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BASIC PRINCIPLES OF INTERSECTION SIGNALIZATION 

 

Introduction  
 

In previous lecture, various options for intersection control were presented and discussed. 

Warrants for implementation of traffic control signals at an intersection, presented in the Manual 

on Uniform Traffic Control Devices, provide general and specific criteria for selection of an 

appropriate form of intersection control, t many intersections, .the combination of traffic volumes, 

potential conflicts, overall safety of operation, efficiency of operation, and diver convenience lead 

to a decision to install traffic control signals. The operation of signalized intersections is often 

complex, involving competing vehicular and pedestrian movements. Appropriate methodologies 

for design and timing of signals and for the operational analysis of signalized intersections require 

the behavior of divers and pedestrians at a signalized intersection to be modeled in a form that can 

be easily manipulated and optimized. This lecture discusses some of the fundamental operational 

characteristics at a signalized intersection and the ways in which they may be effectively modeled. 

(In next lecture, these principles are applied to a signalized intersection design and timing process 

for pretimed signals. In next lectures they are augmented and combined into overall models of 

signalized intersection operations. The particular model presented in Chapter 24 is that of the 

Highway Capacity Manual. [This chapter focuses on four critical aspects of signalized intersection 

operation:  

1. Discharge headways, saturation flow rates, and lost times 

2. Allocation of time and the critical-lane concept  

3. The concept of let-turn equivalency  

4. Delay as a measure of service quality 

 

Other aspect of signalized intersection operation are also important, and the Highway Capacity 

Manual analysis model addresses many of them. These four, however, are central to understanding 

traffic behavioral signalized intersections and are highlighted here. 

 

Terms and Definitions 

 

Traffic signals are complex devices that can operate in a variety of deferent modes. A number of 

key terms and definitions should be understood before pursuing a more substantive discussion. 

 

Components of a Signal Cycle 
 

The following terms describe portions and sub portions of a signal cycle. The most fundamental 

unit in signal design and timing is the cycle, as defined here.  

1. Cycle. A signal cycle is one complete rotation through all of the indications provided. In 

general, every legal vehicular movement receives a “green” indication during each cycle, 

although there are some exceptions to this rule. 
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2. Cycle length. The cycle length is the time (in seconds) that it takes to complete one full 

cycle of indications. It is given the symbol "C." 

3. Interval. The interval is a period of time during which no signal indication changes. It is 

the smallest unit of time described within a signal cycle. There are several types of intervals 

within a signal cycle: 

 Change interval. The change interval is the “yellow" indication for a given movement 

It is part of the transition from " green " to "red," in which movements about to lose " 

green " are given a " yellow" signal while all other movements have a " red" signal. It 

is timed to allow a vehicle that cannot safely stop when the “green “is withdrawn to 

enter the intersection legally. The change interval is given the symbol “yi" for 

movement(s) i. 

 Clearance interval. The clearance interval is also part of the transition from “green “to 

"red" for a given set of movements. During the clearance interval, all movements have 

a "red" signal. It is timed to allow a vehicle that legally enters the intersection on 

'yellow" to safely cross the intersection before conflicting flows are released. The 

clearance interval is given the symbol “ari” (for " all red”) for movement(s) i. 

 Green interval. Each movement has one green"' interval during the signal cycle. During 

a green interval, the movements permitted have a "green" light while all other 

movements have a "red" light. The green interval is given the symbol "G" for 

movement(s) i. 

 Red interval. Each movement has a red interval during the signal cycle. All movements 

not permitted have a "red" light while those permitted to move have a "green" light In 

general, the red interval overlaps the green, yellow, and all red intervals for all other 

movements in the intersection. The red interval is given the symbol “Ri" for 

movement(s) i. Note that for a given movement or set of movements, the “red" signal 

is present during both the clearance (all red) and red intervals. 

 

4. Phase. A signal phase consists of a green interval plus the change and clearance intervals 

that follow it. It is a set of intervals that allows a designated movement or set of movements 

to flow and to be safely halted before release of a conflicting set of movements. 

 

Types of Signal Operation 
 

The traffic signals at an individual intersection can operate on a pretimed basis or may be partially 

or fully actuated by arriving vehicles or pedestrians sensed by detectors. 

1. Pretimed operation. In pretimed operation, the cycle length, phase sequence, and timing of 

each interval ar constant. Each cycle of the signal follows the same predetermined plan. 

Modem signal controllers allow different pretimed settings to be established. An internal 

clock is used to activate the appropriate timing for each defined time period. In such cases, 

it is typical to have at least an am peak, a pm peak, and an off-peak signal timing. 

2. Semi-actuated operation. In semi-actuated operation, detectors are placed on the minor 

approach (es) to the intersection; there are no detectors on the major street. The light is 

green for the major street at all times except when a "call" or actuation is noted on one of 

the minor approaches. Then, subject to limitations such as a minimum major-street green. 

The green is transferred to the minor street. The green returns to the major street when the 

maximum minor-street green is reached or when the detector senses there is no further 
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demand on the minor street Semi-actuated operation is often used where the primary reason 

for signalization is "interruption of continuous traffic, " as discussed in previous lecture. 

3. Full actuated operation. In full actuated operation, every lane of every approach must be 

monitored by a detector. Green time is allocated in accordance information from detectors 

and programmed "rules” established in the controller for capturing and retaining the green. 

In full actuated operation, the cycle length, sequence of phases, and green time split may 

vary from cycle to cycle. Next lectures presents more detailed descriptions of actuated 

signal operation along with a methodology for timing such signals. 

 

In most urban and suburban settings, signalized intersections along arterials and in arterial 

networks are close enough to have a significant impact on adjacent signalized intersection 

operations. In such cases, it is common to coordinate signals into a signal system. When 

coordinated, such systems attempt to keep vehicles moving through sequences of individual 

signalized intersections without stopping for as long as possible. This is done by controlling the 

"offsets" between adjacent green signals; that is, the green at a downstream signal initiates "x" 

seconds after its immediate upstream neighbor. Coordinated signal systems must operate on a 

common cycle length because of sets cannot be maintained from cycle to cycle if cycle lengths 

vary at each intersection. Coordination is provided using a variety of technologies: 

 

1. Master controllers. A "master controller" provides a linkage between a limited set of 

signals. Most such controllers can connect from 20 to 30 signals along an arterial or in a 

network. The master controller provides fixed settings for each offset between connected 

signals. Settings can be changed for defined periods of the day. 

2. Computer control. In a computer-controlled system, the computer acts as a “supersized " 

master controller, coordinating the timings of a large number (hundreds) of signals. The 

computer selects or calculates an optimal coordination plan based on input from detectors 

placed throughout the system. In general, such selections are made only once in advance 

of an am or PM peak period. The nature of a system transition from one timing plan to 

another is sufficiently disruptive to be avoided during peak-demand periods in a traditional 

system. Individual signals in a computer-controlled system generally operate in the 

pretimed mode. 

3. Adaptive traffic control systems (ATCS). Since the early 1990s, there has been rapid 

development and implementation of "adaptive" traffic control systems. In such systems, 

both individual intersection signal timings and offsets are continually modified in real time 

based on advanced detection system inputs. In many cases, such systems use actuated 

controllers at individual intersections. Even though the system sill requires a fixed cycle 

length (which can be changed periodically based on detector input), the allocation of green 

within a fixed cycle length has been found to be useful in reducing delay and travel times. 

A critical part of adaptive traffic control systems is the underlying logic of software used 

to monitor the system and continually update timing patterns. A number of software 

systems are in use, and the list of products is increasing each year. Some of the more 

popular systems (in 2009) include SCOOT (Split Cycle Offset Optimization Technique), 

SCATS (Sydney Coordinated Adaptive Traffic System), RHODES (Real-Time 

Hierarchical Optimized Distributed Effective System), OPAC (Optimization Policies for 

Adaptive Control), and ACS-Lite (Adaptive Control System-Lite). In addition to the 

standard features of signal coordination, such systems usually also incorporate other 
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features, such as bus priority, emergency vehicle priority, traffic gating, and incident 

detection. 

Table 1 summarizes the various types of individual signal controllers with key characteristics and 

guidelines on their most common uses. Dramatic changes have occurred in the use of traffic signal 

control technology over the past two decades. Before 1990, all coordinated traffic signal systems 

on arterials and in networks used pretimed signal controllers exclusively. Today, actuated 

controllers are regularly coordinated, although, as shown in Table 20.1, they lose one of their 

principal variable features: cycle length. To coordinate signals, cycle lengths must be common 

during any given time period, so that the offset between the initiation of green at an upstream 

intersection and the adjacent downstream intersection is constant for every cycle. Pretimed signals, 

because they are the cheapest to implement and maintain, are still a popular choice where demands 

are relatively constant throughout major periods of the day. Where demand levels (and relative 

demands for various movements) vary significantly during all times of the day, actuated signals 

are the most likely choice for use. Even when coordinated and using a constant cycle length, the 

allocation of green times among the defined phases can significantly reduce delay. 

