
43

Chapter Ten

Numerical Methods

10.1 Introduction

Numerical methods are used to solve mathematical problems that are difficult to
solve by analytical methods. These methods are usually applied via computer
programming because they involve large number of data and large number of
arithmetic processes that usually replaced the few and difficult analytical methods.
MATLAB contain large collection of functions and commands that facilitate the use
of numerical methods.

10.2 Interpolation

Interpolation is the extraction of missing data from given available data. It is used
with limited tabulated data so the table rows are increased by adding other rows
between the existing rows. There are two types of interpolation in MATLAB, one and
two dimensional. One dimensional interpolation generates data between elements
of one dimensional matrix of a dependent variable (y) as they change with other
conjugated matrix of independent variable (x) which is the interpolation on a two
dimensional curve. Two dimensional interpolation works with a dependant variable
(z) that changes with two independent variables (x) and (y) which is the
interpolation over a three dimensional surface.

10.2.1 One dimensional interpolation

It is performed in MATLAB by the command (interp1) as follows:

ynew = interp1 xold , yold , xnew 10.1

ynew = interp1 xold , yold , xnew , ꞌ spline ꞌ 10.2

Where:

xold is the matrix of the existing (x) elements.

yold is the matrix of the existing (y) elements.

xnew is the matrix of new (x) elements.

ynew is the matrix of the new generated elements based on the old elements yold .

Equation (10.1) performs linear interpolation between data while equation (10.2)
performs spline interpolation where a third order degree polynomial is used to
interpolate between data.

44

Ex. 10.1 Write MATLAB program to expand the following table so that the values of
(x) change at a step of one unit. Apply linear and spline interpolation:

x 0 2 4 6

y 0 10 16 20

Sol.

clear,clc

x=0:2:6;

y=[0 10 16 20];

xn=0:6;

ynl=interp1(x,y,xn);

yns=interp1(x,y,xn,'spline');

R=[xn;ynl;yns];

fprintf(' %2g %3g %6.3f \n',R)

10.2.2 Two dimensional interpolation

It is performed in MATLAB by the command (interp2) as follows:

znew = interp2 xold , yold , zold , xnew , ynew 10.3

znew = interp2 xold , yold , zold , xnew , ynew ꞌ spline ꞌ 10.4

The dependent variable (z) varies with two independent variables (x) and (y).
Equation 10.3 uses linear interpolation while equation 10.4 uses spline interpolation
on the third order. An example of the function (z) is the topology of a three
dimensional surface.

Note: To convert the matrices (x) and (y) to a two dimensional coordinates for the
dependent variable (z) the command (meshgrid) is used as follows:

[x,y]=meshgrid(elements of (x),elements of (y)) 10.5

Note: The command (surf) is used to draw the three dimensional surface:

surf(x,y,z) 10.6

xnew ynew,linear ynew,spline

0 0 0.000

1 5 5.625

2 10 10.000

3 13 13.375

4 16 16.000

5 18 18.125

6 20 20.000

45

Ex. 10.2 Write MATLAB program to expand the data in the following table so that a
smooth surface of the variable (z) can be drawn over the two dimensional
coordinates of (x) and (y). Expand the table to a mesh of 7×7 nodes first then
expand it to 70×70 nodes and draw the expanded two surface using spline
interpolation. The values of x and y in the table both change from 1 to 4 (shaded
regions). The other numbers represents the values of z.

X

1 2 3 4

Y

1 4 12 15 10

2 10 7 9 12

3 7 8 12 16

4 10 16 14 18

 The mesh of 7×7 nodes

Sol.

clear,clc

i=0;j=0;

x=1:4;

y=1:4;

z=[4 12 15 10;10 7 9 12;...

 7 8 12 16;10 16 14 18];

for xn=1:0.5:4; The mesh of 70×70 nodes
 i=i+1;

 for yn=1:0.5:4;

 j=j+1;

 zn(j,i)=interp2(x,y,z,xn,yn,'spline');

 end

 j=0;

end

[xp,yp]=meshgrid(1:0.5:4,1:0.5:4);

surf(xp,yp,zn)

grid on

xlabel('x');ylabel('y');zlabel('z')

46

10.3 Polynomial data fitting

The tabulated data can be represented in terms of polynomial equations that best
fit the data. The polynomial takes the form:

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + ⋯ + 𝑎𝑛𝑥
𝑛 10.7

Where the values of the coefficients as depends on the given data.

MATLAB performs polynomial fitting through the command (polyfit) as follows:

z = polyfit (x , y , order) 10.8

where z represents the matrix of the coefficients as starting from the coefficient of
the highest order downward. The number of the matrix z is therefore equals the
order of the polynomial plus one. The one dimensional matrices x and y are the
independent and dependent variables respectively and (order) is a number equals to
the polynomial order. To facilitate the process of writing the polynomial equation
based on its coefficients zs the command (polyval) can be used to automatically give
the values of the dependent variable (y) as evaluated from the polynomial equation
containing the coefficients zs as follows:

yfit = polyval (z , x) 10.9

Where (z) is the output matrix of the command (polyfit) and (x) is the independent
variable.

Ex. 10.3 Write MATLAB program to evaluate the velocity of a car after 3 seconds
from its move according to the following table. Use linear and polynomial
interpolation and compare the results with third order fitting equation. Write down
the third order equation an compare the result with that generated by the
command (polyval).

