

Syllabus of Road Geotechinque

Course Outline:

week	Topics Covered	
1-3	One Dimensional Fluid Flow ,Permeability and seepage	
4-6	Two Dimensional Fluid Flow, Flow through Embankments and Dams	
7-10	Consolidation Theory for normally and over consolidated Soil	
11-13	Shear Strength Tests, Shear Strength of Sand and Clay, The Mohr Coulomb Failure Criterion	
14	Problematic Soils and Subgrade Improvement and Strengthening for highway	
15	Exam + Review of Exam	

Textbooks:

1. Lambe, T. W., and Whitman, R. V. (1979) Soil Mechanics. Wiley, New York.

2. Mitchell, J. K. (1993) Fundamentals of soil behavior, 2nd edition. Wiley, New York<u>Suggested references:</u>

1. Soil Mechanics by R.F.Craig, Inc., 2010.

2. Introduction to Geotechnical Engineering, By Braja M. Das, 2009.

3. Geotechnical Aspects of Pavements. National Highway Institute. Reference Manual. 2006.

Chapter one

One Dimensional Flow

Soil is a three phase medium (solids, water, and air). Water in soils occurs in various conditions, so permeability can be defined as:

"The property of soils that allows water to pass through them at some rate. This property is a product of the granular nature of the soil"

Different soils have different permabilities, understanding of which is critical to the use of the soil as a foundation or structural element. Soil and rock are porous materials. Fluid flow takes place through interconnected void spaces between particles from a point of high energy to a point of low energy and not through the particles themselves. No soil or rock material is strictly **impermeable**

Why studying flow of water in porous media?

1-To estimate the quantity of underground seepage

2-To determine the quantity of water that can be discharged form a soil

3-To determine the pore water pressure/effective geostatic stresses,

and to analyze earth structures subjected to water flow.

4-To determine the volume change in soil layers (soil consolidation) and settlement of foundation.

Flow of Water in Soils depends on:

- 1. Porosity of the soil
- 2. Type of the soil particle size particle shape degree of packing
- 3. Viscosity of the fluid –Temperature Chemical Components
- Total head (difference in energy) Pressure head Velocity head, Elevation head.
- 5. The degree of compressibility of a soil is expressed by

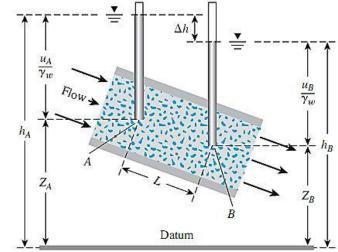
Theory

Bernoulli's Law

The total pressure in terms of water head is formed from: pressure head; velocity head; and elevation head. This is known as the Bernoulli's equation:

$h=\mathrm{P}/\gamma_w+arphi^2/2g+Z$

h: total head;
u: water pressure;
γw: unit weight of water;
v: velocity of water;
g: gravity acceleration;
Z: elevation head.

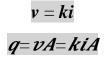

The term containing the velocity head can be neglected because the seepage velocity is small, so:

h=P/γ_w+Z

The loss of head between A & B is:

$$\Delta h = hA - hB = (P_A / \gamma_w + ZA) - (P_B / \gamma_w + ZB)$$
$$i = \Delta h / L$$

i: is the hydraulic gradient, L is the distance between A & B and Δh is the head loss between A & B.



Darcy's Law

In 1856, Darcy published a simple equation for discharge velocity of water through saturated soils, which may expressed as

Where:

 $v = discharge \ velocity = quantity \ of \ water \ flowing \ in \ unit \ time \ through \ a \ unit$

gross – sectional area of soil at right angles to the direction of flow

q = flow rate

k = coefficient of permeability

A = cross-sectional area

i= hydraulic gradient

(v) is based on the gross sectional area of the soil, however the actual velocity of water (seepage velocity, v_s) through the void spaces is higher than v, this can be derived as following:

$$q = v^* A = A_v^* v_s$$

Where:

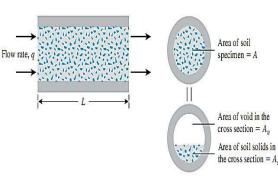
 v_s = seepage velocity

 A_v = area of void in the cross section of the specimen.

$$A = A_v + A_s$$

Where:

 A_s = area of soil solids in the cross section of the specimen.


$$q = v^* (A_v + A_s) = A_v^* v_s$$
$$v_s = v(A_v + A_s)/Av = v(A_v + A_s)^* L / A_v L = v(V_v + V_s)/Vv$$

where

 V_v = volume of voids in the specimen

 V_s = volume of soil solids in the specimen.

$$v_s = v[(1+V_v/V_s)/V_v/V_s] = v(1+e/e) = v/n$$

 $v_s = v/n$

Coefficient of permeability (Hydraulic conductivity) (K)

- ♣ It is defined as the rate of flow per unit area of soil under unit hydraulic gradient, it has the dimensions of velocity (L/T) such (cm/sec or ft/sec).
- **4** The coefficient of permeability is also known as the hydraulic conductivity.
- **4** Hydraulic conductivity of soils depends on several factors such as:
- fluid viscosity
- pore-size distribution
- grain-size distribution
- void ratio and
- degree of soil saturation

Typical values of hydraulic conductivity of soil.