 

Table 1. Signal Controllers and Types of Intersection Control. 
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Treatment of Left Turns (and Right Turns) 
 

The modeling of signalized intersection operation would be straightforward if let turns did not 

exist. Left turns at a signalized intersection can be handled in one three ways: 

 

1. Permitted let turns. A "permitted" left turn movement is one that is made across an 

opposing flow of vehicles. The diver is permitted to cross through the opposing low but 

must select an appropriate gap in the opposing traffic stream through which to turn. This 

is the most common form of left-turn phasing at signalized intersections, used where let-

tum volumes are reasonable and where gaps.in the opposing flow are adequate to 

accommodate let turns safely. 

2. Protected left turn. A “protected “left turn movement is made without an opposing 

vehicular flow. The signal plan protects let-tuning vehicles by stopping the opposing 

through movement. This requires that the let turns and the opposing through flow be 

accommodated in separate signal phases and leads to multiphase (more than two) 

signalization. In some cases, let nuns are “protected “by geometry or regulation. Let turns 

from the stem of a T-intersection, for example, face no opposing low because there is no 

opposing approach to the intersection. Let turns from a one-way street similarly do not face 

an opposing flow. 

3. Compound let turns. More complicated signal timing can be designed in which left turns 

are protected for a portion of the signal cycle and are permitted in another portion of the 

cycle. Protected and permitted portions of the cycle can be provided in any order. Such 

phasing is also referred to as protected plus permitted or permitted plus protected, 

depending on the order of sequence. 
 

The permitted let turn movement is very complex. It involves the conflict between a left turn and 

an opposing through movement. The operation is affected by the left-tum flow rate and the 

opposing flow rate, the number of opposing lanes, whether left turns flow from an exclusive left-

tum lane or rom a shared lane, and the details of the signal timing. Modeling the interaction among 

these elements is a complicated process, one that often involves iterative elements. 

The terms protected and permitted may also be applied to right turns. In this case, however, the 

conflict is between the right-turn vehicular movement and the pedestrian movement in the 

conflicting crosswalk. The vast majority of right turf at signalized intersections are handled on a 

permitted basis Protected right turns generally occur at locations where there are overpasses or 

underpasses provided for pedestrians. At these locations, pedestrians are prohibited from making 

surface crossings; barriers are often required to enforce such a prohibition. 

 

Discharge Headways, Saturation Flow, Lost Times, and Capacity 

 

The fundamental element of a signalized intersection is the periodic stopping and restarting of the 

traffic stream. Figure 1 illustrates this process. When the light turns GREEN, there is a queue of 

stored vehicles that were stopped during the preceding RED interval, waiting to be discharged. As 

the queue of vehicles moves, headway measurements are taken as follows: 
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 The first headway is the time lapse between the initiation of the GREEN signal and the time 

that the font wheels of the first vehicle cross the stop line. 

 The second headway is the time lapse between the time that the first vehicle's front wheels 

cross the stop line and the time that the second vehicle's front wheels cross the stop line. 

 Subsequent headways are similarly measured. 

 Only headways through the last vehicle in queue (at the initiation of the GREEN light) are 

considered to be operating under "saturated" conditions. 

 

If many queues of vehicles are observed at a given location and the average headway is plotted 

versus the queue position of the vehicle, a trend similar to that shown in Figure 1 (b) emerges.  

The first headway is relatively long. The first driver must go through the full perception-reaction 

sequence, move his or her foot from the brake to the accelerator, and accelerate through the 

intersection. The second headway is shorter because the second driver can overlap the perception-

reaction and acceleration process of the first driver. Each successive headway is a little bit smaller 

than the last. Eventually, the headways tend to level out. This generally occurs when queued 

vehicles have fully accelerated by the time they cross the stop line. At this point, a stable moving 

queue has been established. 

 

 
Figure 1: Row Departing a Queue at a Signalized Intersection 
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Saturation Headway and Saturation Flow Rate 
 

As noted, average headways tend toward a constant value. In general, this occurs from the fourth 

or fifth headway position. The constant headway achieved is referred to as the saturation headway 

because it is the average headway that can be achieved by a saturated, stable moving queue of 

vehicles passing though the signal. It is given the symbol "h," in units of s/veh. 

It is convenient to model behavior at a signalized inter- section by assuming that every vehicle (in 

a given lane) consumes an average of "h" seconds of green time to enter the intersection. If every 

vehicle consumes "h" seconds of green time and if the signal were always green, then "s" vehicles 

per hour could enter the intersection. This is referred to as the saturation flow rate: 
 

s =
3600

h
                                                                                                                       1 

 

Where: 

s = saturation low rate, vehicles per hour of green per lane (veh/hg/ln).  

h= saturation headway, seconds/vehicle (s/veh). 

 

Saturation flow rate can be multiplied by the number of lanes provided for a given set of 

movements to obtain a saturation / flow rate for a lane group or approach. 

The saturation low rate, in effect, is the capacity of the approach lane or lanes if they were available 

for use all of the time (i.e., if the signal were always GREEN). The signal, of course, is not always 

GREEN for any given movement Thus, some mechanism (or model) for dealing with the cyclic 

starting and stopping of movements must be developed. 

 

Start-Up Lost Time 
 

The average headway per vehicle is actually greater than "A" seconds. The first several headways 

are, in fact, larger than "h" seconds, as illustrated in Exhibit 1 (b). The first three or four headways 

involve additional time as drivers react to the GREEN signal and accelerate. The additional time 

involved in each of these initial headways (above and beyond "h" seconds) is noted by the symbol 

∆𝑖 (for headway i). 

These additional times are added and referred to as the start-up lost time: 

𝑙𝑖 = ∑ ∆𝑖 
𝑖

                                                                                                                                                                   2 

 

Where:  

𝑙𝑖 = start-up lost time, s/phase. 

∆𝑖 = incremental headway (above "h" seconds) for vehicle i, s. 

 

Thus it is possible to model the amount of GREEN ti required to discharge a queue of "n" vehicles 

as: 

 

𝑇𝑛 = 𝑙1 + 𝑛ℎ                                                                                                                           3 

 

Where:  
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𝑇𝑛 = GREEN time required to move queue of "«" vehicles through a signalized intersection, s. 

l𝑖 = start-up lost time, s/phase. 

n = number of vehicles in queue. 

h= saturation headway, s/veh. 

 

Although this particular model is not of great use, it does illustrate the basic concepts if saturation 

headway and startup lost times. The start-up lost time is thought of as a period of time that is "lost" 

to vehicle use. Remaining GREEN time, however, may be assumed to be usable at a rate of h 

s/veh. 

 

Clearance Lost Time 
 

The start-up lost time occurs every time a queue of vehicles starts moving on a GREEN signal. 

There is also a lost time associated with stopping the queue at the end of the GREEN signal. This 

time is more difficult to observe in the field because H requires that the standing queue of vehicles 

be large enough to consume all of the GREEN time provided. In such a situation. The clearance 

lost time,𝑙2  is defined as the time interval between the last vehicle's front wheels crossing the stop 

line and the initiation of the GREEN for the next phase. The clearance lost time occurs each time 

a flow of vehicles is stopped. 

 

Total Lost Time and the Concept of Effective GREEN Time 
 

If the start-up lost time occurs each time a queue starts w move and the clearance lost Time occurs 

each time the flow of vehicles stops, then. For each GREEN phase: 

 

 

𝑡𝐿 = 𝑙1 + 𝑙2                                                                                                                           4 

  

 

Where: 

 𝑡𝐿 = total lost time per phase, s/phase. 

All other variables are as previously defined. 

 

The concept of lost times leads to the concept of effective green time. The actual signal goes 

through a sequence of intervals for each signal phase: 

 

 Green  

 Yellow  

 All-red  

 Red 

 

They "yellow" and "all-red" intervals are a transition between GREEN and RED. This must be 

provided because vehicles cannot stop instantaneously when the light changes. The "all-red" is a 

period of time during which all lights in all directions are red. During the RED interval for one set 

of movements, another set of movements goes through the green, yellow, and all-red intervals. 

These intervals are defined in next lectures. 
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In terms of modeling, there are really only two time periods of interest: effective green time and 

effective red time. For any given set of movements, effective green time is the amount of time that 

vehicles can move (at a rate of one vehicle every h seconds). The effective red time is the amount 

cannot move (at a rate of one vehicle every h seconds). Effective green time is related to actual 

green time as follows: 

𝑔𝑖 = 𝐺𝑖 + 𝑌𝑖 − 𝑡𝐿𝑖                                                                                                      5 
 

Where: 

 𝑔𝑖= effective green time for movement(s) i, s  

𝐺𝑖 = actual green time for movements) i, s  

𝑌𝑖 = sum of yellow and all red intervals for movement(s) i, (𝑌𝑖 =yi + ari)  

yi = yellow interval for movements) i, s  

ari = all-red interval for movement(s) i, s  

𝑡𝐿𝑖 = total lost time for movement(s) i, s 

 

This model results in an effective green time that may be fully used by vehicles at the saturation 

flow rate (i.e., at an average headway of h s/veh). 

