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12.7 General Equations of Plane Stress
Transformation

For a successful design, an engineer must be able to determine critical stresses at
any point of interest in a material object. By the mechanics of materials theory
developed for axial members, torsion members, and beams, normal and shear
stresses at a point in a material object can be computed with reference to a particu-
lar coordinate system, such as an x—y coordinate system. Such a coordinate system,
however, has no inherent significance with regard to the material used in a struc-
tural member. Failure of the material will occur in response to the largest stresses
that are developed in the object, regardless of the orientation at which those critical
stresses are acting. For instance, a designer has no assurance that a horizontal bend-
ing stress computed at a point in the web of a wide-flange beam will be the largest
normal stress possible at the point. To find the critical stresses at a point in a mate-
rial object, methods must be developed so that stresses acting at all possible orien-
tations can be investigated.

Consider a state of stress represented by a plane stress element subjected to
stresses Oy, Oy, and T,y = T,,, as shown in Figure 12.10a. Keep in mind that the
stress element is simply a convenient graphical symbol used to represent the
state of stress at a specific point of interest in an object (such as a shaft or a
beam). To derive equations applicable to any orientation, we begin by defining
a plane surface A-A oriented at some angle 6 with respect to a reference axis x.
The normal to surface A-A is termed the n axis. The axis parallel to surface A-A
is termed the 7 axis. The z axis extends out of the plane of the stress element.
Both the x—y—z and the n—t—z axes are arranged as right-hand coordinate sys-
tems. Given the 0,, 0,, and 7,, = 7,, stresses acting on the x and y faces of the
stress element, we will determine the normal and shear stress acting on surface
A-A, known as the n face of the stress element. This process of changing stresses
from one set of coordinate axes (i.e., x—y-z) to another set of axes (i.e., n—1-z) is
termed stress transformation.

FIGURE 12.10a
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FIGURE 12.10b

Figure 12.10b is a free-body diagram of a wedge-shaped element in which the
areas of the faces are dA for the inclined face (plane A-A), dA cos 8 for the vertical
face (i.e., the x face), and dA sin@ for the horizontal face (i.e., the y face). The equi-
librium equation for the sum of forces in the n direction gives

2F, = 0,dA - 1,,(dA sin6)cos — 7, (dA cos6)sin0
— 0,(dA cosB)cosb — 0, (dA sin@)sin@ = 0

Since 7y, = Ty, this equation can be simplified to give the following expression for
the normal stress acting on the n face of the wedge element:

0, = 0,¢0s*0 + 0, sin’ 0 + 27, sin6 cos O

(12.3)

From the free-body diagram in Figure 12.10b, the equilibrium equation for the sum of
forces in the f direction gives

2F =1,dA - 1,,(dAcos6)cos6 + T, (dAsin®)sin6

+0,(dAcos0)sin€ — o, (dAsin0)cosO = 0

Again from 7y, = T,,, this equation can be simplified to give the following expression for

the shear stress acting in the 7 direction on the n face of the wedge element:

Tw =

—(0, — 0,)sin@cosO + 7,,(cos’> @ — sin’ 6)

(12.4)

The equations just derived for the normal stress and the shear stress can be written in an
equivalent form by substituting the following double-angle identities from trigonometry:

cos? 0 = %(l + cos20)



sin? 0 = %(l — c0s20)
2sinf@cosO = sin20

Using these double-angle identities, we can write Equation (12.3) as

_ox+cy+o,—

(o)
> > 0520 + T, 5in 20 (12.5)

On

and Equation (12.4) as

(o) (e}
T = —%sinZG + T, c0s 20 (12.6)

Equations (12.3), (12.4), (12.5), and (12.6) are called the plane stress transformation
equations. They provide a means for determining normal and shear stresses on any plane
whose outward normal is

(a) perpendicular to the z axis (i.e., the out-of-plane axis), and
(b) oriented at an angle 6 with respect to the reference x axis.

Since the transformation equations were derived solely from equilibrium considerations,
they are applicable to stresses in any kind of material, whether it is linear or nonlinear,
elastic or inelastic.



The normal stress acting on the n face of the stress element shown in Figure 12.11 can be
determined from Equation (12.5). The normal stress acting on the 7 face can also be obtained
from Equation (12.5) by substituting 8 + 90° in place of 6, giving the following equation:

(o

c,— 0O

y

O, = >

cos20 — Ty sin 260

(12.7)

If the expressions for 7, and 0, [Equations (12.5) and (12.7)] are added, the following re-

lationship is obtained:

(12.8)

Equation (12.8) shows that the sum of the normal stresses acting on any two orthogonal
faces of a plane stress element is a constant value, independent of the angle 8. This math-
ematical characteristic of stress is termed stress invariance.

FIGURE 12.11



Sign Conventions

The sign conventions used in the development of the stress transformation equations must
be rigorously followed. The sign conventions can be summarized as follows:

7

.

