Actuated Signal Timing Design

Demand Variation

- When demand varies significantly from time to time, either green time is wasted or queue forms.
- In a coordinated system, however, all signals must operate on a single fixed cycle length to maintain offsets and progression patterns Actuated controllers are not good for such cases.

Types of Actuated Control

The cycle length, phase splits, even the phase sequence may vary from cycle to cycle.

Semi-Acuated Control	Full-Acuated Control	Volume-Density Control
 Detection only on minor side-street approaches; green remain on the main until a "call" for service on the side street is registered. When warrant 1b (interruption of main traffic) is used. 	 All approaches have detectors; equal importance of the direction of traffic; for relatively isolated intersections; 	 Basically functions like full-actuated control; good for high-speed approaches (>= 45 mph); Has extra features to adjust initial timing and reduce the gap extension during green extension time

Mechanisms of Actuation

Detection Type

Point detection ("passage" type)

• A single detector is placed for each approach lane to be actuated.

Prof. Dr. Zainab Alkaissi

- The detector relays information as to whether a vehicle has passed over the detector.
- **Area detection ("presence" type)**
 - Generally used in conjunction with volume-density controllers.
 - The importance is placed on the existence of a vehicle (s) in the detection area.
 - They "count" the number of vehicles stored in the detection area.

Actuated Control Features and Operations

Minimum green time (Initial green + unit extension).

- Passage time interval, unit or vehicle extension.
- Maximum green time
- Recall switch (unless the subsequent phase has the recall "on" green remains to the previous phase unless demand exists).
- ♦ Yellow and all red.

How the maximum green time works (Semi-actuated)

How the **MAXIMUM** green times works:

Semi-actuated: The maximum green starts right when the minor street receives green.

Fully-actuated: Conflicting call during initial; MAX exceeds phase green.

- Step-6: Initial Cycle Length
- > Step-7: Pedestrian Requirements

Step-1: Phasing

We already know this step from last class

Step-2: Minimum Green Time

"Minimum green times must be set for each phase in an actuated signalization, including the nonactuated phase of a semi-actuated controller.

Point or passage detectors:

 $\mathbf{G}_{\min} = \mathbf{l}_1 + 2 * \operatorname{Int}(\frac{\mathbf{d}}{25})$

 $\left(\frac{d}{2\pi}\right)$ the number of vehicles between the stop bar and the detector.

Area or presence detectors:

$\mathbf{G}_{\min} = \mathbf{l_1} + \mathbf{2n}$

n=the number of vehicles queued at the beginning of green

- ✓ G_{min} = minimum green time, s
- ✓ l_1 = start-up lost time, s
- \checkmark D = distance between detector and STOP line, ft
- \checkmark 25 = assumed head-to-head spacing between vehicles in queue, ft
- ✓ 2 = 2 sec headway

Step-3: Passage Time

Area or Presence Detection

$$\mathbf{PT} = \mathbf{MAH} + \frac{\mathbf{L}_{\mathbf{v}} + \mathbf{L}_{\mathbf{d}}}{\mathbf{1.47S}_{\mathbf{a}}}$$

- ✓ PT: Passage Time in sec
- ✓ MAH: Maximum Allowable Headway
- ✓ Sa: Average approach speed
- ✓ L_v : Length of the vehicle
- ✓ L_d: Length of the detection zone

Step-3: Passage Time

• Point Detection

• Equal to MAH

• Minimum Passage Time

 $PT_{min} = \frac{d}{1.47S_{15}}$

 S_{15} is the 15th percentile approach speed

Step-4: Critical Lane Volumes

 \checkmark We already know this step

Step-5: Yellow Interval

ITE recommends the following methodology for determining length of yellow or change interval

 $y = t + \frac{1.47S_{85}}{2a + (64.4 * 0.01G)}$

Where,

- \checkmark Y: length of the yellow interval
- \checkmark T: driver reaction time, s
- ✓ S_{85} : 85th percentile speed of approaching vehicles in mph
- ✓ A: deceleration rate of vehicles, ft/sec
- ✓ G: Grade of approach, %

Prof. Dr. Zainab Alkaissi

Step-5: All Red Interval

All Red = AR =
$$\frac{W+L}{S_{15}}$$
 or $\frac{P+L}{S_{15}}$

- \checkmark L = length of the clearing vehicle, normally 20 feet
- \checkmark W = width of the intersection in feet, measured from the upstream stop bar to the downstream extended edge of pavement
- ✓ P = width of the intersection (feet) measured from the near-side stop line to the far side of the farthest conflicting pedestrian crosswalk along an actual vehicle path

Step-5: Determine Lost Time

$$L=\sum_{i}t_{Li}$$

 $t_{Li} = l_{1i} + l_{2i}$

 $l_{2i} = Y_i - e_i$

 $Y_i = y_i + ar_i$

- $\checkmark\,$ L: total lost time in the cycle, sec/cycle
- ✓ t_{Li} : Total lost time for phase i
- ✓ l_{1i} : Start-up lost time for phase i (2 sec)
- ✓ l_{2i} : Clearance lost time for phase i
- ✓ e_i : encroachment of effective green (2 sec)

Prof. Dr. Zainab Alkaissi

Step-6: Initial Cycle Length

$$C_{des} = \frac{L}{1 - \left[\frac{V_c}{1615*PHF*\left(\frac{V}{c}\right)}\right]}$$

- ✓ *Cdes*: Desirable cycle length, s
- ✓ L: total lost time per cycle, s/cycle
- ✓ PHF: Peak Hour Factor
- \checkmark v/c: target v/c ratio for the critical movements in the intersection
- ✓ Vc: Sum of critical lane volumes

Step-6: Phase Green Times

$$\boldsymbol{g}_{\boldsymbol{i}} = (\boldsymbol{C} - \boldsymbol{L}) * \left(\frac{\boldsymbol{\nu}_{c\boldsymbol{i}}}{\boldsymbol{\nu}_{c}}\right)$$

Where,

- ✓ g_i : effective green time for phase i, sec
- ✓ V_{ci} : CLV for phase or sub-phase i, veh/hr
- ✓ V_c : Sum of all CLVs

Step-6: Critical Cycle Length

$$\mathbf{C_c} = \sum_{i} (\mathbf{G_i} + \mathbf{Y_i})$$

- ✓ Cc: Critical cycle length, sec
- ✓ G_i: Actual maximum green time for phase i
- \checkmark Yi: Sum of yellow and all red intervals for phase i

Step-7: Pedestrian Requirements

Walk Indication

 $WAIK_{min} = 3.2 + (2.7 * N_{ped})$

- ✓ G_p : Minimum pedestrian crossing time
- \checkmark L: Length of the crosswalk, ft
- ✓ Sp: Average walking speed of the pedestrians
- \checkmark N_{ped}: Number of pedestrians crossing per cycle in a single crosswalk, N_{ped}
- ✓ *WE*: Width of the crosswalk, ft

Up-raise hand flashing

$$Up - raise hand flashing = \frac{L}{S_p}$$

Example

