Min N

Engineering Mechanics (1st Semester) Syllabus

Basic Concepts, Analysis of Forces
 Concepts of Moments and Couples
 Resultant of Force System
 Equilibrium
 Analysis of Structures: Analysis of Truss
 The Centroid and Center of Gravity
 Moment of Inertia.

Text book

1. ENGINEERING MECHANICS

Third Edition 2002, A. HIGDON and W. STILS

1.1 Introduction

<u>Mechanics</u>: is a branch of the physics which deals with the study of the effect of force system acting on a particle or a rigid body which may be at rest or in motion.

Engineering Mechanics can be subdivided into three branches:

A. Rigid- body mechanics the body is stay in the same shape after applying the forces (no deformation are considered in the body) and this branch is divided into two areas: static and dynamics.

B. Deformable-body mechanics

C. Fluid mechanics.

Static Mechanics:

It is the study of the effect of force system acting on a particle or rigid body which is at rest.

Dynamic Mechanics:

It is the study of the effect of force system acting on a particle or rigid body which is in motion.

1.2 Basic Concepts:

<u>Particle</u>: it is defined as an entity having considerable mass but negligible dimension.

<u>Rigid Body:</u> A solid body having considerable mass as well as dimension.

<u>Vector Quantities</u>: are the quantities which have magnitude and direction, such as force, weight, distance, speed, displacement, acceleration and velocity.

Sense Magnitude θ Direction

Scalar Quantities: are the quantities which have only magnitude, such as: time, size, sound, density, light and volume.

Force: is an action that changes, or tends to change, the state of motion of the body upon which it acts. In general, force is considered as a "push" or "pull "' exerted by one body on another.

A complete description of a force must include its:

- 1. Magnitude
- 2. Direction and sense.
- 3. Point of action.

Principle of Transmissibility of Force: It states that the condition of equilibrium or uniform motion of rigid body will remain unchanged if the point of application of a force acting on a rigid body is transmitted to act at any other point along its line of action.

1.3 Force System

Is a number of forces acting in a given situation and can be classified according to the arrangement of the line of action of the forces on the system.

* Concurrent: all forces pass through a point.

** Coplanar: in the same plane.

- ***Parallel: parallel line of action.
- ****Collinear: common line of action.

م.رنا هاشم قسم الطرق والنقل كلية الهندسة .الجامعة المستنصرية

v(+)

0

 F_x

В

1.6. Composition and Resolution of Force.

There are two common problems in statics involve either finding the resultant force, knowing its components, or resolving a known force into two components.

1.6.1 Finding the Components of a Force (Resolution of Force)

the process of breaking the force into a number of components, which are equivalent to the given forces is called resolution of force.

A. Resolving a force into rectangular components

Two Dimensional Force System

Let the force (**F**) shown below with the direction (θ); we can resolve this force into two components:

1-Horizontal Component (\mathbf{F}_x) which lies on X-axis.

2-Vertical Component (\mathbf{F}_y) which lies on Y-axis.

م.رنا هاشم قسم الطرق والنقل كلية الهندسة .الجامعة المستنصىرية

x(+)

M.

 $F_X=F\ cos\,\theta$

 $F_Y = F \, \sin \theta$

$$\mathbf{F} = \sqrt{\mathbf{F_X}^2 + \mathbf{F_Y}^2}$$

In vector expression:-

 $F = F_x i + F_Y j = F \cos\theta i + F \sin\theta j$

 $\theta = \tan^{-1} \frac{F_{Y}}{F_{x}}$

Instead of using the angle however the direction of \mathbf{F} can also be defined using a small slope triangle such as shown in figure below. Since this triangle and the larger shaded triangle are similar, the proportional length of the sides gives.

$$F_{X} = F \frac{a}{c}$$

$$F_{Y} = F \frac{b}{c}$$
Or in another way;

م.رنا هاشم قسم الطرق والنقل كلية الهندسة .الجامعة المستنصرية

<u>Note(2)</u>

م.رنا هاشم قسم الطرق والنقل كلية الهندسة .الجامعة المستنصىرية

9

Note(3): Dimensions are not always given in horizontal and vertical directions, angles need not be measured counterclockwise from the X-axis, and the origin of coordinates need not be on the line of action of a force. Therefore, it is essential that we be able to determine the correct components of a force no matter how the axes are oriented or how the angles are measured. The figure below suggests a few typical examples of force resolution in two dimensions.

م.رنا هاشم قسم الطرق والنقل كلية الهندسة .الجامعة المستنصرية

. N

Example(2)

Determine the magnitude and direction of force (**P**), if the horizontal and vertical components are (20N),(40N) respectively.

