Engineering Mechanics ($1^{\text {st }}$ Semester)

Syllabus

1.Basic Concepts, Analysis of Forces
2.Concepts of Moments and Couples
3.Resultant of Force System
4.Equilibrium
5.Analysis of Structures: Analysis of Truss
6.The Centroid and Center of Gravity
7.Moment of Inertia.

Text book

1. ENGINEERING MECHANICS

Third Edition 2002, A. HIGDON and W. STILS

1.1 Introduction

Mechanics: is a branch of the physics which deals with the study of the effect of force system acting on a particle or a rigid body which may be at rest or in motion.

Engineering Mechanics can be subdivided into three branches:

A. Rigid- body mechanics the body is stay in the same shape after applying the forces (no deformation are considered in the body) and this branch is divided into two areas: static and dynamics.

B. Deformable-body mechanics

C. Fluid mechanics.

Static Mechanics:

It is the study of the effect of force systen acting on a particle or rigid body which is at rest.

Dynamic Mechanics:

It is the study of the effect of force system acting on a particle or rigid body which is in motion.

1.2 Basic Concepts:

Particle: it is defined as an entity having considerable mass but negligible dimension.
Rigid Body: A solidbody having considerable mass as well as dimension.
Vector Quantities: are the quantities which have magnitude and direction, such as force, weight, distance, speed, displacement, acceleration and velocity.

Scalar Quantities: are the quantities which have only magnitude, such as: time, size, sound, density, light and volume.

Force: is an action that changes, or tends to change, the state of motion of the body upon which it acts. In general, force is considered as a "push" or "pull "' exerted by one body on another.

A complete description of a force must include its:

1. Magnitude
2. Direction and sense.
3. Point of action.

Principle of Transmissibility of Force: It states that the condition of equilibrium or uniform motion of rigid body will remain unchanged if the point of application of a force acting on a rigid body is transmitted to act at any other point along its line of action.

1.3 Force System

Is a number of forces acting in a given situation and can be classified according to the arrangement of the line of action of the forces on the system.

* Concurrent: all forces pass through a point.
** Coplanar: in the same plane.
***Parallel: parallel line of action.
****Collinear: common line of action.

1.4 Units and their Relations:

QUANTITY	DIMENSIONAL SYMBOL	SI UNITS			U.S. CUSTOMARY UNITS		
			UNIT	SYMBOL		NIT	SYMBOL
Mass	M	Base units	$\begin{gathered} \left\{\begin{array}{l} \text { kilogram } \\ \text { meter } \\ \text { second } \end{array}\right. \\ \text { newton } \end{gathered}$	kg	Base units	slug	-
Length	L			m		foot	ft
Time	T			s		second	sec
Force	F			N		pound	lb

TABLE 1-2 Conversion Factors

	Unit of Measurement (FPS)	Equals	Unit of Measurement (SI)
Force	lb		4.448 N
Mass	slug		14.59 kg
Length	ft		0.3048 m

1.5 Trigonometric Relations

A. Right Angle's Triangles

$\sin \beta$	$=\frac{a}{c}$
$\cos \beta$	$=\frac{b}{c}$
$\tan \beta$	$=\frac{a}{b}$

B.Oblique Triangle

$\frac{a}{\sin \beta}=\frac{b}{\sin \alpha}=\frac{{ }_{c}}{\sin \gamma}$
2. Cosine Low
$a^{2}=b^{2}+c^{2}-2 b c \cos \beta$
$\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}-2 \mathrm{ac} \cos \alpha$
$c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$

b

1.6. Composition and Resolution of Force.

There are two common problems in statics involve either finding the resultant force, knowing its components, or resolving a known force into two components.

1.6.1 Finding the Components of a Force (Resolution of Eorce)

the process of breaking the force into a number of components, which are equivalent to the given forces is called resolution of force.

A. Resolving a force into rectangular components

Two Dimensional Force System

Let the force (\mathbf{F}) shown below with the direction ($\boldsymbol{\theta}$); we can resolve this force into two components:

1-Horizontal Component ($\mathbf{F}_{\mathbf{x}}$) which lies on X-axis.
2-Vertical Cqmponent $\left(\mathbf{F}_{\mathbf{y}}\right)$ which lies on Y -axis.

