
Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

1

 د. صباح حسن لفته من اعداد

 الجامعة المستنصرية

 كلية الهندسة

 قسم هندسة الموارد المائية

 والتطبيقات (ماتلاب) البرمجه الدراسي لمادة منهاج ال

 ثانية المرحلة ال /الكورس الدراسي الاول

Lecture 8: Plotting in MATLAB :في ماتلاب رسم الالمحاضرة الثامنة

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

2

Introduction

Large tables of data are difficult to interpret. Engineers use graphing techniques to

make the information easier to understand. With a graph, it is easy to identify trends,

pick out highs and lows, and isolate data points that may be measurement or

calculation errors. Graphs can also be used as a quick check to determine whether a

computer solution is yielding expected results. To do so, MATLAB provides tools

to plot either two-dimensional figures or three-dimensional figures (out of the course

syllabus), currently, we will focus on two-dimensional plots.

a- Two-Dimensional plots

The most useful plot for engineers is the x–y plot. A set of ordered pairs is used to

identify points on a two-dimensional graph; the points are then connected by straight

lines. The values of x and y may be measured or calculated. Generally, the

independent variable is given the name x and is plotted on the x-axis, and the

dependent variable is given the name y and is plotted on the y-axis.

Suppose we have a set of time versus distance data were obtained from an

experiment. In this case, we can store the time values in a vector called x (the user

can define any convenient name) and the distance values in a vector called y:

Time, s Distance, cm

0 0

2 0.33

4 4.13

6 6.29

8 6.85

10 11.19

12 13.19

14 13.96

16 16.33

18 18.17

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

3

>> x = [0:2:18];

>> y = [0, 0.33, 4.13, 6.29, 6.85, 11.19, 13.19, 13.96, 16.33, 18.17];

To plot these points, we use the plot command, with x and y as arguments:

 >> plot(x,y)

 After the execution of above statement, a graphic window automatically opens,

which MATLAB calls Figure 1. The resulting plot is shown below.

b- Plot components

In order to make the plots in MATLAB more readable, its good engineering

practice to include axis labels and a title in these plots. The following commands

add a title, x- and y-axis labels, and a background grid:

>> plot(x,y)

>> title('Laboratory Experiment 1')

>> xlabel('Time, sec')

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

4

>> ylabel('Distance, ft')

>> grid on

The resulted figure will be like,

As with any MATLAB commands, they could also be combined onto one or two

lines to save space.

>> plot(x,y) , title('Laboratory Experiment 1')

>> xlabel('Time, sec'), ylabel('Distance, ft'), grid on

As we type the previous commands into MATLAB, we can notice that the text color

changes to red when we enter a single quote ('). This alerts us that we are starting a

string. The color changes to purple when we type the final single quote ('), indicating

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

5

that we have completed the string. Its very important to pay attention to these visual

aids will help us avoid coding mistakes.

Lines, colors, and mark styles are useful plot components that change the appearance

of our plots. The following commands are used to control the line, color, and mark

styles in plots.

Line Type Indicator Mark Type Indicator Color Indicator

solid ˗ point . blue b

dotted : circle o green g

dashdot ˗ . x-mark x red r

dashed -- plus + cyan c

no line none star * magenta m

 square s yellow y

 diamond d black k

 triangle up ˄ white w

 triangle down ˅

 triangle left ˂

 triangle right ˃

 pentagon p

 hexagram h

We can select solid (the default), dashed, dotted, and dash-dot line styles, and we

can choose to show the points. The choices among marks include plus signs, stars,

circles, and x-marks, among others. There are seven different color choices. The

following commands illustrate the use of line, color, and mark styles:

>> x = [1:10];

>> y = [58.5, 63.8, 64.2, 67.3, 71.5, 88.3, 90.1, 90.6, 89.5, 90.4];

>> plot(x,y,':ok')

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

6

The resulting plot as shown below consists of a dashed line, together with data points

marked with circles. The line, the points, and the circles are drawn in black.

Axis scaling and annotating plots are other options that can be used in MATLAB

when plotting functions. MATLAB automatically selects appropriate x-axis and y-

axis scaling, but sometimes, it is useful for the user to be able to control the scaling.

Control is accomplished with the axis function. Executing the axis function without

any input

>> axis

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

7

freezes the scaling of the plot. The axis function also accepts input defining the x-

axis and y-axis scaling. The argument is a single matrix, with four values

representing:

• The minimum x value shown on the x-axis

• The maximum x value shown on the x-axis

• The minimum y value shown on the y-axis

• The maximum y value shown on the y-axis

Thus, the command

>> axis([-2, 3, 0, 10])

fixes the plot axes to x from - 2 to + 3 and y from 0 to 10.

It is often useful to create plots where the scaling is the same on the x- and y-axis.