Soil Type	k (cm/sec)
Clean gravel	1.0-100
Coarse sand	0.01-1.0
Fine sand	0.001-0.01
Silty clay	0.00001-0.001
Clay	< 0.000001

Laboratory determination of hydraulic conductivity

Two standard laboratory tests are used to determine the hydraulic conductivity.

1. Constant head test

The <u>constant head</u> test is <u>used</u> primarily for <u>coarse-grained soils</u>; the test is based on the assumption of laminar flow where k is independent of i; ASTM D 2434.

2. Falling head test (Variable head test)

The falling head test is used both for coarse-grained soils as well as fine

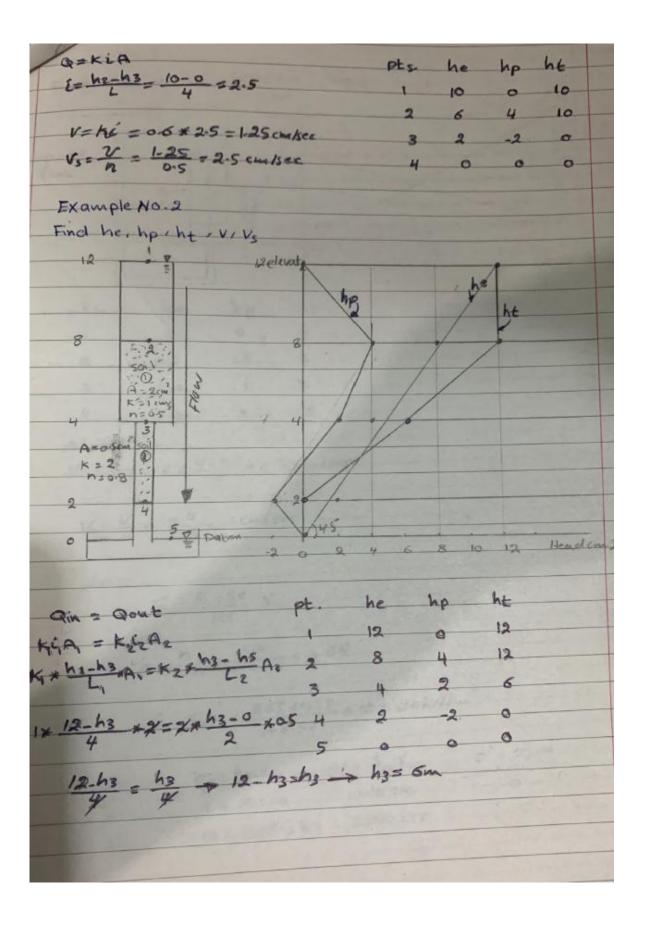
textured soils

Q/ What causes flow of water through soil?

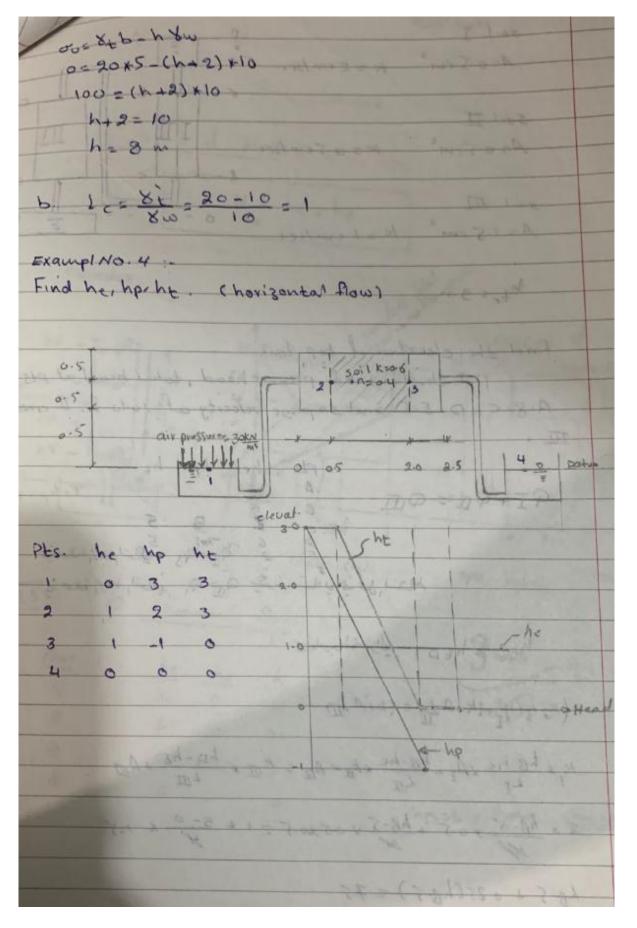
Answer:

ht(at any point inside the soil)^{=h}t(at begin or end point of the soil) \mp i × (distance)(knowing point to point require

