy 

2. x+x'y = (x+x')(x+y) = 1 (x+y) = x+y 

3. (x+y)(x+y') = x+xy+xy'+yy' = x(1+y+y') = x 

4. xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + yzx + yzx' = xy(1+z) + 

x'z(1+y) = xy +x'z 

5. (x+y)(x'+z)(y+z) = (x+y)(x'+z), by duality from function 4. (consensus 

theorem with duality) 
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Complement of a Function 

An interchange of 0's for 1's and 1's for 0's in the value of 

F 

 By DeMorgan's theorem 

 (A+B+C)' = A'B'C' 

 

Generalization: a function is obtained by interchanging 

AND and OR operators and complementing each literal. 

 (A+B+C+D+ ... +F)' = A'B'C'D'... F' 

 (ABCD ... F)' = A'+ B'+C'+D' ... +F' 
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Examples 

 Example 2.2 

 F1' = (x'yz' + x'y'z)' = (x'yz')' (x'y'z)' = (x+y'+z) (x+y+z') 

 F2' = [x(y'z'+yz)]' = x' + (y'z'+yz)' = x' + (y'z')' (yz)‘ 

     = x' + (y+z) (y'+z') 

       = x' + yz‘+y'z 

 Example 2.3: a simpler procedure 

 Take the dual of the function and complement each literal 

1. F1 = x'yz' + x'y'z.   

 The dual of F1 is (x'+y+z') (x'+y'+z). 

   Complement each literal: (x+y'+z)(x+y+z') = F1' 

2. F2 = x(y' z' + yz).   

 The dual of F2 is x+(y'+z') (y+z). 

   Complement each literal: x'+(y+z)(y' +z') = F2' 
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Terminology 


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2.6 Canonical and Standard Forms  

Minterms and Maxterms 

A minterm (standard product): an AND term consists of 

all literals in their normal form or in their complement 

form. 

 For example, two binary variables x and y, 

» xy, xy', x'y, x'y' 

 It is also called a standard product. 

 n variables can be combined to form 2n minterms. 

A maxterm (standard sums): an OR term 

 It is also call a standard sum. 

 2n maxterms. 
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Minterms and Maxterms 

Each maxterm is the complement of its corresponding 

minterm, and vice versa. 

 

36 



Digital Logic Design  

Minterms and Maxterms 

An Boolean function can be expressed by 

 A truth table 

 Sum of minterms for each combination of variables that 

produces a (1) in the function. 

 f1 = x'y'z + xy'z' + xyz = m1 + m4 +m7 (Minterms) 

 f2 = x'yz+ xy'z + xyz'+xyz = m3 + m5 +m6 + m7 (Minterms) 
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Minterms and Maxterms 

The complement of a Boolean function 

 The minterms that produce a 0 

 f1' = m0 + m2 +m3 + m5 + m6  = x'y'z'+x'yz'+x'yz+xy'z+xyz' 

 f1 = (f1')'         

 = (x+y+z)(x+y'+z) (x+y'+z') (x'+y+z')(x'+y'+z) = M0 M2 M3 

M5 M6 

 f2 = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z)=M0M1M2M4 

Any Boolean function can be expressed asterms). 

 A product of maxterms (“product” meaning the ANDing of 

terms). 

 A sum of minterms (“sum” meaning the ORing of Both 

boolean functions are said to be in Canonical form. 
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Sum of Minterms 

 Sum of minterms: there are 2n minterms and 22n combinations of 

functions with n Boolean variables. 

 Example 2.4: express F = A+B’C as a sum of minterms. 