 

Capacity of an intersection Lane or Lane Group 
 

The saturation flow rate(s) represents the capacity of an interaction lane or lane group assuming 

that the light is always GREEN. The portion of real time that is effective green is defined by the 

"green ratio," the ratio of the effective green '' me to the cycle length of the signal (g/Q). The 

capacity of an intersection lane or lane group may then be computed as: 

 

𝑐𝑖 = 𝑠𝑖(
𝑔𝑖

𝐶⁄ )                                                                                                                      6 

 

Where:  

q = capacity of lane or lane group i, veh/h 

𝑠𝑖 = saturation flow rate for lane or lane group i, veh/hg  

𝑔𝑖 = effective green time for lane or lane group i, s  

C = signal cycle length, s. 

 

A Sample Problem 

These concepts are best illustrated using a sample problem. Consider a given movement at a 

signalized intersection with the following known characteristics:  

 Cycle length, C = 60 s  

 Green time, G = 27 s  

 Yellow plus all-red time, Y=4 s 

 Saturation headway, h = 2.4 s/veh  

 Start-up lost time, 𝑙1 = 2.0 s 

 Clearance lost time, 𝑙2 = 2.0 s 

For these characteristics, what is the capacity (per lane) for this movement? 
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The problem will be approached in two different ways. In first, a ledger of time within the hour is 

created. Once the amount of time  per hour used by vehicles at the saturation flow rate is 

established, capacity can be found by assuming that this time is used at a rate of one vehicle every 

h seconds. Because the characteristics stated are given on a per phase basis, these would have to 

be converted to a per hour basis. This is easily done knowing the number of signal cycles that 

occur within an hour. For a 60-second cycle, there are 3,600/60 = 60 cycles within the hour. The 

subject movements will have one GREEN phase in each of these cycles. Then: 

 Time in hour: 3, 600 s  

 RED time in hour: (60 - 27 -4) X 60 = 1740 s 

 Lost time in hour: (2. 0 + 2.0) X 60 =240 s 

 Remaining time in hour: 3600 – 1740 – 240 = 1620 s 

 

The 1,620 remaining seconds of time in the hour represent the amount of time that can be used at 

a rate of one vehicle every h seconds, where h = 2.4 s/veh in this case. This number was calculated 

by deducting the periods during which no vehicles (in the subject movements) are effectively 

moving. These periods include the RED time as well as the start-up and clearance lost times in 

each signal cycle. The capacity of this movement may then be computed as: 

𝑐 =
1620

2.4
= 675

𝑣𝑒ℎ

ℎ𝑟
/𝑙𝑛 

 

A second approach to this problem uses Equation 6, with the following values: 

𝑠 =
3600

2.4
= 1500

𝑣𝑒ℎ

ℎ𝑟
/𝑙𝑛 

𝑔 = 27 − 4 + 4 = 27 𝑠 

𝑐 = 1500(27
60⁄ ) = 675

𝑣𝑒ℎ

ℎ𝑟
/𝑙𝑛 

The two results are, as expected, the same. Capacity is found by isolating the effective green time 

available to the subject movements and by assuming that this time is used at the saturation flow 

rate (or headway). 

 

Notable Studies on Saturation Headways, Flow Rates, and Lost Times 
 

For purposes of illustrating basic concepts, subsequent sections of this chapter assume that the 

value of saturation flow rate (or headway) is known. In reality, the saturation flow rate varies 

widely with a variety of prevailing conditions, including lane widths, heavy-vehicle presence, and 

approach grades, parking conditions near the intersection, transit bus presence, vehicular and 

pedestrian low rates, and other conditions. 

 

The first significant studies of saturation low were conducted by Bruce Greenshields in the 1940s. 

His studies resulted in an average saturation flow rate of 1,714 veh/hg/ln and a start-up lost time 

of 3.7 seconds. The study, however, covered a variety of intersections with varying underlying 

characteristics. A later study in 1978 reexamined the Greenshields hypothesis; it resulted in the 

same saturation low rate (1,714 veh/hg/ln) but a lower start-up lost time of 1.1 seconds. The latter 

study had data from 175 intersections covering a wide range of underlying characteristics. 
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 A comprehensive study of saturation low rates at intersections in five cities was conducted in 

1987-1988 to determine the effect of opposed left turns. It also produced a good deal of data on 

saturation low rates in general. Some of the results are summarized in Table 2. 

 

 

Table 2: Saturation Flow Rates from a Nationwide Survey 

 
 

These results show generally lower saturation flow rates (and higher saturation headways) than 

previous studies. The data, however, reflect the impact of opposed left turns, truck presence, and 

a number of other “nonstandard" conditions, all of which have a significant impeding effect. The 

most remarkable result of this study, however, was the wide variation in measured saturation flow 

rates, both over time at the same site and from location to location. Even when underlying 

conditions remained fairly constant, the variation in observed saturation low rates at a given 

location was as large as 20% to 25%. In a doctoral dissertation) using the same data, Prassas 

demonstrated that saturation headways and low rates have a significant Stochastic), component, 

making calibration of stable values difficult. 

The study also isolated saturation flow rates for " ideal'' conditions, which include all passenger 

cars, no turns, level grade, and 12-foot lanes. Even under these conditions, saturation low rates 

varied from 1,240 pc/hg/In to 2,092 pc/hg/ln for single-lane approaches and from 1,668 pc/hg/ln 

to 2,361 pc/hg/ln for multilane approaches. The difference between observed saturation low rates 

at single and multilane approaches is also interesting. Single-lane approaches have a number of 

unique characteristics that are addressed in the Highway Capacity Manual model for analysis of 

signalized intersections (see Chapter 24). 

 Current standards in the Highway Capacity Manual use an ideal saturation flow rate of 1,900 

pc/hg/ln for both single and multilane approaches. This ideal rate is then adjusted for a variety of 

prevailing conditions. The manual also provides default values for lost times. The default value 

for start-up lost time 𝑙1 is 2.0 seconds. For the clearance lost time (𝑙2). The default value varies 

with the "yellow" and all-red" timings of the signal: 

𝑙2 = 𝑦 + 𝑎𝑟 − 𝑒                                                                                                            7 

 

Where:  

𝑙2 = clearance lost time, s  

y = length of yellow interval, s  
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ar = length of all-red interval, s  

e = encroachment of vehicles into yellow and all-red, s  

A default value of 2.0 s is used for e. 

 

 

The Critical-Lane and Time –Budget Concepts 

 

In signal analysis and design, the " critical-lane" and "time budget" concepts are closely related. 

The time budget, in its simplest form, is the allocation of time to various vehicular and pedestrian 

movements at an intersection through signal control. Time is a constant: There are always 3,600 

seconds in an hour, and all of them must be allocated. In any given hour, time is “budgeted" to 

legal vehicular and pedestrian movements and to lost times. 

The “critical lane” concept involves the identification of specific movements that will control the 

timing of a given signal phase. Consider the situation illustrated in Figure 2. A simple two-phase 

signal controls the intersection. 

 

 
 

Figure 2: Critical Lanes Illustrated 
 

Thus all E-W movements are permitted during one phase, and all N-S movements are permitted 

in another phase. During each of these phases, there are four lanes of traffic (two in each direction) 

moving simultaneously. Demand is not evenly distributed among them; one of these lanes will 

have the most intense traffic demand. The signal must be timed to accommodate traffic in this 

lane-the "critical lane" for the phase. 
 

In the illustration of Figure 2, the signal timing and design must accommodate the total demand 

flows in lanes 1 and 2, because these lanes have the most intense demand, if the signal 

accommodates them, all other lanes will be accommodated as well. Note that the critical lane is 

identified as the lane with the most intense traffic demand, not the lane with the highest volume. 

This is because many variables are affecting traffic flow. 
 

A lane with many left-turning vehicles, for example, may require more time than an adjacent lane 

with no turning vehicles but a higher volume. Determining the intensity of traffic demand in a lane 

involves accounting for prevailing conditions that may affect flow in y that particular lane. y In 

establishing a time budget for the intersection of Figure 2, time would have to be allocated to four 

elements: 
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 Movement of vehicles in critical lane 1 

 Movement of vehicles in critical lane 2  

 Start-up and clearance lost times for vehicles in critical lane 1  

 Start-up and clearance lost times for vehicles in critical lane 2 

 

This can be thought of in the following way: Lost times are not used by any vehicle. When 

deducted from total time, remaining time is effective green time and is allocated to critical-lane 

demands-in this case, in lanes 1 and 2. The total amount of effective green time, therefore, must 

be sufficient to accommodate the total demand in lanes 1 and 2 (the critical lanes). These critical 

demands must be accommodated one vehicle at a time because they cannot move simultaneously. 
 
The example of Figure 2 is a relatively simple case. In general, the following rules apply to the 

identification of critical lanes: 

a. There is a critical lane and a critical-lane flow for each discrete signal phase 

provided.  

b. Except for lost times, when no vehicles move, there must be one and only one 

critical lane moving during every second of effective green time in the signal cycle. 

 

c. Where there are overlapping phases, the potential combination of lane flows 

yielding the highest sum of critical lane flows while preserving the requirement t 

of item (b) identified critical lanes.  

 

The maximum Sum of Critical –Lane Volumes: One View of Signalized Intersection 

Capacity 

 

It is possible to consider the maximum possible sum of critical-lane volumes to be a general 

measure of the "capacity" of the intersection. This is not die same as the traditional view of capacity 

presented in the Highway Capacity Manual, but it is i a useful concept to pursue. 

