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5.7 Temperature distributions in the absorber plate 

The flow of the working fluid in the risers that are firmly welded to the absorber 

plate carries the accumulated heat outside the solar collector. The flow of heat 

between the absorber plate and the risers generates a transverse temperature 

distribution in the region of the plate between two adjacent risers (Fig. 5.4). Another 

longitudinal temperature distribution is generated by the working fluid along the 

flow direction in risers both in plate and fluid domains. The overall problem is a two 

dimensional transient heat transfer case where the three modes of conduction, 

convection and radiation are involved. The exact analytical solution is extremely 

complicated. To facilitate the solution and highlight the significant points of the 

thermal processes, the transverse and longitudinal temperature distributions are 

calculated separately where one dimensional heat transfer is assumed in each case. 

Further, steady state condition is assumed where constant values of irradiance and 

ambient temperature are applied. The method is well known in the literature as 

HWWB method after the initials of their founders (Hottel, Whillier, Woertz and Bliss) 

in the forties and fifties of the 20th century. 

 

 

 

 

 

 

 

 

 

Fig. (5.4): Longitudinal (red line) and transverse (blue line) temperature distributions 

in the absorber plate. 
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5.7.1 Transverse temperature distribution (between two adjacent risers) 

Figure 5.5 shows a cross sectional view of the absorber plate with two adjacent 

risers and the temperature profile in the plate. It can be seen that the temperature 

profile is symmetrical around the midpoint between the two risers where the 

temperature derivative dT/dx is zero and the plate temperature is maximum. 

 

 

 

 

 

 

 

Fig. (5.5): Cross−sectional view of the absorber plate and two adjacent risers. 

 

The analysis will consider only one half of the absorber−riser configuration to 

evaluate the temperature distribution between x = 0 at the midway between two 

risers and x = (W−D)/2 where the bonding material between the plate and riser 

exists. Energy balance will be carried out on the incremental length x of the fin−like 

region of length (W−D)/2 as shown in Fig. 5.6: 

 

 

 

 

 

 

Fig. (5.6): The region under consideration of the absorber plate 

showing the incremental heat balance. 
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The following heat balance is the case of a rectangular fin with finite length of 

(W−D)/2 and a unit depth with one end insulated and the other at a constant 

temperature Tb which is the bond temperature: 

 

Heat input to
the element

by conduction
 +  

Heat input to
the elemnt

by radiation
 =  

Heat out of
the element

by conduction
 +  

Heat out of
the element
by radiation

           5.22 

−kδp
 dT

dx
 

x
+ ITτα∆x = −kδp

 dT

dx
 

x+∆x
+ UL∆x T − Ta  

Dividing by x and rearranging: 

kδp
 dT
dx

 
x+∆x

− kδp
 dT
dx

 
x

∆x
= UL T − Ta − ITτα 

When x approaches zero: 

                   kδp
d2T

dx 2 = UL T − Ta − ITτα 

d2T

dx 2 =
UL

kδp
 T − Ta −

IT τα

UL
                                                     5.23 

To solve eq. 5.23 which is a second order ordinary differential equation, two 

boundary conditions are required: 

at x = 0                    
dT

dx
= 0 

at x =
W − D

2
          T = Tb  

Where Tb is the temperature of the absorber−riser bond. Eq. 5.23 with its boundary 

conditions can be simplified by defining the variable (): 

Ψ = T − Ta −
ITτα

UL
 

And the constant (m) as: 

m2 =
UL

kδp
 

So, eq. 5.23 becomes: 



38 
 

d2ψ

dx 2 − m2ψ = 0                                                              5.24 

And the boundary conditions are also converted to: 

at x = 0                        
dψ

dx
= 0 

at x =
W − D

2
            ψ = Tb − Ta −

ITτα

UL
 

The general solution of eq. 5.24 is: 

ψ = C1sinh mx + C2cosh mx                                     5.25 

The boundary conditions must be substituted in the general solution (eq. 5.25) to 

find the constants C1 and C2. The solution after evaluating the constants and 

re−substituting the value of  becomes: 

T−Ta −
ITτα

U L

Tb −Ta −
ITτα

U L

=
cosh  mx  

cosh  
m  W −D 

2
 
                                   5.26 

With:                m =  
UL

kδp
 

Equation 5.26 represents the transverse temperature distribution between the 

absorber−riser bond and the mid−point between two adjacent risers. 

To evaluate the heat transferred from the fin end to the riser per unit depth, 

Fourier's law of conduction is applied: 

qf
′ = −kδp

 dT

dx
 

x=
W−D

2

 

qf
′ =

kδp m

UL
 ITτα − UL Tb − Ta  tanh  

m W−D 

2
                              5.27 

The quantity 𝑞𝑓
′  is the amount of heat transferred to the riser from one end. It must 

be multiplied by 2 to account for the other end. Multiplying and dividing eq. 5.27 by 

W−D and converting 
kδp

UL
 to 

1

m2
 and rearranging to get: 
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qf =  W − D  ITτα − UL Tb − Ta  
tanh  

m  W −D 

2
 

m  W −D 

2

                    5.28 

The quantity  W − D  ITτα − UL Tb − Ta   is the amount of useful heat gain 

received by the fin region between two adjacent risers considering the fin surface at 

the bond temperature Tb which the case of an ideal fin that delivers all the received 

heat to the riser. Accordingly the rest of eq. 5.28 represents the value that deviates 

the fin from ideal performance (or the fin efficiency Ff): 

qf = Ff W − D  ITτα − UL Tb − Ta                                                      5.29 

Where: 

Ff =
tanh  

m  W −D 

2
 

m  W −D 

2

                                                                                    5.30 

The quantity qf is the amount of heat received by the riser from its two fin ends. The 

riser receives further heat from the part of absorber directly over it, namely qtube: 

qtube = D ITτα − UL Tb − Ta                                                                 5.31 

So the total amount of useful heat gain received by the riser is qu: 

qu = qf + qtube =  Ff W − D + D  ITτα − UL Tb − Ta                  5.32 

The amount of heat qu undergoes two types of thermal resistances upon flowing 

from the absorber to the working fluid inside the risers. The first resistance is that of 

bonding material that welds the absorber to the riser, namely Rb: 

Rb =
tb

wb kb
                                                                                                 5.33 

Where, tb , wb and kb are the bond average thickness, width and thermal 

conductivity, respectively. 

The second resistance is that between the inner surface of the riser and the working 

fluid, namely Rf: 

Rf =
1

πD i hf
                                                                                             5.34 

Where Di is the riser inner diameter and hf is the convection heat transfer coefficient 

inside the riser. 
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The useful heat gain qu can then be written in terms of resistances as follows: 

qu =
Tb −Tf

Rb +Rf
                                                                                   5.35 

Equations 5.32 and 5.35 can be combined to get: 

qu = WF ITτα − UL Tf − Ta                                                      5.36 

Where: 

F =

1

U L
1

 U L D +Ff  W −D   
+Rb +Rf

                                                      5.37 

Where F is the flat−plate solar collector efficiency factor which represents the ratio 

of the actual amount of heat per unit depth transferred from the absorber to the 

working fluid to the hypothetical amount that would be transferred if the absorber 

is at the working fluid temperature. 