This is achieved with the statement:

>> axis equal

MATLAB offers several additional functions such as legend and text functions

which are used to annotate plots. The legend function requires the user to specify a

legend in the form of a string for each line plotted, and defaults to a display in the

upper right-hand corner of the plot. The text function allows us to add a text box to

our plot, which is useful for describing features on the graph. It requires the user to

specify the location of the lower left-hand corner of the box in the plot window as

the first two input fields, with a string specifying the contents of the text box in the

third input field. The use of both legend and text is demonstrated in the following

code, which modifies the graph from Figure 5.8b.

>> x = [1:10];

>> y = [58.5, 63.8, 64.2, 67.3, 71.5, 88.3, 90.1, 90.6, 89.5, 90.4];

>> plot(x,y,':ok')

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

8

>> legend('line 1')

>> text(1,75,'Label plots with the text command')

We added a title, x and y labels, and adjusted the axis with the following commands:

>> xlabel('This is x label'), ylabel('This is y label')

>> title('Example Graph for Lecture8')

>> axis([0,12,0,120])

The results are shown in the below figure:

c- Plots with More than One Line

Plots with more than one line can be created in several ways. By default, the

execution of a second plot statement will erase the first plot. However, we can layer

plots on the top of one another by using the hold on command. Execute the following

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

9

statements to create a plot with both functions plotted on the same graph, as shown

below:

>> x = 0:pi/100:2*pi;

>> y1 = cos(x*4);

>> plot(x,y1)

>> y2 = sin(x);

>> hold on;

>> plot(x, y2)

Semicolons are optional on both the plot statement and the hold on statement.

MATLAB will continue to layer the plots until the hold off command is executed:

>> hold off

Another way to create a graph with multiple lines is to add both lines in a single

plot command. MATLAB interprets the input to plot as alternating x and y vectors,

as in,

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

10

>> plot(X1, Y1, X2, Y2)

where the variables X1, Y1 form an ordered set of values to be plotted and X2, Y2

form a second ordered set of values. Using the data from the previous example,

>> plot(x, y1, x, y2)

produces the same graph as the figure plotted above, with one exception, the two

lines are different colors. If plot is used with two arguments, one a vector and the

other a matrix, MATLAB successively plots a line for each row in the matrix. For

example, we can combine y1 and y2 into a single matrix and plot against x:

>> Y = [y1; y2];

>> plot(x,Y)

Here is another more complicated example:

>> X = 0:pi/100:2*pi;

>> Y1 = cos(X)*2;

>> Y2 = cos(X)*3;

>> Y3 = cos(X)*4;

>> Y4 = cos(X)*5;

>> Z = [Y1; Y2; Y3; Y4];

>> plot(X, Y1, ':ok', X, Y2, '--xg', X, Y3, '-b', X, Y4,'-.r',)

>> legend('line 1', 'line 2', 'line 3', 'line 4')

>> xlabel('Data of x label'), ylabel('Data of y label')

>> title('Different Lines of various Data')

>> axis([0,8,0,1.2])

This code produces the same result figure shown below as using,

>> plot(X, Z)

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

11

Hint:

To clear a figure, use the clf command. To close the active figure window, use the

close command, and to close all open figure windows use close all command.

d- Subplots

The subplot command allows us to subdivide the graphing window into a grid of m

rows and n columns. The function,

>> subplot(m,n,p)

splits the figure into an m * n matrix. The variable p identifies the portion of the

window where the next plot will be drawn. For example, if the command,

>> subplot(2,2,1)

is used, the window is divided into two rows and two columns, and the plot is drawn

in the upper left-hand window. The windows are numbered from left to right, top to

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

12

bottom. Similarly, the following commands split the graph window into a top plot

and a bottom plot:

>> x = 0:pi/20:2*pi;

>> subplot(2,1,1)

>> plot(x,sin(x))

>> subplot(2,1,2)

>> plot(x,sin(2*x))

The first graph is drawn in the top window since p = 1. Then the subplot command

is used again to draw the next graph in the bottom window. Titles are added above

each sub-window as the graphs are drawn, as are x- and y-axis labels and any

annotation desired.

Example (1): A farmer has 50 sheep with different ages, the city requests him to

count the sheep with age less than nine months and the number requested must not

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

13

exceed 25, which type of loops you think will be useful in this case to help the farmer

to find the number of sheep requested by the city. Then plot the results using plot

command.

