Mustansiriyah University	Public-Key Cryptography	Class: Third Year
Engineering College	Asymmetric Cipher	Course name: Data Encryption
Computer Engineering Dep.	Paillier Algorithm	Lecturer: Fatimah Al-Ubaidy

Paillier Cryptosystem

The <u>Paillier cryptosystem</u> is invented by Pascal Paillier in 1999 and is based on public key cryptography. It is a partial homomorphic encryption scheme which allows two types of computation:

• Addition of two plaintexts $(D_{priv}(E_{pub}(m1) \times E_{pub}(m2) \mod n^2) = (m1 + m2) \mod n) \Rightarrow c1 \times c2 = m1 + m2$

• Multiplication of a ciphertext by a plaintext number $(D_{priv}(E_{pub}(m1)^{m2} \mod n^2)=(m1 \times m2) \mod n) \Rightarrow c1^{m2} = m1 \times m2$

Its algorithm consists of three parts: Key generation, encryption, and decryption scheme.

Key generation:

(1) Pick two large prime numbers p and q, randomly and independently. Confirm that $gcd(p \times q, (p-1) \times (q-1))$ is 1. If not, start again.

(2) Compute $n = p \times q$.

(3) Compute λ as lcm(p-1, q-1) where lcm(.) means least common multiple.

(4) Pick a random integer g in the set $Z_{n^2}^*$ (integers between 1 and n²).

(5) Calculate the modular multiplicative inverse $\mu = (L(g^{\lambda} \mod n^2))^{-1} \mod n$. If μ does not exist, start again from step 1.

Where the function L(x) = (x-1) / n (quotient of integer division).

The public key is (n,g). Use this for encryption.

The private key is (λ, μ) . Use this for decryption.

Mustansiriyah University	Public-Key Cryptography	Class: Third Year
Engineering College	Asymmetric Cipher	Course name: Data Encryption
Computer Engineering Dep.	Paillier Algorithm	Lecturer: Fatimah Al-Ubaidy

Paillier Cryptosystem

Paillier Encryption Scheme:

(1) Pick a random number r in the range 0 < r < n.

(2) Compute the ciphertext $c = g^m \times r^n \mod n^2$.

Paillier Decryption Scheme:

Compute the plaintext $m = L(c^{\lambda} \mod n^2) \times \mu \mod n$.

Example:

Key generation

- (1) Pick **p** = 13 and **q** = 17. (They satisfy the condition.)
- (2) Compute **n** = 221.
- (3) Compute λ = 48.
- (4) Pick g = 4886.

(5) Compute μ = 159. (It exists.)

Encryption

Set **m** = 123.

(1) Pick **r** = 59.

(2) Compute **c** = 13250 mod 221².

Decryption

Compute m_{decrypted} = 123 mod 221. (The same as m1.)