Tensile normal stresses are positive; compressive normal stresses are negative. All of the
normal stresses shown in Figure 12.11 are positive.

A shear stress is positive if it

*® acts in the positive coordinate direction on a positive face of the stress element or

® acts in the negative coordinate direction on a negative face of the stress element.

All of the shear stresses shown in Figure 12.11 are positive. Shear stresses pointing in
opposite directions are negative.

An easy way to remember the shear stress sign convention is to use the directions
associated with the two subscripts. The first subscript indicates the face of the stress
element on which the shear stress acts. It will be either a positive face (plus) or a nega-
tive face (minus). The second subscript indicates the direction in which the stress acts,
and it will be either a positive direction (plus) or a negative direction (minus).

* A positive shear stress has subscripts that are either plus—plus or minus—minus.
* A negative shear stress has subscripts that are either plus—minus or minus—plus.

. Angles measured counterclockwise from the reference x axis are positive. Conversely,

angles measured clockwise from the reference x axis are negative.

. The n—t—z axes have the same order as the x—y—z axes. Both sets of axes form a right-

hand coordinate system.

FIGURE 12.11
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Fig. 12.3

The state of plane stress at a point is represented by the element shown
in Fig.12.34. Determine the state of stress at the point on another
element oriented 30° clockwise from the position shown.

e Sh stvesg (Txy) ‘
Poest;l‘o/e x Face () % ngod’l\/{, by =)

= Txy =-25Mp= » T = -341;’
' 6—3—_-.--\-50 Mpa > Ex = — 80 MpPa

Y= Gw= ey &x -3 ~ <o
- 5
o+ fxa Sin 20
80)- 50 (os 9 (-39)

= ("’30)-1- 50 + {—
2

- X

sy sin 2(-39)

= -25.8 Mpa.

e e Sy SF =63 o500
3 = E = - o)

o ”Cxa s'h 20

_ 89+ 50 _ © Bu) 22 cos 2 (-39)
-3 2
= =255 5/n 2(-39)

= 4 Mpo\
Tay'- Lot = - ______.67“;_ €3 sin26 +ij (o520
~ _ (-89)-50 gy 9(-39)
2
+ (-25) (s 2 (-39)

= —-6%. 8 MP“



i ‘V‘ - I3
. The stresses shown act at a point on the free surface of a machine 28 ksi
. component. Determine the normal stresses ¢, and 0, and the shear T‘”‘v

—

- stress T at the point. 47 m \
] o
. Plan the Solution ; E

- The stress transformation cquations are writien in ternw of G, &, (___:‘ ir

- and 7,,; however. the x and v directions do pot necessarily have 1o be \
the horizontal and vertical directions, respectively. Any two orthogo- T‘“‘l

. nal directions can be taken as v and y, as long as they define a night-"
. hand coordinate system. Fo solve this problem, we will redefine the x
- and v axes, aligning them with the rotated element. The faces of the

wnrotated element will be redefined as the n and 7 faces.

s Sheaw” stess Z:)‘3 ) ) 28 ksi

“, .
POS-@{“)Z* % che (-Q—-) X posdlU£ \\j(_—\—) ._T_-.’u 42ksi/¢
= Tyy= + UL ksi - -5 A Bl

.6-3___23 Kei Ex = 6 kst T:@ ((

O frov Hhe f@!c;m)? ¥ axis to +the
naxis I's 20  clockwise = @=-90°

o L & & e & .
= En = x+23 + ©K 5 3 G20 —l-zj)itj Sin2c¥

66+ (-28)  66-(=28) (s 9(-20) + 42 Sin 2(-29)
9 2
= 28 ksi

55/:6% - Gxx6y  EX-€9 (ol .._T:xj sin 2
; wi =
= 664 (-28) 66 -(-28) o 9(-20) -~ U2 S in 2.(-29)
9. =
= 9. 99 Ksi
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= - Mg) g)’n 2 (_20-) e_J l\ 28.0 ksi
2 !""’

+ 42 s g (-20) l
69_4 ICSJ'



12.8 Principal Stresses and Maximum Shear Stress

The transformation equations for plane stress [Equations (12.3), (12.4), (12.5), and (12.6)]
provide a means for determining the normal stress 0, and the shear stress 7,, acting on any
plane through a point in a stressed body. For design purposes, the critical stresses at a
point are often the maximum and minimum normal stresses and the maximum shear
stress. The stress transformation equations can be used to develop additional relationships
that indicate

(a) the orientations of planes where maximum and minimum normal stresses occur,
(b) the magnitudes of maximum and minimum normal stresses,

(c) the magnitudes of maximum shear stresses, and

(d) the orientations of planes where maximum shear stresses occur.