5



one Dimension Fluid Plow; Heads ht= hp the where he ht = Total head her he= elevation head hp= pressure head = P/tow Darcy law Q= Ki A - Darcy low WEKI where Q = volume of Fluid K = coefficient of permeenbility 2 = hydraulic gradient A= Area of specimen. V= velocity of found in soil (approuch velocity) Qin = Qont Vs= V where Vssseepage velocity (Porsoil) n=porosity. 2= Ah hz-hi Example No. 1 Find herbp. ht, V, Vs at pts. deci-10 2 10 5011: n=0-5 2 8 10 12 -2 2 3



Kample No.3 Find he, hp. ht. velocities, stress he upword Plow 2.0 KSO 6 0.5 Pabu 4 2 Head pts- he he he 4 0 24 0.5 3.5 2 4 2.0 -1 3 3 3.0 0 4 3 relacibies :-V=ki=0.8 x 4-3 =0.4 culsec. Vs= V = 0.4 = 1 cm/sec. stress :-Se= G+Se Sw He assume S=1 e= n = 0.4 = 0.67 Xc = & soit = 2.65 + 0.67 + 10 = 20KN/m3 1+0.67 pts- of the X us how o's our M 3 1 × 10=10 1+10=10 0 1×10+15420=40 3.5×10=35

EX.5 For the set up shown the total head art pts. H 12 are 10m and 9.5m respectively. Find; 20 1. value of H Soil 4 JUIL I 2. seepage force per unit 2, .2 - 4 volume in soil I and I 3. Max hydraulic head 4. when piping occure in soil I or II first soil type K n & A Soil I 2×10 cm of 18 km A Soil II 4×10 sec 0-333 18 km A Solution to the set up is connected series so q=qI (KLA) = (KIA)I KIA(Ah)XAI= KIX(Ah + AI ZXIEZ X AhI X A = HX 15 X AhII X A shI=20hII => $\frac{2}{2}$ from (1+2) = $\frac{bh_{+}}{2} = \frac{10-9.5}{2} = \frac{1}{2} = 0.25 = 2 = 2 = \frac{bh_{+}}{2}$ 60 0:25 = AHI => AhI = 1m DhI= 2m and H= DhI+ DhII= 1+2= 3m 2. J_=2 Xw= Ahi Xw= 2 + 10= 5 KA/WS JI= in 800 Ahr = 1 × 10 = 2.5 KN/m3

3 max head accourse at critical condition of F.S. =1 is critical hydraulic gradient Le L where Ssaf - Dw 6 2= Ah the critical condition occure at 18-10 10 . Aht Ah#= 3.2 1/ loss 1 soil IT = AhIT = 1 = 0-333 Ahr 3.2 - 9.6m Hmar = locm EX.6 1000 For the set up shown find ... Jocus E 1. he, hp, ht for pts. AiBiero SOI 501 1000 II locm 501 EGF & VE VS for soil II (N=0.66) IDCM 2. the value of Z that may ß P 10 cu heter O cause bailing. soil soil I soil II × 0.02 × 21 × 50/ution :-20 19 Sec system is connect ponalle THA he hp hy = hp + he pt. and upward 20 60 40 flow B 10 60 70 40 20 60 70 D 10 60-E 30 20 50 F 0 70 70

for soil TI Vscv and vski = kx hto-hts pro 5=0.05 x 70-60 = 0.0167 cm/sec 30 h = 0.0/67 = 0.025 curtsec > 0.0/67 2. boiling condition => F.S.=1 F.S. = ic deat-dw 21-10 F.S. = ic deat - dw = 10 Dh Oh => Ah= 0.33m= 33 cm د لذف بن المران الم على من تعل EX.7. For soil profile shown in fig. ImT Find :-22 soils as 1. The seepage through soil O in m3/day/m2 seil2 2. effective stress (or,) at points 4m K=10 cm. AGB6 C 3. Max. (h) without cause boiling we F.S. =1.5 solution ... q=kiA = K + Ah +A first must be found Ah at soil > hta > hta but soil profile is in series -> 91=92 at pt. A here m hpro => hy = 6 here hprq => htrq $\begin{array}{c} q_1 = q_2 \implies (k;A)_1 = (k;A)_2 \\ \chi_1 = \frac{1}{2} & 6 = -\frac{h_1 R}{2 \times 6} \times A = 16^3 \times \frac{h_1 B}{4 \times 10^6} \times A \\ \hline \end{array}$ htes 6.6 m and he = 4 m => hp = 2.6 m

305 30 2 × 10 3 cm × 24 hr + 5.6-6 Iday 2 * 3600505 501 0.5184 m3/day 160 " jury SI 4= hpx &w Sho N= 06-1 O Jilio B \$7×1+18×1+18×1=53 2.63×10=126 53-26=27 53+2*19 #19*2=129 9×10=90 129-90=39 Sat ou > (Sra- Vew) () = the with 120 Kgo Xgo of 1 2.7) 121 (F.S) F.S. 17×1+ (18-10) ×2 0.6 × 10 000, (F.S) 20 0 = 5.5 F. S. = L7AI + (18-10) x2 + (19-10) ×4 = 2.3 0.6×10 + 2.7×10 F.S. F.S. 17×1+(18-10)×2+(19-10)×4 =15 H* 10 00 H=4.6 m 3.6 M