By definition, each signal phase has one and only one critical lane. Except for lost times in the 

cycle, one critical lane is always moving. Lost times occur for each signal phase and represent 

time during which no vehicles in any lane are moving. The maximum sum of critical-lane volumes 

may, therefore, be found by determining how much total lost time exists in the hour. The remaining 

time (total effective green time) may then be divided by the saturation headway. 

To simplify this deviation, it is assumed the total lost time per phase (tL) is a constant for all phases. 

Then, the total lost time per signal cycle is: 

𝐿 = 𝑁 × 𝑡𝐿                                                                                                               8 

 

Where: 

 L = lost time per cycle, s/cycle 

 𝑡𝐿= total lost lime per phase (sum of 𝑙1 + 𝑙2) s/phase  

N = number of phases in the cycle 

 

The total lost time in an hour depends on the number of cycles occurring in the hour: 

𝐿𝐻 = 𝐿(
3600

𝐶
)                                                                                                           9 
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Where: 

LH = lost time per hour, s/hr  

L = lost time per cycle, s/cycle  

C = cycle length, s 

 

The remaining time within the hour is devoted to effective green time for critical-lane movements: 

 

𝑇𝐺 = 3600 − 𝐿𝐻                                                                                   10 
 

Where: 

TG = total effective green time in the hour, s 

 

This time may be used at a rate of one vehicle every h seconds, where h is the saturation headway: 

 

𝑉𝑐 =
𝑇𝐺

ℎ
                                                                                                                     11 

 

Where: 

Vc = maximum sum of critical-lane volumes, veh/h 

h= saturation headway, s/veh 

 

Merging Equations 8 through 11, the following relationship emerges: 

 

𝑉𝑐 =
1

ℎ
[3600 − 𝑁𝑡𝐿(

3600

𝐶
)]                                                                               12 

 

All variables are as previously defined.  

Consider the example of Figure 2 again. If the signal at this location has two phases, a cycle length 

of 60 seconds, total lost times of 4 s/phase, and a saturation headway of 2.5 s/veh, the maximum 

sum of critical-lane flows (the sum of flows in lanes 1 and 2) is: 

 

 

𝑉𝑐 =
1

2.5
[3600 − 2 ∗ 4 ∗ (

3600

60
)]=1248 veh/hr                                       13 

 
The equation indicates there are 3,600/60 = 60 cycles in an hour. For each of these, 2 * 4 = 8 s of 

lost time is experienced, for a total of 8 * 60 = 480 s in the hour. The remaining 3,600 - 480 = 

3,120 s may be used at a rate of one / vehicle every 2.5 seconds. 

 

If Equation 12 is plotted, an interesting relationship between the maximum sum of critical-lane 

volumes (Vc), cycle length (C), and number of phases (N) may be observed, as illustrated in Figure 

3. 

As the cycle length increases, the "capacity" of the intersection also increases. This is because of 

lost time, which are constant per cycle. The longer the cycle length, the fewer cycles there are in 

an hour. This leads to less lost time in the hour, more effective green time in the hour, and a higher 

sum of critical-lane volumes. Note, however, that the relationship gets flatter as cycle length 
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increases. As a general rule, increasing the cycle length may result in small increases in capacity. 

However, capacity can rarely be increased significantly by only increasing the cycle length. Other 

measures, such as adding lanes, are often also necessary. 

 

 
Figure 3: Maximum Sum of Critical-Lane Volumes Plotted 

 

 

Capacity also decreases as the number of phases increases. This is because for each phase, there is 

one full set of lost times in the cycle. Thus a two-phase signal has only 1 two sets of lost times in 

the cycle, and a three-phase signal has three.  

These trends provide insight but also raise an interesting question: Given these trends, it appears 

that all signals should have two phases and that the maximum practical I cycle length should be 

used in all cases. After all, this combination would, apparently, yield the highest "capacity" for the 

intersection. 

 

Using the maximum cycle length is not practical unless truly needed. Having a cycle length that is 

considerably longer than what is needed causes increases in delay to drivers and passengers. The 

increase in delay is because there will be times when vehicles on one approach are waiting for the 

green while there is no demand on conflicting approaches. Shorter cycle lengths yield less delay. 

Further, there is no insensitive to maximize the cycle length. There will always be 3600 seconds 

in the hour, and increasing the cycle length to accommodate increasing demand over time is quite 

simple, requiring only a resetting of the local signal controller. The shortest cycle length consistent 

with a v/c ratio in the range of 0. 80 to 0.95 is generally used to produce optimal delays. Thus the 

view of signal capacity is quite different from that of pavement capacity. When deciding on the 

number of lanes on a freeway (or on an intersection approach), it is desirable to build excess 

capacity (i.e., achieve a low v/c ratio). This is because once built, it is unlikely that engineers will 

get an opportunity to expand the facility for 20 or more years, and adjacent land development may 

make such expansion impossible. The 3,600 seconds in an hour, however, are immutable and 

retiming the signal to allocate more of them to effective green time is a simple task requiring no 

field construction. 
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Finding an Appropriate Cycle Length 
 

If it is assumed that the demands on an intersection are known and the critical lanes can be 

identified, then Equation 12 could be solved using a known value of Vc to find a minimum 

acceptable cycle length: 

 

𝐶𝑚𝑖𝑛 =
𝑁𝑡𝐿

1−(
𝑉𝑐

3600/ℎ
)
                                                                                                           13 

 

Thus, if in the example of Figure 2, the actual sum of critical-lane volumes was determined to be 

1, 000 veh/h, the minimum feasible cycle length would be: 

 

𝐶𝑚𝑖𝑛 =
2∗4

1−(
1000

3600/2.5
)
= 26.2 s 

 
The cycle length could be reduced, in this case, from the given 60 seconds to 30 seconds (the 

effective minimum cycle length used). This computation, however, assumes that the demand (V) 

is uniformly distributed throughout the hour and that every second of effective green time will be 

used. Neither of these assumptions is very practical. In general, signals would be timed for the 

flow rates occurring in the peak 15 minutes of the hour. Equation 13 could be modified by dividing 

Vc by a known peak-hour factor (PHF) to estimate the flow rate in the worst 15-minute period of 

the hour. Similarly, most signals would be timed to have somewhere between 80% and 95% of the 

available capacity actually used. Due to the normal stochastic variations in demand on a cycle by-

cycle and daily basis, some excess capacity must be provided to avoid failure of individual cycles 

or peak periods on a specific day. If demand, Vc, is also divided by the expected utilization of 

capacity (expressed in decimal form), then this is also accommodated. Introducing these changes 

transforms Equation 13 to: 

 

𝐶𝑑𝑒𝑠 =
𝑁𝑡𝐿

1−(
1000

(
3600

ℎ
)∗𝑃𝐻𝐹∗(

𝑣
𝑐)

)
                                                         14 

 

Where: 

 Cdes = desirable cycle length, s  

PHF - peak hour factor.  

v/c = desired volume to capacity ratio. 

All other variables are as previously defined.  

 

Returning to the example if the PHF is 0.95 and it is desired to use no more than 90% of available 

capacity during the peak 15-minute period of the hour, then: 
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𝐶𝑑𝑒𝑠 =
2 ∗ 4

1 − (
1000

(
3600

2.5
) ∗ 0.95 ∗ 0.9

)
=

8

0.188
= 42.6 𝑠 

 
In practical terms, this would lead to the use of a 45-second cycle length.  

The relationship between a desirable cycle length, the sum of critical-lane volumes, and the target 

v/c ratio is quite interesting and is illustrated in Figure 4.  

Figure 4 illustrates a typical relationship for a specified number of phases, saturation headway, 

lost times, and PHF. If a vertical is drawn at any specified value of Vc (sum of critical-lane 

volumes), it is clear that the resulting cycle length is very sensitive to the target v/c ratio. Because 

the curves for each v/c ratio are eventually asymptotic to the vertical, it is not always possible to 

achieve a specified v/c ratio. 

 

 
Figure 4: Desirable Cycle Length versus Sum of Critical-Lane Volumes. 

 

 

Consider the case of a three-phase signal, with tL = 4 s/phase, a saturation headway of 2. 2 s/veh, 

a PHF of 0. 90, and Vc = 1,200 veh/h. Desirable cycle lengths will be computed for a range of 

target v/c ratios varying from 1. 00 to 0.80. 