$\mathrm{F}_{\mathrm{X}}=\mathrm{F} \cos \theta$
$\mathrm{F}_{\mathrm{Y}}=\mathrm{F} \sin \theta$
$F=\sqrt{F_{X}{ }^{2}+F_{Y}{ }^{2}}$
In vector expression:-
$F=F_{x} i+F_{Y} j=F \cos \theta i+F \sin \theta j$

$$
\theta=\tan ^{-1} \frac{\mathrm{~F}_{\mathrm{Y}}}{\mathrm{~F}_{\mathrm{X}}}
$$

Instead of using the angle however the direction of \mathbf{F} can also be defined using a small slope triangle such as shown in figure below. Since this triangle and the farger shaded triangle are similar, the proportional length of the sides gives

Or in another way;
$\mathrm{F}_{\mathrm{X}}=\mathrm{OA}=\mathrm{F} \cos \theta=\left(\frac{4}{5}\right) \mathrm{F}=$

0.8 F to the right through 0

$\mathrm{F}_{\mathrm{Y}}=\mathrm{OB}=\mathrm{F} \sin \theta=\left(\frac{3}{5}\right) \mathrm{F}=$

0.6 F upward through 0

Note (1)

First Class
Engineering Mechanics
2020-2021

Highway and Transport. Engineering Department
College of Engineering Mustansiriyah University Lec.Rana Hashim

Note(2)

Note(3): Dimensions are not always given in horizontal and vertical directions, angles need not be measured counterclockwise from the X -axis, and the origin of coordinates need not be on the line of action of a force. Therefore, it is essential that we be able to determine the correct components of a force no matter how the axes are oriented or how the angles are measured. The figure below suggests a few typical examples of force resolution in two dimensions.

	$\begin{aligned} & F_{x}=-F \cos \beta \\ & F_{y}=-F \sin \beta \end{aligned}$	S $\begin{aligned} & F_{x}=F \sin (\pi-\beta) \\ & F_{y}=-F \cos (\pi-\beta) \end{aligned}$	$\begin{aligned} & F_{x}=F \cos (\beta-\alpha) \\ & F_{y}=F \sin (\beta-\alpha) \end{aligned}$

B. Resolving a force into nonrectangular components

$$
\begin{aligned}
& \frac{\mathrm{OA}}{\sin \beta}=\frac{\mathrm{F}}{\sin (180-\alpha-\beta)} \\
& F=\sqrt{O A^{2}+O B^{2}-2(O A)(O B) \cos (180-\alpha-\beta)}
\end{aligned}
$$

Examples

Example (1)

The direction of the force (\mathbf{P}) is $\left(\mathbf{3 0}^{\circ}\right)$, find the horizontal components if the vertical components is $\mathbf{(\mathbf { 3 0 N })}$).

Solution:-

From the diagram shown:
$\mathrm{F}_{\mathrm{Y}}=30 \mathrm{~N} \uparrow$
$\mathrm{F}_{\mathrm{Y}}=\mathrm{F} \sin \theta$
$30=P \sin \theta$
$30=$ P. 0.5
$\mathrm{P}=60 \mathrm{~N}$
$\mathrm{F}_{\mathrm{X}}=\mathrm{F} \cos \theta=60 \cos 30$

$\mathrm{F}_{\mathrm{X}}=60 \mathrm{X} \frac{\sqrt{3}}{2}=30 \sqrt{3} \mathrm{~N} \rightarrow$

Example(2)

Determine the magnitude and direction of force (\mathbf{P}), if the horizontal and vertical components are $(\mathbf{2 0 N}),(\mathbf{4 0 N})$ respectively.

