Integratio-
品角

$$
\begin{aligned}
& \int 4 d x=4 \int d x=4 x \\
& \int 4 x d x=4 \int x d x=4 \frac{x^{2}}{2}=2 x^{2}
\end{aligned}
$$

vín cirt vèr a à (
Examplet. find the shaded Area.

$$
\begin{aligned}
& d A=b * d y \\
& \int d A=\int b+d y \\
& A=b[y]^{\frac{h}{2}}-\frac{h}{2} \\
& A=b\left[\frac{h}{2}-\left(-\frac{h}{2}\right)\right] \\
& A=b\left[\frac{h}{2}+\frac{h}{2}\right] \\
& A=b\left[\frac{2 h}{2}\right] \\
& A=b+h \\
& y=f(x) \text { ion } 6 \\
& y=3 x^{2} \text { neel }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ? y on } 2=x \\
& \text { dés 2logs } \\
& \rho=\text { apposite if differentiatio } \\
& f=a \text { Quick way of adoling } \\
& \int=\sum \text {. Silitala }=t+t
\end{aligned}
$$

(2) Sind the shaded Area

$$
\begin{aligned}
& \frac{l}{b}=\frac{h-y}{h} \\
& l=\frac{b(h-y)}{h} \\
& d A=l x d y \\
& d A=\int_{0}^{h} \frac{b}{h}(h-y) d y \\
& A=\frac{b}{h}+\left[h y-\frac{y^{2}}{2}\right]_{0}^{h} \\
& A=\frac{b}{h} \times\left[\left[h^{2}-\frac{h^{2}}{2}\right]-(0)\right] \\
& A=\frac{b}{h}\left[\frac{2 h^{2}}{2}-\frac{h^{2}}{2}\right] \\
& A=\frac{b}{h}\left[\frac{h^{2}}{2}\right] \\
& A=\frac{b}{h} h^{2} \\
& A=\frac{1}{2}+b+h
\end{aligned}
$$

(3) Example: Find the line $x=1$

Example: Find the line $y=2$

Examples what is the equation of the curve J,

$$
x=\frac{9}{y}
$$

$$
y=\frac{9}{x}
$$

(4)

Definitrons
Cせ́

$$
\begin{aligned}
& I_{y}=\int x^{2} \cdot d A \\
& I_{x}=\int y^{2} \cdot d A
\end{aligned}
$$

$$
\text { Ix o } x \text {, }
$$

 Polar moment of Inertia

$$
\begin{aligned}
& I z=J=\int r^{2}+d A \\
& \quad J=\int\left(x^{2}+y^{2}\right)+d A \\
& J=\int x^{2}+d A+\int y^{2}+d A \\
& \therefore J=I y+I x
\end{aligned}
$$

(5)

6-10 Page 293
Determin the moment of Inertia of The shaded Area with respect to the line $y=1$ inch,

$$
\frac{7}{x}=\int y^{2} \cdot d A
$$

$$
\begin{aligned}
& I @ y=1=\int_{1}^{9}(y-1)^{2} * d A \\
= & \int_{1}^{9}\left((y-1)^{2} \cdot[(x-1)) \cdot d y\right] \\
& \left(\frac{9}{y}-1\right)\left(y^{2}-2 y+1\right)=\frac{9 y^{2}}{y}-\frac{2 y+9}{y}+\frac{9}{y}-\left(y^{2}-2 y+1\right) \\
= & 9 y-18+\frac{9}{y}-y^{2}+2 y-1 \\
= & -y^{2}+11 y-19+\frac{9}{y} \\
= & \int_{1}^{9}\left(-y^{2}+11 y-19+\frac{9}{y}\right) d y \\
= & {\left[\frac{-y^{3}}{3}+\frac{11 y^{2}}{2}-19 y+9 \ln y\right]_{1}^{9} } \\
= & {\left[\frac{-9^{3}}{3}+\frac{11\left(9^{2}\right)}{2}-19(9)+9 \ln 9\right]-\left[\frac{-1}{3}+\frac{11}{2}-19+9 \ln (1)\right) } \\
= & 51.27-(-13.8) \\
= & 65.1 i^{4}
\end{aligned}
$$