 

 

𝐶𝑑𝑒𝑠 =
3 ∗ 4

1 − (
1200

(
3600

2.2
) ∗ 0.95 ∗ 1.00

)
=

12

0.182
= 64.8 𝑠 → 65 𝑠 
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𝐶𝑑𝑒𝑠 =
3 ∗ 4

1 − (
1200

(
3600

2.2
) ∗ 0.95 ∗ 0.95

)
=

12

0.1432
= 84.3 𝑠 → 85 𝑠 

 

 

𝐶𝑑𝑒𝑠 =
3 ∗ 4

1 − (
1200

(
3600

2.2
) ∗ 0.95 ∗ 0.90

)
=

12

0.0947
= 126.7 𝑠 → 130 𝑠 

 

𝐶𝑑𝑒𝑠 =
3 ∗ 4

1 − (
1200

(
3600

2.2
) ∗ 0.95 ∗ 0.85

)
=

12

0.0414
= 289.9 𝑠 → 290 𝑠 

 

𝐶𝑑𝑒𝑠 =
3 ∗ 4

1 − (
1200

(
3600

2.2
) ∗ 0.95 ∗ 0.80

)
=

12

−0.0185
= −648.6 𝑠 

 

For this case, reasonable cycle lengths can provide target v/c ratios of 1.00 or 0.95. Achieving v/c 

ratios of 0.90 or 0.85 would require long cycle lengths beyond the practical limit of 120 seconds 

for pretimed signals. The 130-second cycle needed to achieve a v/c ratio of 0.90 might be 

acceptable for an actuated signal location, or in some extreme cases warranting a longer pretimed 

signal cycle. However, a v/c ratio of 0.80 cannot be achieved under any circumstances. The 

negative cycle length that results signifies there is not enough time within the hour accommodate 

the demand with the required green time plus the 12 seconds of lost time per cycle. In effect, more 

than 3,600 seconds would have to be available in the hour to accomplish this. 

 

A Sample problem 

 

Consider the intersection shown in Figure 5. The critical directional demands for this two-phase 

signal are shown with other key variables. Using the time-budget and critical-lane concepts, 

determine the number of lanes required for each of the critical movements and the minimum 

desirable cycle length that could be used. Note that an initial cycle length is specified but will be 

modified as part of the analysis. 
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Figure 25: Sample Problem Using the Time-Budget and Critical-Lane Concepts 

 

Assuming that the initial specification of a 60-second cycle is correct and given the other specified 

conditions, the maximum sum of critical lanes that can be accommodated is computed using 

Equation 12: 

 

𝑉𝑐 =
1

2.3
[3600 − 2 ∗ 4 ∗ (

3600

60
)] = 1357 𝑣𝑒ℎ/ℎ𝑟                                                                                

 

The critical SB volume is 1,200 veh/h, and the critical EB volume is 1,800 veh/h. The number of 

lanes each must be divided into is now to be determined. Whatever combination is .used, the sum 

of the critical-lane volumes for these two approaches must be below 1,357 veh/h. Figure 20.6 

shows a number of possible lane combinations and the resulting sum of critical-lane volumes. As 

you can see from the scenarios of Figure 6, to have a sum of critical-lane volumes less than 1,357 

veh/h, the SB approach must have at least two lanes, and the EB approach must have three lanes. 

Realizing that these demands probably reverse in the other peak hour (am or pm), the N-S artery 

would probably require four lanes, and the E-W artery six lanes. 

 

 
Figure 6: Possible Lane Scenarios for Sample Problem 
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This is a very basic analysis, and it would have to be modified based on more specific information 

regarding individual movements, pedestrians, parking needs, and other factors.  

If the final scenario is provided, Vc is only 1, 200 veh/h. It is possible that the original cycle length 

of 60 seconds could be reduced. A desirable cycle length may be computed from Equation 14: 

 

𝐶𝑑𝑒𝑠 =
2 ∗ 4

1 − (
1200

(
3600

2.3
) ∗ 0.95 ∗ 0.90

)
= 77.7 𝑠 → 80 𝑠 

 
 

 

The resulting cycle length is larger than the original 60 seconds because the equation takes both 

the PHF and target v/c ratios into account. Equation 12 for computing the maximum value of does 

not; it assumed full use of capacity (v/c = 1.00) and no peaking within the hour. In essence, the (2 

×3) lane design proposal should be combined with an 80-second cycle length to achieve the 

desired results.  

This problem illustrates the critical relationship between number of lanes and cycle lengths. 

Clearly, other scenarios would produce desirable results. Additional lanes could be provided in 

either direction, which would allow the use of a shorter cycle length. Unfortunately, for many 

cases, signal timing is considered with a fixed design already in place. Only where right-of-way is 

available or a new intersection is being constructed can major changes in the number of lanes be 

considered. Allocation of lanes to various movements is also a consideration. Optimal solutions 

are generally found more easily when the physical design and signalization can be treated in 

tandem. 

If, in the problem of Figure 5, space limited both the EB and SB approaches to two lanes, the 

resulting VC would be 1,500 veh/h. Would it be possible to accommodate this demand by 

lengthening the cycle length? Again, Equation 14 is used: 

 

𝐶𝑑𝑒𝑠 =
2 ∗ 4

1 − (
1500

(
3600

2.3 ) ∗ 0.95 ∗ 0.90
)

= −66.1𝑠 → 𝑁𝐺 

 

The negative result indicates no cycle length can accommodate a Vc of 1500 veh/h at this location. 
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The Concept of Left-Turn (and Right-Turn) Equivalency 
 

The most difficult process to model at signalized intersection is the left turn. Left turns are made 

in several different modes using different design elements. Let turns may be made from a lane 

shared with through vehicles (shared-lane operation) or from a lane dedicated to left-turning 

vehicles (exclusive-lane operation). Traffic signals may allow for permitted or protected left turns, 

or some combination of the two.  

Whatever the case, however, a let-turning vehicle will consume more effective green time 

traversing the intersection than will a similar through vehicle. The most complex case is that of a 

permitted left turn made across an opposing vehicular flow from a shared lane. A left-turning 

vehicle in the shared lane must wait for an acceptable gap in the opposing flow. While waiting, 

the vehicle blocks the shared lane and other vehicles (including through vehicles) in the lane are 

delayed behind it. Some vehicles will change lanes to avoid the delay while others are unable to 

and must wait until the left-turner successfully completes the turn 

Many models of the signalized intersection account for this in terms of through vehicle 

equivalents" (i.e., how many through vehicles would consume the same amount of effective green 

time traversing the stop-line as one left-turning vehicle?). Consider the situation depicted in Figure 

7.  

 

 
Figure 7: Sample Equivalence Observation on a Signalized Intersection Approach 

 

 

If both the left lane and the right lane were observed, an equivalence similar to the following 

statement could be determined: In the same amount of time, the left lane discharges in' through 

vehicles and two let-turning vehicles while the right lane discharges eleven through vehicles. In 

terms of effective green time consumed, this observation means that 11 through vehicles are 

equivalent to 5 through vehicles plus 2 let turning vehicles. If the left-tum equivalent is defined as 

ELT: 

 

11=5+2 ELT 

 

ELT = (11-5)/2 = 3.0 

 

Note that this computation holds only for the prevailing characteristics of the approach during the 

observation period- The left-turn equivalent depends on a number of factors, including how left 

turns are made (protected, permitted, compound), the opposing traffic flow and the number of 

opposing lanes. 
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Figure 8 illustrates the general form of the relationship for through vehicle equivalents of permitted 

left turns. 

The left-turn equivalent, ELT, increases as the opposing (low increases. For any given opposing 

flow, however, the equivalent decreases as the number of opposing lanes is increased from one to 

three. This latter relationship is not linear because the task of selecting a gap through multilane 

opposing traffic is more difficult than selecting a gap through single-lane opposing traffic. Further, 

in a multilane traffic stream, vehicles do not pace each other side by side, and the gap distribution 

does not improve as much as the per-lane opposing flow deceases. To illustrate the use of let-turn 

equivalents in modeling, consider the following problem: 

 

An approach to a signalized intersection has two lanes, permitted left-tum phasing, 10% left-

turning vehicles, and a left-tum equivalent of 5.0. The saturation headway for through vehicles is 

2.0 s/veh, Determine the equivalent saturation flow rate and headway for all vehicles on this 

approach. 

 
Figure 8: Relationship among Let-Turn Equivalents, Opposing Flow, and Number of 

Opposing Lanes 

 

 

The first way to interpret the left-tum equivalent is that each left-tuning vehicle consumes 5.0 times 

the effective green time as a though vehicle. Thus, for the situation described, 10% of the traffic 

stream has a saturation headway of 2.0 × 5.0 = 10.0 s/veh, and the remainder (90%) has a saturation 

headway of 2.0 s/veh. The average saturation headway for all vehicles, therefore, is: 

 

ℎ = (0.1 × 10.0) + (0.9 × 2.0) = 2.80 𝑠/𝑣𝑒ℎ 
 

This corresponds to a saturation flow rate of: 

 

𝑠 =
3600

2.80
= 1286 veh/hr/ln 

 

A number of models, including the Highway Capacity Manual approach, calibrate a multiplicative 

adjustment factor that converts an ideal (or through) saturation flow rate to a saturation flow rate 

for prevailing conditions: 

 

𝑆𝑝𝑟𝑒𝑣 = 𝑆𝑖𝑑𝑒𝑎𝑙 × 𝑓𝐿𝑇 
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𝑓𝐿𝑇 =
𝑆𝑝𝑟𝑒𝑣

𝑆𝑖𝑑𝑒𝑎𝑙
=

3600/ℎ𝑝𝑟𝑒𝑣

3600/ℎ𝑖𝑑𝑒𝑎𝑙
=  

ℎ𝑖𝑑𝑒𝑎𝑙

ℎ𝑝𝑟𝑒𝑣
                                                              15 

 

Where: 

