Mustansiriyah University	Advanced Encryption Standard	Class: Third Stage
Engineering College	Arithmetic	Course name: Data Encryption
Computer Engineering Dep.		Lecturer: Dr. Fatimah Al-Ubaidy

AES Arithmetic

- **Finite Field:** A field with finite number of elements, also known as Galois Field.
- □ The number of elements is always a power of a prime number, denoted as GF(pⁿ).
- **GF(p)** is the set of integers {0,1, ..., p-1} with arithmetic operations modulo prime p.
- Addition, subtraction, multiplication, and division can be done without leaving the field GF(p).
 E.g. GF(2) = mod 2 arithmetic and GF(8) = mod 8 arithmetic.
- AES uses arithmetic in the finite field GF(2⁸) with irreducible (prime) polynomial.
- m(x) = x⁸ + x⁴ + x³ + x + 1 which is (1 0001 1011) in binary or {11B} in Hex-decimal
- □ Irreducible polynomial is a polynomial that is not a product of two other polynomials.

□ Example: Find arithmetic multiplication in GF(2⁸) for the following: 1- {02} • {87} mod {11B} = (0000 0010)(1000 0111) mod (1 0001 1011) = $x (x^7 + x^2 + x + 1) mod (x^8 + x^4 + x^3 + x + 1)$ = $(x^8 + x^3 + x^2 + x) mod (x^8 + x^4 + x^3 + x + 1)$ = $x^4 + x^2 + 1 = (0001 0101)$

Mustansiriyah University	Advanced Encryption Standard	Class: Third Stage
Engineering College	Arithmetic	Course name: Data Encryption
Computer Engineering Dep.		Lecturer: Dr. Fatimah Al-Ubaidy

Polynomial Arithmetic

Polynomial arithmetic operations:
 Example, let f(x) = x³ + x² and g(x) = x² + x + 1

Then,

(Addition) $f(x) + g(x) = x^3 + x + 1$ (Multiplication) $f(x) \times g(x) = x^5 + x^2$

Polynomial Division: f(x) = q(x) g(x) + r(x) where q(x) is quotient, g(x) is divisor, r(x) is remainder Let $f(x) = x^3 + x + 1$, and g(x) = x + 1, (Division) $r(x) = remainder = f(x) \mod g(x)$ $q(x) = x^2 + x$ (quotient), g(x) = x + 1 (modular polynomial), r(x) = 1 $x^2 + x$ $x + 1/x^3 + x + 1$ $x^3 + x^2$

then f(x) / g(x) is computed as

$$x^{2} + x$$

$$x + \frac{1}{x^{3}} + x + 1$$

$$\frac{x^{3} + x^{2}}{x^{2}} + x$$

$$\frac{x^{2} + x}{x^{2}}$$
1

Mustansiriyah UniversityAdvanced Encryption StandardClass: Third StageEngineering CollegeArithmeticCourse name: Data EncryptionComputer Engineering Dep.Lecturer: Dr. Fatimah Al-Ubaidy

Polynomial Arithmetic

Polynomial Arithmetic Modulo $(x^3 + x + 1)$

(a) Addition

		000	001	010	011	100	101	110	111
	+	0	1	x	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	x	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	x	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^2 + x$
010	x	x	<i>x</i> + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x ²	$x^2 + 1$
011	x + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x ²
100	x ²	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	<i>x</i> + 1
101	$x^2 + 1$	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	x
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x ²	$x^2 + 1$	x	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²	x + 1	x	1	0
	(b) Multiplication								
		000	001	010	011	100	101	110	111
	×	0	1	x	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	x	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	x	0	x	x ²	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	<i>x</i> + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x ²	1	x
100	x^2	0	x ²	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x ²	x	$x^2 + x + 1$	x + 1	$x^2 + x$
110						2	1		2
	$x^{2} + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^{2} + 1$	x + 1	x	x ²

When $(A + B) \mod n = 0$, then B is called additive inverse mod n of A e.g. from the table (a), additive inverse of $(x^2 + x)$ is $(x^2 + x)$ When $(A \times B) \mod n = 1$, then B is called multiplicative inverse mod n of A e.g. from the table (b), multiplicative inverse of (x) is $(x^2 + 1)$

Mustansiriyah University	Advanced Encryption Standard	Class: Third Stage
Engineering College	Arithmetic	Course name: Data Encryption
Computer Engineering Dep.		Lecturer: Dr. Fatimah Al-Ubaidy

Euclidean Algorithm for Polynomials		
Calculate	Which satisfies	
$r_1(x) = a(x) \mod b(x)$	$a(x) = q_1(x)b(x) + r_1(x)$	
$r_2(x) = b(x) \operatorname{mod} r_1(x)$	$b(x) = q_2(x)r_1(x) + r_2(x)$	
$r_3(x) = r_1(x) \operatorname{mod} r_2(x)$	$r_1(x) = q_3(x)r_2(x) + r_3(x)$	
•	•	
•	•	
•	•	
$r_n(x) = r_{n-2}(x) \mod r_{n-1}(x)$	$r_{n-2}(x) = q_n(x)r_{n-1}(x) + r_n(x)$	
$r_{n+1}(x) = r_{n-1}(x) \mod r_n(x) = 0$	$r_{n-1}(x) = q_{n+1}(x)r_n(x) + 0$ $d(x) = \gcd(a(x), b(x)) = r_n(x)$	

Mustansiriyah UniversityAdvanced Encryption StandardClass: Third StageEngineering CollegeArithmeticCourse name: Data EncryptionComputer Engineering Dep.Lecturer: Dr. Fatimah Al-Ubaidy

Find
$$gcd[a(x), b(x)]$$
 for $a(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ and $b(x) = x^4 + x^2 + x + 1$. First, we divide $a(x)$ by $b(x)$:

$$x^4 + x^2 + x + 1$$
. First, we divide $a(x)$ by $b(x)$:

$$x^4 + x^2 + x + 1/\frac{x^6 + x^5 + x^4 + x^3 + x^2 + x + 1}{x^5 + x^4 + x^3 + x^2}$$

$$\frac{x^6 + x^4 + x^3 + x^2}{x^5 + x^4 + x^3 + x^2}$$

$$\frac{x^5 + x^3 + x^2 + x}{x^3 + x^2} + 1$$
This yields $r_1(x) = x^3 + x^2 + 1$ and $q_1(x) = x^2 + x$.
Then, we divide $b(x)$ by $r_1(x)$.

$$x^3 + x^2 + 1/\frac{x^4 + x^3 + x}{x^3 + x^2} + 1$$

$$\frac{x^4 + x^3 + x}{x^3 + x^2} + 1$$
This yields $r_2(x) = 0$ and $q_2(x) = x + 1$.
Therefore, $gcd[a(x), b(x)] = r_1(x) = x^3 + x^2 + 1$.