%% This code is designed to count sheep numbers per city request

>> clear all;

>> clc;

>> close all;

%% Entering all sheep ages in months

>> Sh=[3 7 8 9 10 12 4 8 5 4 2 13 15 19 24 3.5 4.5 7 6 9 5.5 1 2.5 3.7 6.5 …

 11 7.3 9.2 1.9 5.6 3.8 2.9 1.5 14 18 21 10.5 7.7 8.5 9.4 4.8 3.3 7.5 15 16 …

 12 13.5 17 6.9 20];

>> x=1:25; % this vector for plotting

>> R=9; % criterion for requested sheep age

>> i=1;n=1;

>> L=length(x); % criterion for requested number of sheep

>> while i< 51

>> if Sh(i) <=R

>> y(n)=Sh(i);

>> n=n+1;

>> end

>> if n> L

>> break

>> end

>> i=i+1;

>>end

>>%% Display the results as a table

>> disp('The following are the sheep ages less than 9 months');

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

14

>> fprintf('Sheep # %4.0f is %4.0f age in month \n',[x;y])

>> %% Plotting the results

>> plot(x,y, ':ob')

>> legend('Sheep ages')

>> xlabel('Numbers'), ylabel('Sheep age (months) label')

>> title('Requested Sheep ages by the City ')

>> axis([0,26,0,10])

The results,

The following are the sheep ages less than 9 months

Sheep # 1 is 3 age in month

Sheep # 2 is 7 age in month

Sheep # 3 is 8 age in month

Sheep # 4 is 9 age in month

Sheep # 5 is 4 age in month

Sheep # 6 is 8 age in month

Sheep # 7 is 5 age in month

Sheep # 8 is 4 age in month

Sheep # 9 is 2 age in month

Sheep # 10 is 4 age in month

Sheep # 11 is 5 age in month

Sheep # 12 is 7 age in month

Sheep # 13 is 6 age in month

Sheep # 14 is 9 age in month

Sheep # 15 is 6 age in month

Sheep # 16 is 1 age in month

Sheep # 17 is 3 age in month

Sheep # 18 is 4 age in month

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

15

Sheep # 19 is 7 age in month

Sheep # 20 is 7 age in month

Sheep # 21 is 2 age in month

Sheep # 22 is 6 age in month

Sheep # 23 is 4 age in month

Sheep # 24 is 3 age in month

Sheep # 25 is 2 age in month

Example (2): A Dam in Iraq is discharging water quantities weekly as shown in the

table below, the manager of the dam requests from one of the dam engineers to write

a MATLAB code to find the quantities that less than 500 (m3/week) and quantities

between (600-800 m3/week). He also requests the engineer to display the results like

a table and plotting them in the same plot.

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

16

No.
Water Quantity

(m3/w)
Time (days)

1 300 7

2 350 14

3 250 23

4 400 30

5 750 37

6 550 44

7 375 51

8 650 58

9 450 65

10 900 72

11 200 79

12 675 86

13 600 93

14 150 100

15 800 107

16 850 114

>> %%% MATLAB code to find discharge water quantities%%%

>> clear all;

>> clc;

>> close all;

>> Entering Known Variables

>> disch=[300 350 250 400 750 550 375 650 450 900 200 675 600 …

 150 800 850];

>> W=7:7:114; % Time in days

>> C1=500 % criterion #1

>> C2a=600; C2b=800 % criterion #2

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

17

>> n=1;i=1;j=1;

>> while n<17

>> %% Request # 1 less than 500 m3/w

>> if disch(n)<= C1

>> Q1(i)=disch(n);

>> w1(i)=W(n);

>> i=i+1;

>> %% Request # 2 between (600-800) m3/w

>>elseif disch(n)>= C2a && disch(n)<=C2b

>> Q2(j)=disch(n);

>> w2(j)=W(n);

>> j=j+1;

>>end

>> n=n+1;

>> end

>> I=i-1;J=j-1;

>> %% Display the results as a table

>> disp('The quantity #1 less than 500 m^3/week');

>> fprintf('%2.0f # Quantity# %4.0f m^3/w for week #%4.0f \n',[I;Q1;w1])

>> disp('The quantity #2 between (600-800) m^3/week');

>> fprintf('%2.0f # Quantity # %4.0f m^3/w for week #%4.0f \n',[J;Q2;w2])

>> %% Plotting the results

>> plot(w1,Q1, '--sk',w2,Q2, '-.dr')

>> legend('Quantity1', 'Quantity2')

>> xlabel('Time (days)'), ylabel('Water discharge quantity (m^3/w)')

>> title('Graph of discharged water quantities requested by the manager ')

>> axis([0,120,0,1000])

Dr. Sabah Hassan ----- MATLAB Course------ Lecture 8: Plotting in MATLAB

18

The results are,

The quantity #1 less than 500 m^3/week

 1 # Quantity# 300 m^3/w for week # 7

 2 # Quantity# 350 m^3/w for week # 14

 3 # Quantity# 250 m^3/w for week # 21

 4 # Quantity# 400 m^3/w for week # 28

 5 # Quantity# 375 m^3/w for week # 49

 6 # Quantity# 450 m^3/w for week # 63

 7 # Quantity# 200 m^3/w for week # 77

 8 # Quantity# 150 m^3/w for week # 98

The quantity #2 between (600-800) m^3/week

 1 # Quantity # 750 m^3/w for week # 35

 2 # Quantity # 650 m^3/w for week # 56

 3 # Quantity # 675 m^3/w for week # 84

 4 # Quantity # 600 m^3/w for week # 91

 5 # Quantity # 800 m^3/w for week # 105