Solution:

$\mathrm{F}=\sqrt{\left(\mathrm{F}_{\mathrm{X}}\right)^{2}+\left(\mathrm{F}_{\mathrm{Y}}\right)^{2}}$
$F=\sqrt{(20)^{2}+(40)^{2}}=\sqrt{400+1600}=\sqrt{2000}=44.72 \mathrm{~N}$
$\theta=\tan ^{-1}\left(\frac{\mathrm{~F}_{\mathrm{Y}}}{\mathrm{F}_{\mathrm{X}}}\right)=\tan ^{-1}\left(\frac{40}{20}\right)=63.43^{\circ}$
Example(3)
Find the two components of the force $(\mathbf{1 0 0} \mathbf{N})$ if:
$\theta=\mathbf{3 0}{ }^{\circ}, \mathbf{1 2 0}^{\circ}, \mathbf{2 7 0}^{\circ}$

Solution:

$\theta=30^{\circ}$
$\mathrm{Fx}=\mathrm{F} \cdot \cos \theta=$

$50 \mathrm{~N} \uparrow$

$$
\theta=120^{\circ}
$$

$$
F x=F \cdot \cos \theta=
$$

$$
\begin{aligned}
& 100 \times \cos 120= \\
& 100 \times(-0.5)=-50 \mathrm{~N}
\end{aligned}
$$

$$
F y=F \cdot \sin \theta=
$$

$$
100 \times \sin 120=100 \times \frac{\sqrt{3}}{2}=
$$

$$
50 \sqrt{3} \mathrm{~N} \uparrow
$$

$$
\theta=\mathbf{2 7 0}{ }^{\circ}
$$

$$
\mathrm{Fx}=\mathrm{F} \cdot \cos \theta=
$$

$$
100 \times \cos 270=100 \times 0=
$$ 0

$\mathrm{Fy}=\mathrm{F} \cdot \sin \theta=$
$100 \mathrm{x} \sin 270=$

$$
100 \times(-1)=-100 \mathrm{~N}
$$

Example(4)

Resolve the horizontal $\mathbf{6 0 0} \mathbf{l b}$ force shown in figure into components acting along the \mathbf{u} and \mathbf{v} axes and determine the magnitudes of these components.

Solution:-

$\frac{F_{u}}{\sin 120}=\frac{600}{\sin 30} \quad F_{u}=1039 l b$
$\frac{F_{v}}{\sin 30}=\frac{600}{\sin 30} \quad F_{v}=600 \mathrm{lb}$

Example(5)

The force $\mathbf{F}=\mathbf{4 5 0} \mathbf{~ l b}$ acts on the frame. Resolve this force into components acting along members $\mathbf{A B}$ and $\mathbf{A C}$, and determine the magnitude of each components.

Solution:-

$\frac{F_{A B}}{\sin 105}=\frac{450}{\sin 30} \quad F_{A B}=869 l b$
$\frac{F_{A C}}{\sin 45}=\frac{450}{\sin 30} \quad F_{A C}=636 \mathrm{lb}$

Example (6)

The forces $\mathbf{F} 1, \mathbf{F} 2$, and $\mathbf{F} 3$, all of which act on point A of the bracket, are specified in three different ways. Determine the x and y components of each of the three forces.

Solution:-

The components of F1 are
$F 1_{X}=600 \cos 35^{\circ}=491 \mathrm{~N} \rightarrow$
$F 1_{Y}=600 \sin 35^{\circ}=344 N \uparrow$

The components of F2 are
$F 2_{X}=-500\left(\frac{4}{5}\right)=-400 N \leftarrow$
$F 2_{Y}=500\left(\frac{3}{5}\right)=300 N \uparrow$

The components of F3 are
$\alpha=\tan ^{-1}\left(\frac{0.2}{0.4}\right)=26.6^{\circ}$
$F 3_{X}=F 3 \sin \alpha=800 \sin 26.6^{\circ}=358 N \rightarrow$
$\mathrm{F} 3_{\mathrm{Y}}=-\mathrm{F} 3 \cos \alpha=-716 N \downarrow$

Example(7)

Determine the \mathbf{x} and \mathbf{y} components of $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$ acting on the boom shown in figure.

Solution:-

By the parallelogram law.F1 is resolved into x and y components, Fig (b), since F1x acts in the -x direction, and F1y acts in the +y direction, we have.
$F_{1 x}=-200 \sin 30=-100 N \leftarrow$
$F_{1 y}=200 \cos 30=173 N \uparrow$
$\frac{F_{2 x}}{260}=\frac{12}{13} \quad F_{2 x}=260\left(\frac{12}{13}\right)=240 \mathrm{~N} \rightarrow$

(a)

(b)

(c)

Example(8)

The $\mathbf{5 0 0} \mathbf{N}$ force \mathbf{F} is applied to the vertical pole as shown in figure.