𝑆𝑝𝑟𝑒𝑣 = satuation flow rate under prevailing conditions, veh/hg/ln  

𝑆𝑖𝑑𝑒𝑎𝑙 = satuaion flow rate under ideal condiions, veh/hg/ln  

𝑓𝐿𝑇 = let-tum adjustment factor hided 

 ℎ𝑖𝑑𝑒𝑎𝑙=saturation headway under ideal condiions, s/veh  

ℎ𝑝𝑟𝑒𝑣 = satunion headway under prevailing conditions, s/veh 

 

In effect, in the first solution, the prevailing headway,𝑆𝑝𝑟𝑒𝑣, was computed as follows: 

 

𝑓𝐿𝑇 = (𝑃𝐿𝑇𝐸𝐿𝑇ℎ𝑖𝑑𝑒𝑎𝑙) + [(1 − 𝑃𝐿𝑇)ℎ𝑖𝑑𝑒𝑎𝑙]                                                                    16 

 

Combining Equations 15 and 16: 

 

 

𝑓𝐿𝑇 =
ℎ𝑖𝑑𝑒𝑎𝑙

(𝑃𝐿𝑇𝐸𝐿𝑇ℎ𝑖𝑑𝑒𝑎𝑙) + [(1 − 𝑃𝐿𝑇)ℎ𝑖𝑑𝑒𝑎𝑙]
 

 

𝑓𝐿𝑇 =
1

𝑃𝐿𝑇𝐸𝐿𝑇+(1−𝑃𝐿𝑇)
=

1

1+𝑃𝐿𝑇(𝐸𝐿𝑇−1)
                                                                       17 

 

The problem posed may now be solved using a left-turn adjustment factor. Note that the saturation 

headway under ideal conditions is 3,600/2.0 = 1,800 veh/hg/ln Then: 

 

𝑓𝐿𝑇 =
1

1 + 0.10(5 − 1)
= 0.714 

 

𝑆𝑝𝑟𝑒𝑣 = 1800 × 0.714= 1286 veh/hr/ln 
 

 

This, of course, is the same result. 

 

It is important that the concept of left-turn equivalence be understood. Its use in multiplicative 

adjustment factors often obscures its intent and meaning. The fundamental concept, however, is 

unchanged- -the equivalence is based on the fact that the effective green time consumed by a left-

tuning vehicle is 𝑓𝐿𝑇 times the effective green time consumed by a similar through vehicle. 

A similar case can be made or describing the effects of right turns. Right tums are typically made 

through a conflicting pedestrian flow in the crosswalk to the immediate right of the approach. 

Like left turns, this interaction causes right tums to consume more effective green time than 

through movements. An equivalent, ERT, is used to quantify these effects and is used in the same 

manner as described for left-turn equivalents. 
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Signalized intersection and other types of equivalents as well. Heavy-vehicle and local bus 

equivalents have similar meanings and result in similar equations. Some of these have been 

discussed in previous lecture, and others will be discussed in next lecture. 

 

Delay as a Measure of Effectiveness 
 

Signalized intersections represent point locations within a surface street network. As point 

locations, the measures of operational quality or effectiveness used for highway sections are not 

relevant. Speed has no meaning at a point, and density requires a section of some length for 

measurement. A number of measures have been used to characterize the operational quality of a 

signalized intersection, the most common of which are: 

 

 Delay  

 Queuing  

 Stops 

 

These measures are all related. Delay refers to the amount of time consumed in traversing the 

intersection – the difference between the arrival time and the departure time, where these may be 

defined in a number of different ways. 

Queuing refer to the number of vehicles forced to queue behind the stop line during a RED signal 

phase; common measures include the average queue length or a percentile queue length. Stops 

refer to the percentage or number of vehicles that must stop at the signal. 

 

 

Types of Delay 
 

The most common measure used to describe operational quality at a signalized intersection is 

delay, with queuing and/or stops often used as a secondary measure. Although ii is possible to 

measure delay in the field, it is a difficult process, and different observers may make judgments 

that could yield different results. For many purposes, it is, therefore, convenient to have a 

predictive model for the estimate of delay. Delay, however, can be quantified in many different 

ways. The most frequently used forms of delay are defined as follows: 

 

1. Stopped-time delay. Stopped-time delay is defined as the time a vehicle is stopped in queue 

while waiting to pass through the intersection; average stopped time delays the average for 

all vehicles during a specified time period. 

2. Approach delay. Approach delay includes stopped time delay but adds the time loss due to 

deceleration from the approach speed to a stop and the time loss due to reacceleration back 

to the desired speed. Average approach delay is the average for all vehicles during a 

specified time period. 

3. Time-in-queue delay. Time-in-queue delay is the total time from a vehicle joining an 

intersection queue to its discharge across the STOP line on departure. Again average time-

in-queue delay is the average or all vehicles during a specified time period. 

4. Travel time delay. This is a more conceptual value. It is the difference between the driver's 

expected travel time through the intersection (or any roadway segment and the actual time 
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taken. Given the difficulty in establishing a "desired" travel time to traverse an intersection, 

this value is rarely used, other than as a philosophical concept. 

5. Control delay. The concept of control delay was developed in the 1994 Highway Capacity 

Manual and is included in the current HCM. It is the delay caused by a control device, 

either a traffic signal or a STOP sign. It is approximately equal to time-in queue delay plus 

the acceleration-deceleration delay component. 

 

Figure 9 illustrates three of these delay types for a single vehicle approaching a RED signal. 

Stopped-time delay for this vehicle includes only the time spent stopped at the signal, it begins 

when the vehicle is fully stopped and ends when the vehicle begins to accelerate. Approach delay 

includes additional time losses due to deceleration and acceleration. It is found by extending the 

velocity slope of the approaching vehicle as if no signal existed; the approach delay is the 

horizontal (time) difference between the hypothetical extension of the approaching velocity slope 

and the departure slope after full speed is achieved. Travel time delay is the difference in time 

between a hypothetical desired velocity line and the actual vehicle path. Time-in-queue delay 

cannot be effectively shown using one vehicle because it involves joining and departing a queue 

of several vehicles. Delay measures can be stated for a single vehicle, as an average for all vehicles 

over a specified time period, or as an aggregate total value for all vehicles over a specified time 

period. Aggregate delay is measured in total vehicle-seconds, vehicle-minutes, or vehicle-hours 

for all vehicles in the specified time interval. Average individual delay is generally stated in terms 

of s/veh for a specified time interval. 

 

 
Figure 9: Illustration of Delay Measures 

 

Basic Theoretical Models of Delay 
 

Virtually all analytic models of delay begin with a plot of cumulative vehicles arriving and 

departing versus time at a given signal location. The time axis is divided into periods of effective 

green and effective red as illustrated in Figure 10. Vehicles are assumed to arrive at a uniform rate 

of flow of v vehicles per unit time, seconds in this case. This is shown by the constant slope of the 

arrival curve. Uniform arrivals assume that the inter-vehicle arrival time between vehicles is a 

constant. Thus, if the arrival flow rate, v is 1.800 vehs/h. then one vehicle arrives every 

3600/1800=2.0 s. 
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Figure 10: Delay, Waiting Time, and Queue Length Illustrated. 

 

 

Assuming no preexisting queue, vehicles arriving when the light is GREEN continue through the 

intersection (i.e., the departure curve is the same as the arrival curve). When the light turns RED, 

however, vehicles continue to arrive, but none depart. Thus the departure curve is parallel to the 

x-axis during the RED interval. When the next effective GREEN begins, vehicles queued during 

the RED interval depart from the intersection, now at the saturation flow rate, s, in veh/s. For stable 

operations, depicted here, the departure curve “catches up" with the arrival curve before the next 

RED interval begins (i.e., there is no residual or unserved queue left at the end of the effective 

GREEN). 

 This simple depiction of arrivals and departures at a signal allows the estimation of thee critical 

parameters: 

 

 The total time that any vehicle (spends waiting in the queue, is given by the horizontal 

time-scale difference between the time of arrival and the time of departure.  

 The total number of vehicles queued at any time t, Q (t), is the vertical vehicle-scale 

difference between the number of vehicles that have arrived and the number of vehicles 

that have departed.  

 The aggregate delay for all vehicles passing through the signal is the area between the 

arrival and departure curves (vehicles × time). 

Note that because the plot illustrates vehicles arriving in queue and departing from queue, this 

model most closely represents what has been defined as time-in-queue delay. There are many 

simplifications that have been assumed, however, in constructing this simple depiction of delay. It 

is important to understand the two major simplifications: 

 

 The assumption of a uniform arrival rate is a simplification. Even at a completely isolated 

location, actual arrivals would be random {i.e., would have an average rate over time), but 

inter-vehicle arrival times would vary around an average rather than being constant. Within 

coordinated signal systems, however, vehicle arrivals are usually in platoons.  

 It is assumed that the queue is building at a point location (as if vehicles were stacked on 

top of one another). In reality, as the queue grows, the rate at which vehicles arrive at its 

end is the arrival rate of vehicles (at a point), plus a component representing the backward 

growth of the queue in space. 
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Both of these can have a significant effect on actual results. Modem models account for the former 

in ways that we discuss subsequently. The assumption of a "point queue” however, is imbedded 

in many modem applications.  