<u>Solution:</u>

$$F = \sqrt{(F_X)^2 + (F_Y)^2}$$

$$F = \sqrt{(20)^2 + (40)^2} = \sqrt{400 + 1600} = \sqrt{2000} = 44.72N$$

$$\theta = \tan^{-1}(\frac{F_Y}{F_X}) = \tan^{-1}(\frac{40}{20}) = 63.43^{\circ}$$
Example(3)
Find the two components of the force (100N) if:

$$\theta = 30^{\circ}, 120^{\circ}, 270^{\circ}$$
Solution:

$$\theta = 30^{\circ}$$

$$F_X = F \cdot \cos \theta =$$

$$100 \times \cos 30 = 100x \frac{\sqrt{3}}{2} =$$

$$50 \sqrt{3}N \Rightarrow$$

$$F_Y = F.\sin \theta =$$

$$100 \times \sin 30 = 100 \times 0.5 =$$

$$50 N \uparrow$$

$\theta = 120^{\circ}$

Example(4)

Resolve the horizontal **600 lb** force shown in figure into components acting along the **u** and **v** axes and determine the magnitudes of these components.

. A30°

Example(5)

The force F=450 lb acts on the frame. Resolve this force into components acting along members AB and AC, and determine the magnitude of each components.

$\frac{F_{AB}}{\sin 105} = \frac{450}{\sin 30}$	$F_{AB} = 869 \ lb$		A 30
$\frac{F_{AC}}{\sin 45} = \frac{450}{\sin 30}$	$F_{AC}=636 lb$		450 16
		205	B
	0		

Example (6)

The forces F1, F2, and F3, all of which act on point *A* of the bracket, are specified in three different ways. Determine the *x* and *y* components of each of the three forces.

Example(7)

Determine the x and y components of F_1 and F_2 acting on the boom shown in figure.

Example(8)

The **500** N force **F** is applied to the vertical pole as shown in figure.

- 1. Determine the components of the force \mathbf{F} along the $\mathbf{\dot{x}}$ and $\mathbf{\dot{y}}$ axis.
- 2. Determine the components of the force \mathbf{F} along the \mathbf{x} and $\mathbf{\dot{y}}$ axis.

Solution:-

1. From Fig (b)

 $F_{\acute{x}} = 500 \ N \rightarrow F_{\acute{y}} = 0$

2. The components of F in the x and ý directions are nonrectangular and are obtained by completing the parallelogram as shown in fig (c). The magnitudes of the components may be calculated by the law of sines. Thus,

$$\frac{|F_{X}|}{\sin 90} = \frac{500}{\sin 30} \qquad |F_{X}| = 1000N$$
$$\frac{|F_{Y}|}{\sin 60} = \frac{500}{\sin 30} \qquad |F_{Y}| = 866N$$
$$= -866 \text{ N} \downarrow F_{X} = 1000 \text{ } N \rightarrow F_{Y}$$

F = 500 N30° x 60° (a)(b) F, X 30° 60° 90° 30° 60[°] F = 500 N

(c)

م.رنا هاشم قسم الطرق والنقل كلية الهندسة .الجامعة المستنصىرية

- y

 F_{2} k

Three Dimensional Force System

Resolving a force into rectangular components

The force **F** acting at point O in figure

has the rectangular components Fx, Fy, Fz, where

 $F_{x} = F \cos \theta_{x} \qquad \cos \theta_{x} = \frac{F_{x}}{F}$ $F_{y} = F \cos \theta_{y} \qquad \cos \theta_{y} = \frac{F_{y}}{F}$ $F_{z} = F \cos \theta_{z} \qquad \cos \theta_{z} = \frac{F_{z}}{T}$

$$F = \sqrt{F_x^2 + F_y^2 + F_z^2}$$

In vector expression:-

 $\mathbf{F} = \mathbf{F}_{\mathbf{x}}\mathbf{i} + \mathbf{F}_{\mathbf{v}}\mathbf{j} + \mathbf{F}_{\mathbf{z}}\mathbf{k}$

$$F = F(i\cos\theta_x + j\cos\theta_y + k\cos\theta_z)$$

Note:-

The cosine of θ_x , θ_y and θ_z are called direction cosine.

م.رنا هاشم قسم الطرق والنقل كلية الهندسة .الجامعة المستنصرية

F = 100 N

Example(9)

A force **F** with a magnitude of **100 N** is applied at the origin **O** of the axes **x-y-z** as shown. The line of action of **F** passes through a point **A** whose coordinates are **3** m, **4** m, and **5** m. Determine the **x**, **y**, and **z** scalar components of **F**.

Home Work(1)

1. Resolve each force acting on the post into its x and y components.

2. Express **F** as a vector in terms of the unit vectors **i**, **j**, and **k**. Determine the angle between **F** and the y-axis.

NN

م.رنا هاشم قسم الطرق والنقل كلية الهندسة .الجامعة المستنصرية

s n n