(6)

$$
I_{x}=\int_{0}^{4} \frac{d x-y^{3}}{12}
$$

Sú

$$
\begin{aligned}
& \text { I®a }=\int^{4} \frac{d x \cdot y^{3}}{12}+(d x, y)=\left(\frac{y}{2}-1\right)^{2} \quad y^{2}=4 x \Rightarrow y=2 \times x^{\frac{1}{2}} \\
& \int_{0}^{4} \frac{\left(2 \cdot x^{\frac{1}{2}}\right)^{3}}{12} d x+\left[2 x^{\frac{1}{2}} *\left(\frac{2 x^{\frac{1}{2}}}{2}-1\right)^{2}\right] d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{8}{12} x^{\frac{3}{2}} d x+\left[2 x^{\frac{1}{2}} \cdot\left(x-2 x^{\frac{1}{2}}+1\right)\right] d x \\
& =\int_{0}^{4} \frac{2}{3} x^{1.5} d x+\left(2 x^{\frac{3}{2}}-4 x+2 x^{\frac{1}{2}}\right) d x \\
& (x-1)^{2} \quad-\frac{\text { rix }}{} \\
& =x^{2}-2 x+1 \\
& =\int_{0}^{4} \frac{2}{3} x^{1.5}+\frac{k 2 x^{3 / 2}}{3}-4 x+2 x^{0.5} \\
& \int_{0}^{0}\left(\frac{8}{3} x^{1.5}-4 x+2 x^{0.5}\right) d x \\
& =\left[\frac{8}{3} \times \frac{x^{2.5}}{2.5}-\frac{4 \times x^{2}}{2}+2+\frac{x^{1.5}}{1.5}\right]_{0}^{4} \\
& =12.8 \mathrm{~km}^{4}
\end{aligned}
$$

(7) 6-44 page 310

Determin moment of Inertioa of The shaded Area with respect to The a-axis

(2) Djünu usid
(3) - © जirusu

Ia-a, a-a لeciliرgúdirj

$$
\begin{aligned}
& I_{\text {Total }}=I_{a-a)_{1}}+I_{a-a)_{2}}-I_{a-a)_{3}} \\
& \text { last Exaople } \\
& 1 \text { Repult } \\
& =12.8+\left[\frac{4 \times 3^{3}}{12}+(4 \times 3)(2.5)^{2}\right]-\left[\frac{2 \times 3^{3}}{36}+\left(\frac{1}{2}+2 \times 3\right)+\left(2^{2}\right)\right] \\
& =12.8+9+75 \quad-(1.5+12) \\
& =83.3 \mathrm{~km}
\end{aligned}
$$

(8) $6-48$ page 311

Determine Th moment of Inertia of the shaded Area with respect to the a - axis

$$
\begin{aligned}
& I_{a-a}=I_{a-a}+I_{a-a}+2 \\
& \text { Total }_{1}+I_{a-a)_{3}} \\
& =I_{a-a)_{1}}+\left[\frac{4 * 3^{3}}{12}+(4 \times 3)(0.5)^{2}\right]+\left[\frac{4 \times 3^{3}}{36}+\left(\frac{1}{2} \times 4 \times 3\right)(1+1)^{2}\right] \\
& I_{a-a}=\int_{1}^{3} y_{n} d x \times(x-1)^{2}=\int_{0}^{3} \frac{x^{2}}{3}\left(x^{2}-2 x+1\right) d x \\
& =\frac{1}{3} \int_{0}^{3}\left(x^{4}-2 x^{3}+x^{2}\right) d x=\frac{1}{3}\left[\frac{x^{5}}{5}-\frac{2 x^{4}}{4}+\frac{x^{3}}{3}\right]_{6}^{3} \\
& =\frac{1}{3}\left[\left[\frac{3^{5}}{5}-\frac{2(3)^{4}}{4}+\frac{(3)^{3}}{3}\right]-(0)\right] \\
& I_{a-a)}=5.7 \text { in } \\
& \therefore \text { I } a-a)=5.7+12+27 \\
& \therefore \text { Total }=44.7 \text { in }
\end{aligned}
$$

6.52

Solution
It for Area A

$$
\begin{aligned}
d I_{y} & =\frac{d y\left(x^{1}\right)}{12}+x d y\left(\frac{x}{2}\right)^{2} \\
d I_{y} & =\frac{x^{3} d y}{3}=\frac{(10)^{115}(y)}{3} \\
& =10.541 y^{1.5} \\
I_{y} & =\int_{0}^{10} 10.541 y^{1.5} d y \\
& =10.541\left[\frac{y}{2.5}\right]_{0}^{10} \\
& =1333.34 \mathrm{ln}^{4}
\end{aligned}
$$

$$
I_{y}=1333.3 u+\left[\frac{10 \times 6^{3}}{12}+(6 \times 10)(3)^{2}\right]
$$

$$
\left.+\left[\frac{10 \times(6)^{3}}{36}+\frac{6 \times 10}{2}(\mu)^{2}\right]-\left[\frac{\pi(3)^{4}}{8}\right]+A \times 2^{2}\right]
$$

$$
=1333.34+720+540-31.81
$$

$$
=2561.5 \mathrm{ln}^{4}
$$

