
                                                                            MSc/المرور المتقدم هندسة                                                                                            .د. زينب القيسيأ

 2ضرة رقم محا

 

 

Shock wave theory  

 

Overview 

A shockwave describes the boundary between two traffic states that are characterized by 

different densities, speeds and/or flow rates. Shockwave theory describes the dynamics of 

shockwaves, in other words how the boundary between two traffic states moves in time and 

space.  

 
 

 Forward,  

 backward,  

 and stationary shock waves.  
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Shockwave classification 

 
 
 

1. Frontal stationary: head of a queue in case of stationary / temporary bottleneck. 

2. Forward forming: moving bottleneck (slow vehicle moving in direction of the flow given 

limited passing opportunities). 

3. Backward recovery: dissolving queue in case of stationary or temporary bottleneck 

(demand greater than supply); forming or dissolving queue for moving bottleneck. 

 

 
 

1. Forward recovery: removal of temporary bottleneck (e.g. clearance of incident, opening 

of bridge, signalized intersection). 

2. Backward forming: forming queue in case of stationary, temporary, or moving 

bottleneck* (demand greater than supply); 

3. Rear stationary: tail of queue in case recurrent congestion when demand is 

approximately equal to the supply.  
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Fixed bottlenecks 

At fixed bottleneck some lanes of a highway are (temporarily) blocked. Firstly the theory 

and derivation of equations will be discussed. 

 

Theory and derivation of equations 

Let us consider a situation with two different states: state A downstream, with a matching 𝑞A, 

𝑘A en 𝑣A and state B upstream (𝑞B, 𝑘B end 𝑣B). The states are plotted in the space-time 

diagram 5.1. We choose the axis in such a way that the shockwave moves through the point 

t=0 at x=0. We will now derive the equation to get the speed of this wave. 

In the derivation, we base the reasoning on figure 1. The boundary between is called a shock 

wave. This wave indicates where the speed of the vehicles changes. It is important to note 

that there are no vehicles captured in the wave itself: the wave itself does not have a physical 

length. Thus the assumption is that vehicles change speed instantaneously. 

 

 
 

Figure 1: A shockwave where traffic speed changes from high to low. 

 

Because there are no vehicles in the wave, the number of vehicles entering the wave must be 

equal to the number of vehicles exiting exiting the wave, or we can state that rate of vehicles 

entering the wave must be equal to the rate of vehicles exiting the wave. This principle, in 

combination with the following equation 1 is used to calculate the speed of the wave: 

 

𝑞 = 𝑘 × 𝑣                                                                                                                           1 

 

The speed of the wave is indicated by 𝑤. Note that we can apply this equation to moving 

frames of reference as well. In that case, the flow changes, as does the speed. The density is 

invariant under a change of reference speed. 
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To determine the attachment and exit rate, we will move with the speed of the wave (in the 

frame of a moving observer). At the downst;ream end, the density is 𝑘B. The speed in the 

moving frame of reference is 𝑣B − 𝑤. The exit rate in the moving frame of reference is 

calculated using equation 1. 

 

𝑞𝑒𝑥𝑖𝑡 = 𝑘𝐵(𝑣𝐵 − 𝑤)                                                                                                              2 

 

In the same way, the attachment rate can be determined. The upstream density is 𝑘A. The 

speed of the vehicles in the frame of reference moving with the wave speed 𝑤 is 𝑣A + 𝑤. 

Using equation 1 again, we find the attachment rate in this moving frame of reference: 

 

𝑞𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑚𝑒𝑛𝑡 = 𝑘𝐴(𝑣𝐴 − 𝑤)                                                                                                     3 

 

Since these rates have to be equal, we find:  

 

   𝑞𝑒𝑥𝑖𝑡 = 𝑞𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑚𝑒𝑛𝑡                                                                                                              4 

 

       𝑘𝐴(𝑣𝐴 − 𝑤) =  𝑘𝐵(𝑣𝐵 − 𝑤)                                                                                              5    

 

This can be rewritten as:      

 

    𝑘𝐴𝑣𝐴 − 𝑘𝐴𝑤 = 𝑘𝐵𝑣𝐵 − 𝑘𝐵𝑤                                                                                                6 

 

    𝑞𝐴 − 𝑘𝐴𝑤 = 𝑞𝐵 − 𝑘𝐵𝑤                                                                                                         7 

 

In the last step, the speeds have been substituted using equation 1. We can solve this 

equation for the shock wave speed 𝑤. We find: 

 

     𝑞𝐴 − 𝑞𝐵 = = (−𝑘𝐵 + 𝑘𝐴)𝑤                                                                                                 8 

 

And isolating 𝑤 give the wave speed equation:    

 

 

                                                                                                                                                   9 

 

 

 

Note that in a space-time plot, the speed 𝑤 is the slope of the shock wave between A and B. 