Figure 11 show a series of GREEN phases and depicts three different types of operation. It also 

allows for an arrival function, a (t), that varies while maintaining the departure function, d (t), 

described previously. Figure 11 (a) shows stable low throughout the period depicted. No signal 

cycle "fails" (i.e., ends with some vehicles queued during the preceding RED unserved). 

 

 
Figure 11: Three Delay Scenarios.  

(Source: Adapted with permission of Transportation Research Board, National Research Council, 
Washington DC, from V. F.Hurdle, "Signalized Intersection Delay Model: A Primer for the Uninitiated," 
Transportation Research Record 971, pp. 97, 98, 1984.) 
 

During every GREEN phase, the departure function "catches up" with the arrival function. Total 

aggregate delay during this period is the total of all the triangular areas between the arrival and 

departure curves. This type of delay is often referred to as "uniform delay”. 
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 In Figure 11 (b), some of the signal phases "fail." Ai the end of the second and third GREEN 

intervals, some vehicles are not served (i.e., they must wait for a second GREEN interval to depart 

the intersection. By the time the entire period ends, however, the departure function has "caught 

up" with the arrival function and there is no residual queue let unserved. This case represents a 

situation in which the overall period of analysis is stable (i.e., total demand does not exceed total 

capacity). Individual cycle failures within the period however, have occurred. For these periods, 

there is a second component of delay in addition to uniform delay, it consists of the area between 

the arrival function and the dashed line, which represents the capacity of the intersection to 

discharge vehicles and has the slope c. This type of delay is referred to as overflow delay. “Figure 

11 (c) shows the worst possible case: Even GREEN interval "fails" for a significant period of time 

and the residual, or unserved, queue of vehicles continues to grow throughout the analysis period. 

In this case, the overflow delay component grows over time, quickly dwarfing the uniform delay 

component. 

 

The latter case illustrates an important practical operational characteristic. When demand exceeds 

capacity (v/c > 1.00), the delay depends on the length of time that the condition exists. In Figure 

11 (b), the condition exists for only two phases. Thus the queue and the resulting overflow delay 

are limited. In Figure 11 (c), the condition exists for a long time, and the delay continues to grow 

throughout the oversaturated period. 

 

Components of Delay 
 

In analytic models for predicting delay, three distinct components of delay may be identified:  

 Uniform delay is the delay based on an assumption of uniform arrivals and stable low with 

no individual cycle failures.  

 Random delay is the additional delay, above and beyond uniform delay, because flow is 

randomly distributed rather than uniform at isolated intersections.  

 Overflow delay is the additional delay that occurs when the capacity of an individual phase 

or series of phases is less than the demand or arrival flow rate.  

 

In addition, the delay impacts of platoon flow (rather than uniform or random) have been 

historically treated as an adjustment to uniform delay. Many modem models combine the random 

and overflow delays into a single function, which is referred to as "overflow delay," even though 

it contains both components. The differences between uniform, random, and platoon arrivals are 

illustrated in Figure 12. As noted, the analytic basis for most delay models is the assumption of 

uniform arrivals, which are depicted in Figure 12 (a). Even at isolated intersections, however, 

arrivals would be random, as shown in Figure 12 (b). With random arrivals, the underlying rate of 

arrivals is a constant, but the inter-arrival times are exponentially distributed around an average. 

In most urban and suburban cases, where a signalized intersection is likely to be part of a 

coordinated signal system, arrivals will be in organized platoons that move down the arterial in a 

cohesive group, as shown in Figure 12 (c). The exact time that a platoon arrives at a downstream 

signal has an enormous potential effect on delay. A platoon of vehicles arriving at the beginning 

of the RED forces most vehicles to stop for the entire length of the RED phase. The same platoon 

of vehicles arriving at the beginning of the GREEN phase may flow through the intersection 

without any vehicles stopping. In both cases, the arrival flow, v, and the capacity of the 

intersection, c, are the same. The resulting delay, however, would vary significantly. The existence 
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of platoon arrivals, therefore, necessitates a significant adjustment to models based on theoretically 

uniform or random flow. 

 

 

 

 
 

Figure 12: Arrival Patterns Compared 

 

Webster's Uniform Delay Model 

 

Virtually every model of delay starts with Webster ' s model of uniform delay. Initially published 

in 1958, this model begins with the simple illustration of delay depicted in Figure 13, with its 

assumptions of stable flow and a simple uniform arrival function. As noted previously, aggregate 

delay can be estimated as the area between the arrival and departure curves in the figure. Thus 

Webster ' s model for uniform delay is the area of the triangle formed by. The arrival and departure 

functions. For clarity, this triangle is shown again in Figure 13.  

The area of the aggregate delay triangle is simply half the base times the height, or: 

 

𝑈𝐷𝑎 =
1

2
𝑅𝑉 

𝑈𝐷𝑎= aggregate uniform delay, veh-sec. 

R= length of the RED phase, s 

V= total vehicles in queue, veh. 

 

By convention, traffic models-are not developed in terms of RED time. Rather, they focus on 

GREEN time. Thus Webster substitutes the following equivalence for the length of the RED phase: 

 

𝑅 = 𝐶 [1 − (
𝑔

𝐶⁄ )] 

 

Where: 

C = cycle length, s  

g = effective green time, s 
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In words, the RED time is the portion of the cycle length that is not effectively green.  

The height of the triangle, V, is the total number of vehicles in the queue. In effect, it includes 

vehicles arriving during the RED phase, R, plus those that join the end of the queue while it is 

moving out of the intersection (i. e., during time tc in Figure 13). Thus determining the time it takes 

for the queue to clear, tc, is an important part of the model. This is done by setting the number of 

vehicles arriving during the period R + tc equal to the number of vehicles departing during the 

period tc, or: 

 

v(R + tc) = stc 
 

R + tc = (
s

v
)tc 

 

R = tc [(
s

v
) − 1] 

 

tc =
R

[(
s
v) − 1]

 

 

 
Figure 13: Webster's Uniform Delay Model Illustrated 

 

 

Then, substituting for tc: 

 

𝑉 = 𝑣(𝑅 + 𝑡𝑐) = 𝑣 [𝑅 +
𝑅

𝑠
𝑣 − 1

] = 𝑅(
𝑣𝑠

𝑠 − 𝑣
) 

 

And for R: 
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𝑉 = 𝐶[1 − (
𝑔

𝐶⁄ )] [
𝑣𝑠

𝑠 − 𝑣
] 

 

Then, aggregate delay can be stated as: 

 

𝑈𝐷𝑎 =
1

2
𝑅𝑉 =

1

2
𝐶2[1 − (

𝑔
𝐶⁄ )] [

𝑣𝑠

𝑠−𝑣
]                                                                                   18 

 

Where all variables are as previously defined. 

 

Equation 18 estimates aggregate uniform delay in vehicle-seconds for one single cycle. To get an 

estimate of average uniform delay per vehicle, the aggregate is divided by the number of vehicles 

arriving during the cycle, vC. Then: 

 

𝑈𝐷 =
1

2
𝐶

[1−(
𝑔

𝐶⁄ )]
2

[1−𝑣
𝑠⁄ ]

                                                                                                                      19 

 

Another form of the equation uses the capacity, c, rather than the saturation low rate, s. noting that 

s = c/ (g/C), the following form emerges: 

 

𝑈𝐷 =
1

2
𝐶

[1−(
𝑔

𝐶⁄ )]
2

[1−(
𝑔

𝐶⁄ )(𝑣
𝑐⁄ )]

=
0.5𝐶[1−(

𝑔
𝐶⁄ )]

2

1−(
𝑔

𝐶⁄ )𝑋
                                                                                            20 

 

Where: 

UD= average uniform delay per vehicles, s/veh.  

C = cycle length, s. g = effective green time, s.  

v = arrival low rate, veh/h.  

c = capacity of intersection approach, veh/h.  

X = v/c ratio, or degree of saturation. 

 

This average includes the vehicles that arrive and depart on green, accruing no delay. This is 

appropriate. One of the objectives in signalizations is to minimize the number or proportion of 

vehicles that must stop. Any meaningful quality measure would have to include the positive impact 

of vehicles that are not delayed. 

In Equation 20, note that the maximum value of X (the v/c ratio) is 1.00. As the uniform delay 

model assumes no overflow, the v/c ratio cannot be more than 1.00. 

 

 

Modeling Random Delay 

 

The uniform delay model assumes that arrivals are uniform and that no signal phases fail (i.e., that 

arrival flow is less than capacity during every signal cycle of the analysis period). At isolated 

intersections, vehicle arrivals are more likely to be random. A number of stochastic models have 

been developed for this case, including those by Newall, Miller, and Webster. Such models assume 

that inter-vehicle arrival times are distributed acceding to the Poisson distribution with an 

underlying average rate of v vehicles/unit time. The models account for both the underlying 
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randomness of arrivals and the fact that some individual cycles within a demand period with v/c < 

1.00 could fail due to this randomness. This additional delay is sometimes referred to as "overflow 

delay," but it does not address situations in which v/c > 1.00 for the entire analysis period. This 

text refers to additional delay due to randomness as "random delay," RD, to distinguish it from 

true overflow delay when v/c > 1.00. The most frequently used model for random delay is Webster 

formulation: 

 

𝑅𝐷 =
𝑋2

2𝑣(1−𝑋)
                                                                                                                    21 

 

Where:  

RD = average random delay per vehicle, s/veh  

X = v/c ratio  

 

This formulation was found to somewhat overestimate delay, and Webster proposed that total 

delay (the sum of uniform and random delay) be estimated: 

 

𝐷 = 0.90(𝑈𝐷 + 𝑅𝐷)                                                                                                          22 

 

Where: 

D= sum of uniform and random delay. 