 F = A+B'C = A (B+B') + B'C = AB +AB' + B'C = AB(C+C') + AB'(C+C') 

+ (A+A')B'C = ABC+ABC'+AB'C+AB'C'+A'B'C 

 F = A'B'C +AB'C' +AB'C+ABC'+ ABC = m1 + m4 +m5 + m6 + m7 

 F(A, B, C) =  S(1, 4, 5, 6, 7) 

 or, built the truth table first 
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Product of Maxterms 

Product of maxterms: using distributive law to expand. 

 x + yz = (x + y)(x + z) = (x+y+zz')(x+z+yy') = 
(x+y+z)(x+y+z')(x+y'+z) = M0, M1, M2 
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X Y Z Minterm  

0 0 0 0 X ’ . Y ’ . Z ’     =  X + Y + Z 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 
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Product of Maxterms 

Example 2.5: express F = xy + x'z as a product of 
maxterms. 

 F = xy + x'z = (xy + x')(xy +z)  

 = (x+x')(y+x')(x+z)(y+z)  

 = (x'+y)(x+z)(y+z) 

 x'+y = x' + y + zz'  

 = (x'+y+z)(x'+y+z') 

 F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')  

 = M0M2M4M5 

 F(x, y, z) = P(0, 2, 4, 5) 
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X Y Z Minterm  Maxterm  

0 0 0 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 0 1 

1 1 0 1 0 

1 1 1 1 0 
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Conversion between Canonical Forms 

 The complement of a function expressed as the sum of minterms 

equals the sum of minterms missing from the original function. 

 F(A, B, C) = S(1, 4, 5, 6, 7) 

 Thus, F‘ (A, B, C) = S(0, 2, 3) 

 By DeMorgan's theorem      

 F(A, B, C) = P(0, 2, 3) 

 F'(A, B, C) =P(1, 4, 5, 6, 7) 

 mj' = Mj 

 To convert from one canonical form to another:  interchange the 

symbols S and Pand list those numbers missing from the 

original form 

» S of 1's 

» P of 0's 
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 Example 

 F = xy + xz  

 F(x, y, z) = S(1, 3, 6, 7) 

 F(x, y, z) = P (0, 2, 4, 6) 
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Standard Forms 

 In canonical forms each minterm or maxterm must contain all 

the variables either complemented or uncomplemented, thus 

these forms are very seldom the ones with the least number of 

literals. 

 Standard forms: the terms that form the function may obtain 

one, two, or any number of literals, .There are two types of 

standard forms: 

 Sum of products: F1 = y' + xy+ x'yz' 

 Product of sums: F2 = x(y'+z)(x'+y+z') 

 A Boolean function may be expressed in a nonstandard form 

 F3 = AB + C(D + E)  

 But it can be changed to a standard form by. using. The 

distributive law  

 F3 = AB + C(D + E) = AB + CD + CE 
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F3 = AB + C(D + E) = AB + CD + CE 
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Implementation 

 Two-level implementation 

 

 

 

 

 

 Multi-level implementation 
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F1 = y' + xy+ x'yz' F2 = x(y'+z)(x'+y+z') 
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2.7 Other Logic Operations  

 2n rows in the truth table of n binary variables. 

 22n
 functions for n binary variables. 

 16 functions of two binary variables. 

 

 

 

 

 

 

 

 All the new symbols except for the exclusive-OR symbol are 

not in common use by digital designers. 
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Boolean Expressions 
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2.8 Digital Logic Gates 

Boolean expression: AND, OR and NOT operations 

Constructing gates of other  logic operations 

 The feasibility and economy; 

 The possibility of extending gate's inputs; 

 The basic properties of the binary operations 

(commutative and associative); 

 The ability of the gate to implement Boolean functions. 
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Standard Gates 

Consider the 16 functions in Table 2.8 

 Two functions produce a constant : (F0 and F15). 

 Four functions with unary operations: complement and 

transfer: (F3, F5,  F10 and F12). 

 The other ten functions with binary operators 

Eight function are used as standard gates : 

complement (F12), transfer (F3), AND (F1), OR (F7), 

NAND (F14), NOR (F8), XOR (F6), and equivalence 

(XNOR) (F9). 

 Complement: inverter. 

 Transfer: buffer (increasing drive strength). 