The right hand side is the ratio between the difference in flow and the difference in density 

of states A and B. This is also the slope of a line segment between A and B in the flow-

density plot. This becomes very useful when constructing the traffic states. The above 

reasoning holds for the speed of any shock wave, moving backward or forward. The 

following section shows an example for both. 

𝑤 =
𝑞𝐴 − 𝑞𝐵

𝑘𝐴 − 𝑘𝐵
=

∆𝑞

∆𝑘
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Example: Temporal increase in demand at a road with a lane drop 

Let’s consider a 3 lane road with a reduction to 2 lanes over a 1 km section between x=10 

and x=12.5 (see figure 2(b)). For the road, we assume lanes with equal characteristics, 

described by a triangular fundamental diagram with a free speed of 80 km/h, a capacity of 

2000 veh/h/lane and a jam density of 150 veh/km/lane. At the start of the road, there is a 

demand of 2500 veh/h which temporarily increases to 5000 veh/h between t=1h and t=2h 

(see the demand profile in figure 2(b)). The question we will answer in this example is: What 

are the resulting traffic conditions? 

The final answer to the question are the traffic states which are shown in table 5.1, and 

shown on the fundamental diagram in figure 3(a). The speed of the shock waves is given in 

Table 2, and the resulting traffic situation is shown in figure 3(b). We will now explain how 

this solution can be found. The inflow to the system is given, being 2500 veh/h (state A) and 

5000 veh/h (state B) on a three lane road. The matching densities can be computed from the 

fundamental diagram for a three lane road. This gives densities of (equation1) 

 
Figure 2: Situation. 

 

 
Figure 3: The situation. 
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Table 1: The states on the road. 

 
Table 2: The shock waves present on the road. 

 
 

𝑘𝐴 =
𝑞𝐴

𝑢𝐴
=

2500

80
= 31.25

𝑣𝑒ℎ

𝑘𝑚
  

 

𝑘𝐵 =
𝑞𝐵

𝑢𝐵
=

5000

80
= 62.5

𝑣𝑒ℎ

𝑘𝑚
  

 

The separation with the empty road moves forward with a speed of 80 km/h, i.e. the speed of 

the vehicles. This can also be found by the shock wave equation, equation 9. The difference 

in flow is 2500 veh/h and the difference in density is 31.25 veh/km. The shock wave then 

moves with: 

 

𝑤𝑜𝐴 =
𝑞𝑜−𝑞𝐴

𝑘𝑜−𝑘𝐴
=

−2500

−31.25
= 80𝑘𝑚/ℎ𝑟                                                                             10 

Note that is does not matter whether the speed of shock wave 𝑤oA or shock wave 𝑤Ao is 

calculated. This remark holds for every combination of states. 

 

Also the wave between state A and B moves forward with 80 km/h, calculated by equation 9: 

 

𝑤𝐴𝐵 =
𝑞𝐴−𝑞𝐵

𝑘𝐴−𝑘𝐵
=

2500−5000

31.25−62.5
= 80𝑘𝑚/ℎ𝑟                                                                 11 

 

Note that this equals the free flow speed. This is because we use a triangular fundamental 

diagram. The speed 𝑤ab is the direction of the line segment AB in Figure 3(a). This has the 

same slope as the slope of the free flow speed (i.e. the slope of the fundamental diagram at 

the origin) because its shape is triangular. 

 

Now this wave hits the two lane section. The flow is higher then the capacity of the two lane 

section. That means that downstream, the road will operate at capacity, and upstream a queue 

will form (i.e. we have a congested state). The capacity of the downstream part is, according 
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to the fundamental diagram, 4000 veh/h (state D). The speed follows from the (triangular) 

fundamental diagram, and is 80 km/h. The density hence is: 

 

𝑘𝐷 =
𝑞𝐷

𝑢𝐷
=

4000

80
= 50

𝑣𝑒ℎ

𝑘𝑚
                                                                                                    12 

 

If 4000 veh/h drive onto the two lane segment, 4000 veh/h have to drive off the three lane 

segment (no vehicles can be lost or created at the transition from three to two lanes). That 

means that upstream of the transition, we have a congested state with a flow of 4000 veh/h. 