The transformation equations for plane stress were developed in Section 12.7. Equa-
tions (12.3) and (12.4), for normal stress and shear stress are, respectively, as follows:

0, = 0,¢08’ 6 + 0 ,sin’ 6 + 27, sinf cos O

Ty = —(0, — 0,)sin@cosb + 7, (cos® @ — sin” H)

These same equations can also be expressed in terms of double-angle trigonometric func-
tions as Equations (12.5) and (12.6):

O, +0 O, -0 .
— Y + = Y c0s26 + T, sin26
2 2 g4

o

o Oy .
T, = ————=sin26 + 7, cos26
2




Principal Stresses

Planes free of shear stress are termed principal planes. The normal stresses acting on these
planes—the maximum and minimum normal stresses—are called principal stresses.

dO' O, — o-y .
= — 2sin20) + 27,,cos260 = 0 12.10

o S )+ 217, (12.10)

principal angles.
27,
tan20, = — 2 (12.11)
0, -0,
principal stresses.
2
o, +0 o,—0
O p1,p2 =TyiJ[Ty) +T§y (12.12)

Shear Stresses on Principal Planes

T,=0 If a plane is a principal plane, then the shear stress

acting on the plane must be zero.

The converse of this statement is also true:

If the shear stress on a plane is zero, then that
plane must be a principal plane.

—

.




Maximum In-Plane Shear Stress

To determine the planes where the maximum in-plane shear stress 7., occurs, Equation (12.6)
is differentiated with respect to 8 and set equal to zero, yielding

4T
do

=—(0, —0,)cos20 — 27,,sin26 = 0

(12.13)

The solution of this equation gives the orientation € = 6, of a plane where the shear stress
is either a maximum or a minimum:

o, —0O
tan20, = ——~——2

2rq

The general equation to give the magnitude of 7,y is

Normal Stresses on Maximum In-Plane Shear Stress Surfaces

2
O, — 0Oy

(12.14)

(12.15)

Unlike principal planes, which are free of shear stress, planes subjected to 7., usually
have normal stresses. After substituting angle functions obtained from Equation (12.14)
into Equation (12.5) and simplifying, we find that the normal stress acting on a plane of
maximum in-plane shear stress is

o,+0
— b
O-avg - 7

(12.17)

There is never
shear stress on

principal planes. \
y 6 T

Label arrows with
stress magnitudes
(1.e., absolute values).

Use direction of arrow
to indicate signs.



9 ksi

.fl_ 7 ksi

=

11 ksi

Consider a point in a structural member that is subjected to plane stress. Normal and shear
stresses acting on horizontal and vertical planes at the point are shown.

(a) Determine the principal stresses and the maximum in-plane shear stress acting at the
point.
(b) Show these stresses in an appropriate sketch.

Plan the Solution
The stress transformation equations derived in the preceding section will be used to com-
pute the principal stresses and the maximum shear stress acting at the point.

SOLUTION

(a) From the given stresses, the values to be used in the stress transformation equations
are 0, = 11 ksi, 0,=-9 ksi, and 7, =7 ksi. The in-plane principal stress magnitudes
can be calculated from Equation (12.12):

2
0'_r+0'y O'x—ﬂ'y 2
O-pl,p2= 7 iJ( > +rxy

_ (Ilksi) + (9 ksi) \/((11 ksi) — (=9 ksi)
- 2 - 2
= 13.21 ksi, —11.21 ksi

2
) + (=7 ksi)?

Therefore, we have the following:

0, = 1321 ksi = 13.21 ksi (T)
0, =—11.21 ksi = 11.21 ksi (C)




The maximum in-plane shear stress can be computed from Equation (12.15):

_ 2 <\ [ <» 2
i\/(%) bl =i\/((llksl) 2( 9ksl)) + (=7 ksi)?

+12.21 ksi

Tmax

On the planes of maximum in-plane shear stress, the normal stress is simply the
average normal stress, as given by Equation (12.17):

_0,+0, 11ksi+ (-9 ksi)

Oavg = > > =1 ksi =1ksi (T)

(b) The principal stresses and the maximum in-plane shear stress must be shown in an
appropriate sketch. The angle 6, indicates the orientation of one principal plane rela-
tive to the reference x face. From Equation (12.11),

2t, _ 2A-Tksi) _ -l4
o, -0, llksi—(-9ksi) 20
0, = =17.5°

tan 20,, =




Since 6, is negative, the angle is turned clockwise. In other
words, the normal of one principal plane is rotated 17.5°
below the reference x axis. One of the in-plane principal
stresses—either 0 or 0,p—acts on this principal plane. To
determine which principal stress acts at 6, = —17.5°, use the
following two-part rule:

® [f the term 0, — Oy is positive, then 6, indicates the
orientation of 0;.

® If the term 0, — Oy is negative, then 6, indicates the
orientation of 5.

