Extra Examples #2

Conditional Probability

Example 1: If six cards are selected at random (without replacement) from a standard deck of 52 cards, what is the probability there will be no pairs? (Two cards of the same denomination).

Solution:

Let Ei be the event that the first i cards have no pair among them. Then we want to compute P (E6), which is actually the same as P (E1. E2 $\cdot \cdot \cdot$ E6) =

 $P(E_1 . E_2 E_n) = P(E_1) . P(E_2/E_1) - P(E_3/E_1 E_2) P(E_n/E_1 E_2 ... E_{n-1}).$

 $=\frac{52}{52} \cdot \frac{48}{51} \cdot \frac{44}{50} \cdot \frac{40}{49} \cdot \frac{36}{48} \cdot \frac{32}{47} = *****$

Example 2: The result of survey of group of 100 people who bought either a mobile phone or a tablet from any of two brands A and B is shown in the table below:

Brand	Mobile phone	Tablet	Total
А	20	10	30
В	B 30		70
Total	50	50	100

If a person is selected at random from the group, what is the probability that he:

- 1. Bought brand B?
- 2. Bought a mobile phone from brand B?
- 3. Bought a mobile phone given that he bought brand B?

Solution:

Let

Event M_p : bought a mobile phone

Event T: bought a tablet

Event A: bought brand B

Event B: bought brand B

1. A total of 70 people out of the total of 100 bought brand B, so that

$$P(B) = \frac{70}{100} = 0.7$$

2. A total of 30 people out of 100 bought a mobile from brand B, so that P (M_p and B) = $\frac{30}{100}$ = 0.3 3. P (M_p / P) = $\frac{(M_p \cdot B)}{(M_p \cdot B)} = \frac{0.3}{0.3}$

3.
$$P(M_p / B) = \frac{P}{P(B)} = \frac{1}{0.7}$$

Example 3: A single card is drawn from a deck. A card is selected at random, find the probability of selecting a:

- a) King
- b) Red card
- c) King of red card
- d) King given that it is red card
- e) Red card given that it is red
- f) Queen given that it is a Heart

Solution:

4 • •	* * *	*** ***	2+ + 2+ + + + +; + +;			· 🏹 🙀
\$ + ;	* + + ;	* * * *	14 + 14 + + + +; + +;	2++ ++ ++ ++ ++ ++ ++ ++		, *** , ****,
4 • •	₹ ♥ ♠ ₹	404 Ma				, 😻,
·	2 🌲	3 • • • •				, * * * *

Note: Outcomes are all equally likely to occur:

- a) Out of the sample space of 52 cards, there 4 kings, so P (King) = $\frac{4}{52} = \frac{1}{13}$
- b) Out of the sample space of 52 cards, there are 26 red, so P (red) = $\frac{26}{52} = \frac{1}{2}$
- c) 2 cards are King of red out of the 52 cards, so P (King and red) = $\frac{2}{52} = \frac{1}{26}$

- d) Two methods to answer the question
- 1. P (King given that it is a red card) = P (king /red) = $\frac{P(king \text{ and } red)}{P(red)}$ =

$$=\frac{\frac{1}{26}}{\frac{1}{2}}=\frac{1}{13}$$

2. Using the restricted sample Space

Out of the 26 red (card restricted sample space to the red only since this is the condition) there are 2 red, so

P (King/red) = $\frac{2}{26} = \frac{1}{13}$ same as was found above using the definition e) Two methods to answer the question.

1. Using Definition of the conditional probability given above

P (red card given that it is a King) = P (red/king) = $\frac{P(red and king)}{P(king)}$

$$=\frac{\frac{1}{26}}{\frac{1}{13}}=\frac{1}{2}$$

2. Using the restricted sample space

Out of the 4 Kings cards (restricted sample space to the Kings) there are 2 red, so

P (red/King) = $\frac{2}{4} = \frac{1}{2}$ same as was found above using the definition

f) Two methods to answer the question.

1. Using Definition of the conditional probability given above

P (Queen given that it is Heart) = P (Queen/heart) = $\frac{P(Queen \text{ and Heart})}{P(Heart)}$

$$= \frac{\frac{1}{52}}{\frac{13}{52}} = \frac{1}{13}$$

2. Using the restricted sample space

Out of the 13 hearts (restricted sample space to the hearts) there is 1 Queen, so P (Queen/heart) = $\frac{1}{13}$ same as was found above using the definition