The density is derived from the fundamental diagram: 

𝑞𝑐𝑜𝑛𝑔 = 𝑞𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑞𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑘−𝑘𝑐

𝑘𝑗−𝑘𝑐
= 4000                                                                     13 

 

Substituting the parameters for the fundamental diagram, and realising that the capacity is 

found by 𝑞capacity = 𝑙𝑢capacity𝑘C (𝑙 is the number of lanes) we calculate the density at point C, 

200 veh/km. Graphically, we can find point C on the fundamental diagram by the 

intersection of the congested branch and a line at a constant flow value of 4000 veh/h.  
 

The speed at which the tail of the queue moves backwards, i.e., the speed of the boundary 

between B and C, is calculated by the shock wave equation (equation 9): 

 

𝑤𝐵𝐶 =
𝑞𝐵−𝑞𝐶

𝑘𝐵−𝑘𝐶
=

5000−4000

62.5−200
= −7.3

𝑘𝑚

ℎ𝑟
                                                                                   14 

                                                                                           

Note that this speed can also be derived graphically from the fundamental diagram, i.e. the 

slope of the line segment BC. That the slope in Figure 3(a) and Figure 3(b) is graphically not 

the same, is a consequence of different axis scales in the Figures. 
 

Then the demand reduces again and the inflow state returns to A. When lower demand hits 

the tail of the jam, the queue can solve from the tail. At the head of the queue, this change 

has no influence yet, since drivers are still waiting to get out onto the smaller roadway 

segment. The boundary between C and A moves with a speed of: 

 

𝑤𝐶𝐴 =
𝑞𝐶−𝑞𝐴

𝑘𝐶−𝑘𝐴
=

4000−2500

200−31.25
= −8.9

𝑘𝑚

ℎ𝑟
                                                                                   15 

 

Here again, the speed could also be derived graphically, by the slope of the line segment AC. 

Then, this wave arrives at the transition of the two lane road to a three lane road, and the 

congestion state C is dissolved. In the two lane part, the flow is now the same as the demand 

(the state in A, 2500 veh/h). The boundary between state D and A moves forward with a 

speed of: 

 

𝑤𝐷𝐴 =
𝑞𝐷−𝑞𝐴

𝑘𝐷−𝑘𝐴
=

4000−2500

50−31.25
= 80

𝑘𝑚

ℎ𝑟
                                                                                   16 
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Figure 4: The situation. 

 

Table 3: The states on the road with a temporal bottleneck. 

 
Example: Temporal capacity reduction 

Another typical situation is a road with a temporal local reduction of capacity, for instance 

due to an accident. This section explains which traffic situation will result from that. 

The case is as follows. Consider a three-lane freeway, with a triangular fundamental 

diagram. The free flow speed is 80 km/h, the capacity is 2000 veh/h/lane and the jam density 

is 150 veh/km/lane. The demand is constant at 2500 veh/h. From t=1h to t=2h, an incident 

occurs at x=10, limiting the capacity to 1000 veh/h. Calculate the traffic states and the shock 

waves, and draw them in the space-time diagram. Also draw several vehicle trajectories. 
 

For referring to certain states, we will first show the resulting states, and then explain how 

these states are constructed. Figure 4(a) shows the fundamental diagram and the occurring 

states, 4(b) shows how the states move in space and time. The details of the states can be 

found in table 3, and the details of the shock waves can be found in Table 4. 
 