1. Determine the components of the force \mathbf{F} along the \mathbf{x} and $\dot{\mathbf{y}}$ axis.
2. Determine the components of the force \mathbf{F} along the \mathbf{x} and $\dot{\mathbf{y}}$ axis.

Solution:-

1. From Fig (b)
$F_{\dot{x}}=500 N \rightarrow \quad F_{\dot{y}}=0$
2. The components of F in the x and y directions are nonrectangular and are obtained by completing the parallelogram as shown in fig (c). The magnitudes of the components may be calculated by the law of sines. Thus,

$$
\begin{aligned}
& \frac{\left|F_{X}\right|}{\sin 90}=\frac{500}{\sin 30} \quad\left|F_{X}\right|=1000 \mathrm{~N} \\
& \frac{\left|F_{\hat{Y}}\right|}{\sin 60}=\frac{500}{\sin 30} \quad\left|F_{\hat{Y}}\right|=866 \mathrm{~N} \\
& =-866 \mathrm{~N} \downarrow F_{X}=1000 \mathrm{~N} \rightarrow \quad F_{\hat{Y}}
\end{aligned}
$$

Three Dimensional Force System

Resolving a force into rectangular components

The force \mathbf{F} acting at point O in figure
has the rectangular components Fx, Fy, Fz, where
$\mathrm{F}_{\mathrm{x}}=\mathrm{F} \cos \theta_{\mathrm{x}} \quad \cos \theta_{x}=\frac{F_{x}}{F}$
$\mathrm{F}_{\mathrm{y}}=\mathrm{F} \cos \theta_{y} \quad \cos \theta_{y}=\frac{F_{y}}{F}$
$F_{z}=F \cos \theta_{z} \quad \cos \theta_{z}=\frac{F_{z}}{Z}$
$F=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}$
In vector expression:-
$F=F_{x} i+F_{y} j+F_{z} k$
$\mathrm{F}=\mathrm{F}\left(\mathrm{i} \cos \theta_{\mathrm{x}}+\mathrm{j} \cos \theta_{\mathrm{y}}+\mathrm{k} \cos \theta_{z}\right.$
Note:-
The cosine of θ_{x}, θ_{y} and θ_{z} are called direction cosine.

Example(9)

A force \mathbf{F} with a magnitude of $\mathbf{1 0 0} \mathbf{N}$ is applied at the origin \mathbf{O} of the axes $\mathbf{x}-\mathbf{y}-\mathbf{z}$ as shown. The line of action of \mathbf{F} passes through a point \mathbf{A} whose coordinates are $\mathbf{3 m}, \mathbf{4} \mathrm{m}$, and $\mathbf{5} \mathrm{m}$. Determine the \mathbf{x}, \mathbf{y}, and \mathbf{z} scalar components of \mathbf{F}.

Solution:-

Length of $\mathrm{OA}=\sqrt{3^{2}+4^{2}+5^{2}}=7.07$

$$
\begin{aligned}
& \cos \theta_{x}=\frac{3}{7.07} \\
& \cos \theta_{y}=\frac{4}{7.07} \\
& \cos \theta_{z}=\frac{5}{7.07}=0.707
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{x}}=\mathrm{F} \cos \theta_{\mathrm{x}}=100 \frac{3}{7.07}=42.4
$$

$$
F_{y}=F \cos \theta_{y}=100 \frac{4}{7.07}=56.6
$$

$$
\mathrm{F}_{\mathrm{z}}=\mathrm{F} \cos \theta_{\mathrm{z}}=100 \frac{5}{7.07}=70.7
$$

To express the force as a vector

$$
\vec{F}=100\left(\frac{3}{7.07} \vec{\imath}+\frac{4}{7.07} \vec{\jmath}+\frac{5}{7.07} \vec{k}\right)
$$

Home Work(1)

1. Resolve each force acting on the post into its x and y components.

2. Express \mathbf{F} as a vector in terms of the unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k}. Determine the angle between \mathbf{F} and the y -axis.

Dimensions in millimeters