Since 0, — 0, is positive, 6, indicates the orientation of 5, =
13.21 ksi. The other principal stress, 0,,, =—11.21 ksi, acts on
a perpendicular plane. The in-plane principal stresses are
shown on the element labeled “P” in the figure. Note that
there are never shear stresses acting on the principal planes.

The planes of maximum in-plane shear stress are always located 45° away from the
principal planes; therefore, 6, = 27.5°. Although Equation (12.15) gives the magnitude
of the maximum in-plane shear stress, it does not indicate the direction in which the
shear stress acts on the plane defined by 6,. To determine the direction of the shear stress,
solve Equation (12.4) for 7, using the values 0, = 11 ksi, oy = -9 ksi, Ty = -7 ksi, and
6 =0,=27.5°

Results sketched by using
the two-element format

T,y = —(0, — 0,)sin@cosb + 7, (cos® O — sin” H)
—[(11 ksi) — (9 ksi)]sin27.5° c0s 27.5° + (=7 ksi)[cos? 27.5° — sin? 27.5°]
—12.21 ksi

Since 7, is negative, the shear stress acts in a negative 7 direction on a positive n face.
Once the shear stress direction has been determined for one face, the shear stress direction
is known for all four faces of the stress element. The maximum in-plane shear stress and
the average normal stress are shown on the stress element labeled “S.” Note that, unlike
the principal stress element, normal stresses will usually be acting on the planes of
maximum in-plane shear stress.

f 13.21 ksi




The principal stresses and the maximum in-plane
shear stress can also be reported on a single wedge-
shaped element, as shown in the accompanying sketch.
This format can be somewhat easier to use than the two-
element sketch format, particularly with regard to the
direction of the maximum in-plane shear stress. The
maximum in-plane shear stress and the associated aver-
age normal stress are shown on the sloped face of the
wedge, which is rotated 45° from the principal planes.
The shear stress arrow on this face always starts on the
O side of the wedge and points toward the ©,, side of
the wedge. Once again, there is never a shear stress on the
principal planes (i.e., the 0, and 0, sides of the wedge).

7 ksi

-

9 ksi Results sketched by using
the wedge element format.
e
11 ksi
— 1 ksi

— * side of
17.5¢ . O'Pl side ol
12.21 kSl‘/ the wedge

ﬂp2 side of 13.21 ksi
the wedge _
11.21 ksi




150 MPa

A

55 MPa

=

70 MPa

Consider a point in a structural member that is subjected to plane stress. Normal and shear
stresses acting on horizontal and vertical planes at the point are shown.

(a) Determine the principal stresses and the maximum in-plane shear stress acting at the
point.
(b) Show these stresses in an appropriate sketch.

Plan the Solution
The stress transformation equations derived in the preceding section will be used to com-
pute the principal stresses and the maximum shear stress acting at the point.

SOLUTION

(a) From the given stresses, the values to be used in the stress transformation equations
are 0, =70 MPa, 0y, = 150 MPa, and 7., = —55 MPa. The in-plane principal stresses
can be calculated from Equation (12.12):

2
Opip2 = > iJ( ) +Txy

_ 70 MPa + 150 MPa \/(70 MPa — 150 MPa

2 2
= 178.0 MPa, 42.0 MPa

2
) + (=55 MPa)?

The maximum in-plane shear stress can be computed from Equation (12.15):

— 2 B 2
- i\/(ax 20),) b = i\/[m MPa 2150 MPa) + (55 MPa?

= +68.0 MPa




On the planes of maximum in-plane shear stress, the normal stress is simply the aver-
age normal stress, as given by Equation (12.17):

0, +0y, 70 MPa + 150 MPa

=110 MPa = 110 MPa (T)
2 2

Gavg =

(b) The principal stresses and the maximum in-plane shear stress must be shown in an
appropriate sketch. The angle 6, indicates the orientation of one principal plane rela-
tive to the reference x face. From Equation (12.11),

27, 2(~55 MPa) ~110
tan 26{) = - = =
o, — 0, 70 MPa — 150 MPa -80
6, =27.0°

42 MPa

/0},2 side of

the wedge

The angle 6, is positive: consequently, the angle is turned

counterclockwise from the x axis. Since 0, — 0, is nega-

tive, 6, indicates the orientation of 0, = 42.0 MPa. The 150 MPa

other principal stress, 6,,; = 178.0 MPa, acts on a perpen- T ’

dicular plane. The in-plane principal stresses are shown 55 Mpa .

in the accompanying figure.
The maximum in-plane shear stress and the associ- (—1 L

ated average normal stress are shown on the sloped face

of the wedge, which is rotated 45° from the principal

planes. Note that the arrow for 7, starts on the 0,; side

of the wedge and points toward the 0, side.

01 side of
the wedge

178 MPa

Results sketched by using
the wedge element format.

—