At the start, there are free flow conditions (state A) at an inflow of 2500 veh/h. For the 

assumed triangular fundamental diagram, the speed for uncongested conditions is equal to 

the free flow speed, so 80 km/h. The matching density can be found by applying equation 1: 

𝑘𝐴 =
𝑞

𝑢
=

2500

80
= 31.25𝑣𝑒ℎ/𝑘𝑚                                                                                              

 

From t=1 to t=2, a flow limiting condition is introduced. We draw this in the space time 

diagram. The flow is too high to pass the bottleneck, so the moment the bottleneck occurs, a 
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congested state (B) will form upstream. Downstream of the bottleneck we find uncongested 

conditions (once the vehicles have passed the bottleneck, there is no further restriction in 

their progress): state C. For state C, the flow equals the flow that can pass the bottleneck, 

which is given at 1000 veh/h. The speed is the free flow speed of 80 km/h, so the matching 

density can be found by applying equation 1: 

 

𝑘𝐶 =
𝑞

𝑢
=

1000

80
= 21.5𝑣𝑒ℎ/𝑘𝑚                                                                                              

 

The speed of the shock wave between state A and C can be calculated using the shock wave 

equation, 9:  

                                               

𝑤𝐴𝐶 =
𝑞𝐴−𝑞𝐶

𝑘𝐴−𝑘𝐶
=

2500−1000

31.25−12.5
= 80

𝑘𝑚

ℎ𝑟
                                                                                        17 

 

Table 4: The shock waves present on the road with a temporal bottleneck. 

 
 

This equals the free flow speed. Graphically, we understand this because both states can be 

found at the free flow branch of the fundamental diagram (Figure 4(a)) and the shock wave 

speed is the slope of the line segment connecting these states. Because the fundamental 

diagram is triangular, this slope is equal to the slope at the origin (i.e., the free flow speed). 
 

Upstream of the bottleneck a congested state forms (B). The flow in this area must be the 

same as the flow which can pass the bottleneck. This is because at the bottleneck no new 

vehicles can be formed. That means state B is a congested state with a flow of 1000 veh/h. 

From the fundamental diagram we find the matching density in the congested branch, 387.5 

veh/km. The speed at which the shock between states A and B now moves, can be calculated 

using equation 9: 

 

𝑤𝐴𝐵 =
𝑞𝐴−𝑞𝐵

𝑘𝐴−𝑘𝐵
=

2500−1000

31.25−387.5
= −4.2

𝑘𝑚

ℎ𝑟
                                                                                   18 

 

The minus sign means that the shock wave moves in the opposite direction of the traffic, 

upstream. We could also graphically derive the speed of the shock wave by the slope of the 

line between point A and B in the fundamental diagram. 

Once the temporal bottleneck has been removed, the vehicles can drive out of the queue: 

state D. Because state C is congested, the outflow will be capacity (or the queue discharge 

rate in case there is a capacity drop). That is for this case a flow of 3x2000 veh/h = 6000 

veh/h. Realising the vehicle speed equals the free flow speed of 80 km/h, the density can be 

found using equation 1: 
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𝑘𝐷 =
𝑞𝐷

𝑢𝐷
=

6000

80
= 75𝑣𝑒ℎ/𝑘𝑚                                                                                              19 

 

The shock wave between state B and D moves backward. The speed thereof can be found by 

applying equation 9: 

 

𝑤𝐵𝐷 =
𝑞𝐵−𝑞𝐷

𝑘𝐵−𝑘𝐷
=

1000−6000

387.5−75
= 16

𝑘𝑚

ℎ𝑟
                                                                                      18 

 

The negative shock wave speed means the wave moves upstream. Intuitively, this is right, 

since the vehicles at the head of the queue can accelerate out of the queue, and thus the head 

moves backwards. 

                                                                                        

Moving bottleneck 
 

This section describes what happens if the road is blocked, either completely or not 

completely, by a moving bottleneck. This can be a slow moving truck or agricultural vehicle, 

a funeral or wedding procession. First the theory is explained, and then three examples 

follow. 

 

Theory 
 

For the moving bottleneck, the same theory applies as for the fixed bottleneck. The recipy is 

the same: check for each bottleneck weather the demand exceeds capacity. If so, there is 

congestion upstream and a free flow condition (or capacity) downstream. Once again, the 

shock wave equation applies (Equation 9). 
 

Different compared to the regular, fixed bottlenecks, is the position of the congested state. 

For fixed bottlenecks, the flow upstream of the bottleneck equals the flow downstream of the 

bottleneck. In case of moving bottlenecks this differs. Consider a bottleneck which moves 

downstream without any overtaking opportunities. The downstream flow is zero, but 

vehicles can accumulate in the growing area between the considered point and the moving 

bottleneck, so the upstream flow is not zero. 