Sol.

clear,clc

xn=input('Enter the time = ');

x=[0 , 2 , 4 , 6 , 8];

y=[0 , 5 , 15 , 40 , 100];

yn_linear=interp1(x,y,xn);

yn_spline=interp1(x,y,xn,'spline');

zs=polyfit(x,y,3);

y_fit_1=zs(1)*xn^3+zs(2)*xn^2+zs(3)*xn+zs(4);

y_fit_2=polyval(zs,xn);

disp(' x_new y_linear y_spline y_fit_1 y_fit_2 ')

disp('---')

disp([xn,yn_linear,yn_spline,y_fit_1,y_fit_2])

Time (s) 0 2 4 6 8

Velocity (m/s) 0 5 15 40 100

Run:

Enter the time = 5

 x_new y_linear y_spline y_fit_1 y_fit_2

 5.0000 27.5000 24.5313 24.1875 24.1875

47

10.4 Numerical differentiation

The derivative of function is the rate of change of that function. So, it represents the
rate at which the dependent variable (y) changes relative to the independent

variable (x). This definition can be approximated as a finite difference of (y) or (y)

divided by the corresponding change in (x) or (x):

𝑑𝑦

𝑑𝑥
≅

∆𝑦

∆𝑥
=

𝑦2 − 𝑦1

𝑥2 − 𝑥1
 10.10

The differences (x) and (y) can be evaluated in MATLAB using the command (diff)
which calculates the differences between one dimensional matrix elements.

Ex. 10.4 Write MATLAB program to evaluate the derivative of the function (x3) with
respect to (y) numerically. Take the values of (x) to change from 0 to 10 at a step of
one unit. Compare the numerical results with the analytical derivative of the
function (x3).

Sol.
clear,clc

x=0:10;

y=x.^3;

dx=diff(x);

dy=diff(y);

der=dy./dx;

x1=0.5:9.5;

der2=3*x1.^2;

disp([x1',der',der2'])

x

y

x1 x2

y2

y1

tangent

function curve

 0.5000 1.0000 0.7500

 1.5000 7.0000 6.7500

 2.5000 19.0000 18.7500

 3.5000 37.0000 36.7500

 4.5000 61.0000 60.7500

 5.5000 91.0000 90.7500

 6.5000 127.0000 126.7500

 7.5000 169.0000 168.7500

 8.5000 217.0000 216.7500

 9.5000 271.0000 270.7500

x

y

48

Ex. 10.5 Repeat the previous example using the following function:

𝑦 =
sin(𝑥)

1 + cos(𝑥)

The domain of the (x) values is between 0 to at a step of /10.

Sol.
clear,clc

x=0:pi/10:pi;

y=sin(x)./(1+cos(x));

dx=diff(x);

dy=diff(y);

der=dy./dx;

x1=pi/20:pi/10:pi-pi/20;

der2=1./(1+cos(x1));

disp([x1',der',der2'])

plot(x,y,'^','linewidth',2)

grid on;xlabel('x');ylabel('y')

 0.1571 0.5042 0.5031

 0.4712 0.5301 0.5288

 0.7854 0.5876 0.5858

 1.0996 0.6908 0.6878

 1.4137 0.8704 0.8647

 1.7279 1.1981 1.1854

 2.0420 1.8660 1.8315

 2.3562 3.5494 3.4142

 2.6704 10.3007 9.1749

 2.9845 Inf 81.2238

49

10.5 Numerical integration

It is the numerical procedure to find the definite integral or the value of the
integration of a function between two limits in the domain (x). This value equals the
area between the function curve and the x axis and bounded from right and left by
two vertical lines extending from (x) limits (x1) and (x2). The domain of integration is
divided into small stripes and their areas are summed to find the value of
integration. This method is called (Trapezoidal Rule). It is performed as follows:

𝐴 = 𝐴𝑛

𝑁

𝑛=1

= 𝐴1 + 𝐴2 + ⋯ + 𝐴𝑁 = ∆𝑥
𝑦1

2
+ 𝑦2 + 𝑦3 + ⋯ + 𝑦𝑁−1 +

𝑦𝑁

2
 10.11

Note: The integral of a function can also be evaluated in MATLAB via the command
(integral) which incorporates (Quadrature Method). It takes the following form:

A = integral (Function , min , max)

Where: A : the value of integral or area under the curve

 Function: is the function handle

 min: is the lower limit of the integral (minimum value of (x))

 max: is the upper limit of the integral (maximum value of (x))

x x1 x4

y3

y1

x

y

x2 x3

A1 A2 A3

y2

y4

50

Ex. 10.6 Write MATLAB program to evaluate the following integral using two
methods: the trapezoidal rule and the quadrature method:

A = ln 2x2 + 4 dx
1

0

Sol.
clear,clc run:

min1=0;max1=1;
step1=.01; 1.5485 1.5326 1.5326

x=min1:step1:max1;

y=log(2*x.^2+4);

A1=sum(y)*step1;

f1=@(x)log(2*x.^2+4);

A2=integral(f1,min1,max1);

A3=log(6)-2+2*sqrt(2)*atan(1/sqrt(2));

disp([A1,A2,A3])

plot(x,y);grid on

xlabel('x');ylabel('y')

Ex. 10.7 Repeat the previous example using the following integral:

A =
cot(x)

1 + sin2(x)
dx

π/2

π/6

Sol.
clear,clc Run:

min2=pi/6;max2=pi/2;

step2=pi/100; 0.4803 0.4581 0.4581

x1=min2:step2:max2;

y1=cot(x1)./(1+(sin(x1)).^2);

A11=sum(y1)*step2;

f2=@(x1)cot(x1)./(1+(sin(x1)).^2);

A22=integral(f2,min2,max2);

A33=.5*log(5/2);

disp([A11,A22,A33])

plot(x1,y1);grid on

xlabel('x1');ylabel('y1')