 

 

Modeling Overflow Delay 
 

“Oversaturation” is used to describe the extended time periods during which arriving vehicles 

exceed the capacity of the intersection approach to discharge vehicles. In such cases, queues grow, 

and overflow delay, in addition to uniform delay, accrues. Because overflow delay accounts for 

the failure of an extended series of phases, it encompasses a portion of random delay as well. 

Figure 14 illustrates a time period for which v/c > 1.00. Again, as in the uniform delay model it is 

assumed the arrival function is uniform. During the period of oversaturation, delay consists of both 

uniform delay (in the triangles between the capacity and departure curves) and overflow delay (in 

the growing triangle between the arrival and capacity curves). The formula for the uniform delay 

component may be simplified in this case because the v/c ratio (X) is the maximum value of 1.00 

for the uniform delay component. Then: 

 

𝑈𝐷𝑜 =
0.50𝐶[1−(

𝑔
𝐶⁄ )]

2

1−(
𝑔

𝐶⁄ )1.00
                                                                                                            23 

 

= 0.5 𝐶[1 − (
𝑔

𝐶⁄ )]   
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Figure 14: An Oversaturated Period Illustrated. 

 

 

To this, the overflow delay must be added. Figure 15 illustrates how the overflow delay is 

estimated. The aggregate and average overflow delay can be estimated as: 

𝑂𝐷𝑎 =
1

2
𝑇(𝑣𝑇 − 𝑐𝑇) =

𝑇2

2
(𝑣 − 𝑐)                                                                                              24 

𝑂𝐷 =
𝑇

2
[𝑋 − 1] 

 

Where: 

𝑂𝐷𝑎 = aggregate overflow delay, veh-sec  

𝑂𝐷  = average overflow delay per vehicle, s/veh 

Other parameters are as previously defined. 

 

 

 
Figure 15: Deviation of the Overflow Delay Formula. 
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In Equations 24, the average overflow delay is obtained by dividing the aggregate delay by the 

number of vehicles discharged within time T, cT. Unlike the formulation for uniform delay, where 

the number of vehicles arriving and the number of vehicles discharged during a cycle were the 

same, the overflow delay triangle includes vehicle that arrive within time 7 but are not discharged 

within time T. The delay triangle, therefore, includes only the delay accrued by vehicles though 

time and excludes additional delay that vehicles still "stuck" in the queue will experience after 

time T. 

 

Equation 24 may use any unit of time for "T." The resulting overflow delay, OD, will have the 

same units as specified for T on a per-vehicle basis.  

Equations 24 are time dependent (i.e., the longer the period of oversaturation exists, the larger 

delay becomes). 

The predicted delay per vehicle is averaged over the entire period of oversaturation, T. This masks, 

however, a significant issue: Vehicles arriving early during time T experience far less delay than 

vehicles arriving later during time T. A model of average overflow delay during a time period T1 

through T2 may be developed, as illustrated in Figure 16. Note that the delay area formed is a 

trapezoidal not a triangle.  

The resulting model for average delay per vehicle during the time period T1 through T2 is: 

 

𝑂𝐷 =
𝑇1+𝑇2

2
(𝑋 − 1)                                                                                                               25 

 

Where all terms are as previously defined.  

Note that that trapezoidal shape of the delay area results in the T1+T2 formulation, emphasizing 

the growth of delay as the oversaturated condition continues over time. Also, this formulation 

predicts the average delay per vehicle that occurs during the specified interval, T1 through T2 delays 

to vehicles arriving before time T1 but discharging after T2 are included only to the extent of their 

delay within the specified times, not any delay they may have experienced in queue before T1 

Similarly, vehicles discharging after T2 do have a delay component after T2 that is not included in 

the formulation.  

The three varieties of delay-uniform, random, and overflow delay-can be modeled in relatively 

simple terms as long as simplifying assumptions are made in terms of arrival and discharge flows, 

and in the nature of the queuing that occurs, particularly during periods of oversaturation. The next 

section begins to consider some of the complications that raise from tie direct use of these 

simplified models. 

 

 



Traffic Engineering lectures 
Zainab Alkaissi   
 

 
Figure 16: A Model for Overflow Delay between Times T1 andT2. 

 

Inconsistencies in Random and Overflow Delay 
 

Figure 17 illustrates a basic inconsistency in the random md overflow delay models previously 

discussed. The inconsistency occurs when the v/c ratio (X) is in the vicinity of 1. 00. When the v/c 

ratio is below 1.00, a random delay model is used because there is no "overflow" delay in this case. 

Webster's random delay model (Equation 22), however, contains the term (l-X) in the denominator. 

Thus as X approaches a value of 1. 00, random delay increases asymptotically to an infinite value. 

When the v/c ratio (X) is greater than 1.00, an overflow delay model is applied. The overflow 

delay model of Equation 24, however, has an overflow delay of 0 when X= 1.00, and increases 

uniformly with increasing values of X thereafter. 

 

Neither model is accurate in the immediate vicinity of vie = 1.00. Delay does not become infinite 

at v/c = 1. 00. There is no true "overflow" at v/c = 1.00, although individual cycle failures due to 

random arrivals do occur. Similarly, the overflow model, with overflow delay = 0. 0 s/veh. at v/c 

= 1.00, is also unrealistic. The additional delay of individual cycle failures due to the randomness 

of arrivals is not reflected in this model. 

 

In practical-terms, most studies confirm that the uniform delay model is a sufficient predictive tool 

(except for the issue of platooned arrivals) when the v/c ratio is 0. 85 or less. In this range, the true 

value of random delay is minuscule, and there is no overflow delay. Similarly, the simple 

theoretical overflow delay model (when added to uniform delay) is a reasonable predictor when 

v/c > 1. 15 or so. The problem is that the most interesting cases fall in the intermediate range (0.85 

< v/c < 1.15), for which neither model is adequate. Much of the more recent work in delay 

modeling involves attempts to bridge this gap, creating a model that closely follows the " uniform 

delay model at low v/c ratios and approaches the theoretical overflow delay model at high v/c 

ratios (≥ 1.15), producing “reasonable” delay estimates in between. Figure 17 illustrates this as 

the dashed line. 
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Figure 17: Random and Overflow Delay Models Compared. 

 

 

The most commonly used model for bridging this gap was developed by Akceik for the Australian 

Road research Board's signalized intersection analysis procedure: 

 

𝑂𝐷 =
𝑐𝑇

4
[(𝑋 − 1) + √(𝑋 − 1)2 + (

12(𝑋−𝑋0

𝑐𝑇
)]                                                                              26 

 

𝑋0 = 0.67 + (
𝑠𝑔

600
) 

 

Where: 

T = analysis period, h  

X = v/c ratio 

c= capacity, veh/h  

s= saturation flow rate, veh/sg (veh/s of green)  

g = effective green time, s 

 

The only relatively recent study resulting in large amounts of delay measurements in the field was 

conducted by Reilly et al.  In the early 1980s to calibrate a model for use in the 1985 edition of the 

Highway Capacity Manual. The study concluded that Equation 17-26 substantially overestimated 

field measured values of delay and recommended that a factor of0.50 be included in the model to 

adjust for this. The version of the delay equation that was included in the 1985 Highway Capacity 
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Manual ultimately did not follow this recommendation and included other empirical adjustments 

to the theoretical equation. 

 

Delay Models in the HCM 
 

The delay model incorporated into the HCM 2000 includes the uniform delay model, a version of 

Akcelik's overflow delay model, and a term covering delay from an existing or residual queue at 

the beginning of the analysis period. The model is: 

 

𝑑 = 𝑑1𝑃𝐹 + 𝑑2 + 𝑑3                                                                                                            27 

 

Where:  

𝑑 = control delay, s/veh  

𝑑1 = uniform delay component, s/veh c   

𝑃𝐹 = progression adjustment factor di = overflow delay component, s/veh  

𝑑3 = delay due to preexisting queue, s/veh 

 

The progression factor was an empirically calibrated adjustment to uniform delay that accounts 

for the effect of platooned arrival patterns. This adjustment is discussed in greater detail in Chapter 

24. The delay due to preexisting queues, d3, is found using a relatively complex model (sec Chapter 

24). 

A significant revision has been included in the forthcoming HCM 2010. Traditional delay models 

have been replaced by Incremental Queue Analysis (IQA). Chapter 24 contains a more detailed 

discussion and presentation of this approach. 

In the final analysis, all delay modeling is based on the determination of the area between an arrival 

curve and a departure curve on a plot of cumulative vehicles versus time. As the arrival and 

departure functions are permitted to become more complex and as rates are permitted to vary for 

various subparts of the signal cycle, the models become more complex as well. 