In these types of calculations, the capacity of vehicles passing the moving bottleneck is 

usually an input. This gives the downstream point at the fundamental diagram. To find the 

upstream state on the fundamental diagram, one has to realise the shock wave is the moving 

bottleneck, so the speed of the shock wave must equal the speed of the moving bottleneck. 

By constructing a shock wave moving with the speed of the moving bottleneck in the 

fundamental diagram from the uncongested downstream point, one finds the congested point. 

This is at the intersection of the line segment starting at the uncongested point moving with 

the bottleneck speed and the congested branch of the fundamental diagram. The following 

examples clarify the procedure. 
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Figure 5: The situation with a moving bottleneck without overtaking opportunities. 

  

Example 1: moving truck, no overtaking possibilities 

Consider a three lane road, where at all three lanes a triangular fundamental diagram holds. 

The capacity is 2000 veh/h/lane, the free flow speed 80 km/h and the jam density 150 

veh/km. The demand is 3000 veh/h. A truck enters the road at t=0.5h and x=10 km, and 

leaves the road at t=1h and x=15 km, hence driving 10 km/h. There are no overtaking 

opportunities. What is the traffic state at the road? 

The solution of this example is given in a space-time diagram (Figure 5(b)) and in the 

fundamental diagram (Figure 5(a)). The characteristics of the states are given in table 5.5, 

and the characteristics of the shock waves are given in table 5.6. The explanation how these 

points are found follows below. 

At two points states can be identified at the fundamental diagram (Figure 5(a)), the initial 

state A (flow of 2500 veh/h, free flow speed 80 km/h) and the state downstream of the 

moving bottleneck (given “no overtaking possibilities” hence density zero and flow zero). In 

these examples, the states are identified by only two variables from the three flow, density 

and speed, since the third one can be calculated using Equation 1. 

The position upstream of the moving bottleneck can be determined by the intersection of two 

lines: 

 

𝑞1 = 𝑞𝐶 + 𝑣(𝑘 − 𝑘𝐶)                                                                                                              21  

𝑞2 = 𝑞𝐷 + 𝑣(𝑘 − 𝑘𝐶)                                                                                                              22  

                                                        

The first equation is a line in the fundamental diagram, Figure 5(a) starting from point C and 

moving forward with the bottleneck speed 𝑣. The second line is the congested branch of the 

fundamental diagram, in which 𝑤 is the slope of the congested branch. The intersection of 

these lines can be found by solving the density 𝑘 from the equation 𝑞1 = 𝑞2. For this 

upstream density, the density of state B, we find 𝑘B = 277 veh/km. The matching flow is 
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found by filling this in either Equation 21 or 21, resulting in 𝑞B = 2769 veh/km. The speed is 

determined by the ratio of flow and density: 

 

𝑢 =
𝑞𝐵

𝑘𝐵
=

2769 

277
= 10𝑘𝑚/ℎ𝑟  

 

Note that this is the speed of the moving bottleneck. This must be since there are no 

overtaking opportunities. 

The speed of the shock wave between A and B can be calculated using the shock wave 

Equation 9 applied to state A and B: 

 

𝑤𝐴𝐵 =
𝑞𝐴−𝑞𝐵

𝑘𝐴−𝑘𝐵
=

3000−2796

387.5−277
= −0.96

𝑘𝑚

ℎ𝑟
                                                                                  23 

 

This means the shock wave moves upstream with a low speed. With a different speed of the 

moving bottleneck or a different demand level, the shock wave might move faster upstream 

(lower bottleneck speed or higher demand), or it might move downstream (higher bottleneck 

speed or lower demand). 

 

Table 5: The states on the road for a moving bottleneck without overtaking opportunities. 

 
 

Table 6: The shock waves present on the road for a moving bottleneck without overtaking 

opportunities. 

 
 

The speed of the shock wave between state B and C can also be calculated with equation 9. It 

can be determined from reasoning instead of calculations as well: it must be equal to the 

speed of the moving bottleneck, 10 km/h. 