 Equivalence: XNOR. 
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Summary of Logic Gates 

50 Figure 2.5 Digital logic gates 



Digital Logic Design  
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Figure 2.5 Digital logic gates 

Summary of Logic Gates 



Digital Logic Design  

Multiple Inputs 

 Multiple NOR = a complement of OR gate, Multiple NAND 

= a complement of AND. 

 The cascaded NAND operations = sum of products. 

 The cascaded NOR operations = product of sums. 
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Figure 2.7 Multiple-input and cascated NOR and 

NAND gates 
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Multiple Inputs 

 The XOR and XNOR gates are commutative and associative. 

 Multiple-input XOR gates are uncommon? 

 XOR is an odd function: it is equal to 1 if the inputs variables 

have an odd number of 1's. 

 

53 Figure 2.8 3-input XOR gate 
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Examples 

 Draw a truth table for the following 

expressions: 

F= A+BC  

A            = A . (B + B ) = AB + AB   
                = (AB + AB ) (C + C ) 
               = ABC + A B C+ABC  + A B C  
BC         = BC . (A + A )  
                = ABC + A  B C 

A + BC =ABC +ABC+ABC +ABC+ ABC + ABC 

               = ABC + A B C+ABC  + A B C  + A  B C 

A + BC = (3, 4, 5, 6, 7)  
              = m3 + m4 + m5 + m6 + m7 
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A B C BC F 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 1 1 1 1 

1 0 0 0 1 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

تعتبر من هذه المجاميع كل مجموعة في : ملاحظة 

A  = واحد وA   = صفر لانهاminterm ولذلك 

ABC  = 111 = Value 1 

A B C= 101 = Value 1 

ABC  = 110 = Value 1 

A B C = 101= Value 1 

 وهكذا بالنسبة للبقية
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Examples 


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A B C A+B A+C F 

0 0 0 0 0 0 

0 0 1 0 1 0 

0 1 0 1 0 0 

0 1 1 1 1 1 

1 0 0 1 1 1 

1 0 1 1 1 1 

1 1 0 1 1 1 

1 1 1 1 1 1 
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Examples 


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P T Z PT P+Z F 

0 0 0 0 0 0 

0 0 1 0 1 0 

0 1 0 0 0 0 

0 1 1 0 1 0 

1 0 0 0 1 0 

1 0 1 0 1 0 

1 1 0 1 1 1 

1 1 1 1 1 1 
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Positive and Negative Logic 

Positive and Negative Logic 

 Two signal values <=> two 

logic values 

 Positive logic: H=1; L=0 

 Negative logic: H=0; L=1 

Consider a TTL gates 

 A positive logic AND gate 

 A negative logic OR gate 
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Figure 2.9 Signal assignment and logic polarity 
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Positive and Negative Logic 

58 Figure 2.10 Demonstration of positive and negative logic 
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2.9 Integrated Circuits 

Level of Integration 

An IC (a chip) 

Examples: 

 Small-scale Integration (SSI): < 10 gates 

 Medium-scale Integration (MSI): 10 ~ 100 gates 

 Large-scale Integration (LSI): 100 ~ xk gates 

 Very Large-scale Integration (VLSI): > xk gates 

VLSI 

 Small size (compact size) 

 Low cost 

 Low power consumption 

 High reliability 

 High speed 
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Digital Logic Families 

Digital logic families: circuit technology 

 TTL: transistor-transistor logic (dying?) 

 ECL: emitter-coupled logic (high speed, high power 

consumption) 

 MOS: metal-oxide semiconductor (NMOS, high density) 

 CMOS: complementary MOS (low power) 

 BiCMOS: high speed, high density 
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Digital Logic Families 

The characteristics of digital logic families 

 Fan-out: the number of standard loads that the output of a 

typical gate can drive. 

 Power dissipation. 

 Propagation delay: the average transition delay time for 

the signal to propagate from input to output. 

 Noise margin: the minimum of external noise voltage that 

caused an undesirable change in the circuit output. 
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