Once the moving bottleneck has left the road, vehicles will exit the jam. This means a 

boundary between the jam state, state B, at the capacity state, state D. For capacity the flow 

(6000 veh/h) and speed (80 km/h) can be derived from the road characteristics. The speed of 

the shock wave between state D and B can be determined by applying the shock wave 
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equation (5.9) on state B and D. Alternatively, from the fundamental diagram in Figure 5(a) 

we see that must equal the slope of the congested branch of the fundamental diagram, -16 

km/h. Because any shock wave between any congested state and capacity moves with this 

speed, this speed is also called the wave speed of the fundamental diagram. 
 

Speeds of shock waves between A and C, C and D, and D and A all can be calculated using 

the shock wave Equation 9. Moreover, all these states lie on the free flow branch of the 

fundamental diagram, so the shock waves between these states move at the free flow speed 

of 80 km/h. 

 

Example 2: moving truck with overtaking possibilities 

 

Now, let’s consider a different situation, where overtaking of the moving bottleneck is 

possible. We change the conditions as follows. Consider a three lane road, where at all three 

lanes a triangular fundamental diagram holds. The capacity is 2000 veh/h/lane, the free flow 

speed 80 km/h and the jam density 150 veh/km. The demand is 2500 veh/h. A truck enters 

the road at t=0.5h and x=10 km, and leaves the road at t=1h and x=15 km, hence driving 10 

km/h. There are overtaking opportunities, such that downstream of the bottleneck the flow is 

1000 veh/h. What is the traffic state at the road? 

The states and fundamental diagram, as well as the resulting traffic states are show in figures 

6(a) and 6(b) respectively. Tables 7 and 8 give the properties of the states and the shock 

waves respectively. Below, it is explained how these states and waves are found. 

 

 
 

Figure 6: The situation at a moving bottleneck with overtaking possibilities. 
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Table 7: The states on the road at a moving bottleneck with overtaking possibilities. 

 
Table 8: The shock waves present on the road at a moving bottleneck with overtaking 

possibilities. 

 
The demand is the same as in the previous example, so state A is the same. Downstream of 

the moving bottleneck there is a free flow traffic state (it is downstream of the bottleneck, so 

it is free flow). The flow is given at 1000 veh/h, and since it is in free flow, the speed is 80 

km/h. Hence, the density is  𝑘𝐶 =
𝑞𝐶

𝑢𝐶
=

1000

80
= 12.5𝑣𝑒ℎ/𝑘𝑚       

Since the demand is higher than the capacity of the moving bottleneck, upstream of the 

bottleneck, a congested state occurs. Is separated from state C by a shock wave which moves 

with the speed of the moving bottleneck (it is the moving bottleneck). This means we have to 

find state B in the fundamental diagram which conncects to state C with a line with a slope 

of 10 km/h; this line is indicated by 𝑞1 (Equation 24) Furthermore, state B has to lie on the 

congested branch of the fundamental diagram, indicated by 𝑞2 (Equation 25). The position 

upstream of the moving bottleneck can be determined by the intersection of two lines:                                                                                       

 

𝑞1 = 𝑞𝐶 + 𝑣(𝑘 − 𝑘𝐶)                                                                                                             24 

𝑞2 = 𝑞𝐷 + 𝑣(𝑘 − 𝑘𝐷)                                                                                                             25 

 

We find the density for state B by 𝑞1 = 𝑞2. This results in 𝑘B = 243 veh/km. The matching 

flow can be found by subsituting this into Equation 24 or Equation 25, leading to 𝑞B=3307 

veh/h. 

The shock wave speeds between B and C, as well as the shock wave speed between A and B 

can be calculated using the shock wave equation, equation 9: 

 

𝑤𝐵𝐶 =
𝑞𝐵−𝑞𝐶

𝑘𝐵−𝑘𝐶
=

3307−1000

243−12.5
= 10

𝑘𝑚

ℎ𝑟
                                                                                      26 

 

𝑤𝐴𝐵 =
𝑞𝐴−𝑞𝐵

𝑘𝐴−𝑘𝐵
=

2500−3307

31.5−243
= 3.8

𝑘𝑚

ℎ𝑟
                                                                                      27 
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Note that the shock wave between B and C moves with the speed of the moving bottleneck. 

Once the moving bottleneck leaves the road, the method is exactly the same as in the 

previous example. The queued vehicles exit state B at the road capacity, state D with a flow 

6000 veh/h and a speed of 80 km/h. The shock wave between state D and B moves backward 

with a speed which can be calculated by the shock wave equation. The shock wave speed 

must also be equal to the wave speed of the fundamental diagram, so using the knowledge of 

the previous example, we find 𝑤BD = −16 km/h. 

 

Example 3: moving truck and high demand 

Consider a three lane road, where at all three lanes a triangular fundamental diagram holds. 

The capacity is 2000 veh/h/lane, the free flow speed 80 km/h and the jam density 150 

veh/km. The demand is increased to 4500 veh/h. A truck enters the road at t=0.5h and x=10 

km, and leaves the road at t=1h and x=15 km, hence driving 10 km/h, limiting the flow 

downstream of the moving bottleneck to 1000 veh/h. What are the conditions on the road? 
 

The states and fundamental diagram, as well as the resulting traffic states are show in figures 

7(a) and 7(b) respectively. Tables 9 and 10 give the properties of the states and the shock 

waves respectively. Below, we will comment on the similarities and differences. 

 

 
 

Figure 7: The situation for the moving bottleneck with overtaking opportunities and a high 

demand. 

 

Table 9: The states on the road for the moving bottleneck with overtaking opportunities and 

a high demand. 
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Table 10: The shock waves present on the road for the moving bottleneck with overtaking 

opportunities and a high demand. 

 
 

The downstream part is the same. States A and C, as well as the congested state upstream of 

the moving bottleneck are determined by the properties of the moving bottleneck, and are 

thus the same as in the previous example. The speed of the wave between state A and B 

differs, since state A is different. The speed can be calculated using the shock wave equation, 

equation 9: 

𝑤𝐴𝐶 =
𝑞𝐴−𝑞𝐶

𝑘𝐴−𝑘𝐶
=

4500−3307

65.25−243
= −6.3

𝑘𝑚

ℎ𝑟
                                                                                     28 

 

So, the methodology to compute the shock wave speed is the same. However, the 

phenomenon is difference: contrary to the previous example, the shock wave moves 

upstream. When the moving bottleneck leaves the road, the queue discharge (capacity) state 

D is also the same as in the previous example. Since states B and D are the same, the shock 

wave speed between the two is also the same. Also the shock wave speed between state A 

and D is the same, because both points are at the free flow branch of the fundamental 

diagram, hence the shock wave speed is the speed of the free flow branch of the (triangular) 

fundamental diagram. 
 

 

Stop and go waves 

On motorways, often so called stop-and-go waves occur. These short traffic jams start from 

local instabilities, and the speed (end flow) in the stop-and-go waves is almost zero. For a 

more detailed explanation. Now the speed of the boundaries of the traffic states are known, 

we can apply this to stop-and-go waves, and understand why this typical pattern arises 

(Figure 8). 
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Figure 8: Stop and go waves in time and space. 

 

The stop-and-go waves arise in dense traffic. The traffic demand is then mostly near 

capacity, or at approximately the level of the queue discharge rate. The upstream boundary 

of such a shock moves upstream. When it is in congested conditions, both the upstream state 

(the congested condition) and the downstream state (the standing traffic) are congested, 

hence the upstream boundary moves backwards with a speed equal to the wave speed of the 

fundamental diagram. Once it gets out of congestion, the inflow is most likely approximately 

equal to the capacity of the road. That means that the upstream boundary moves with a speed 

which is equal to the slope of the line in the fundamental diagram connecting the capacity 

point with the point of jam density, which is the wave speed. 
 

The downstream boundary separates the jam state (standing traffic) with capacity (by 

default: vehicles are waiting to get out of the jam, hence a capacity state occurs). The speed 

between these two states is found by connecting the points in the fundamental diagram. The 

resulting speed is the wave speed of the fundamental diagram. 
 

After the first stop-and-go wave has moved upstream, the inflow in the second stop-and-go 

wave equals the outflow of the first stop-and-go wave. These are the upstream respectively 

the downstream state of the second wave, which thus are the same. In between, within the 

wave, there is another, jammed state. According to shock wave theory the shock between 

state A and B (i.e., the upstream state and the state within the stop-and-go wave) and the 

shock between B and A (i.e. the state within the stop-and-go wave and the downstream state, 

which equals the upstream state) is the same. This speed is approximately equal for all roads, 

15-20 km/h (Schreiter et al., 2010). Hence, the length of the stop-and-go wave remains the 

same. This way, stop-and-go waves can travel long distances upstream. 

 

 


