#### **Definitions**

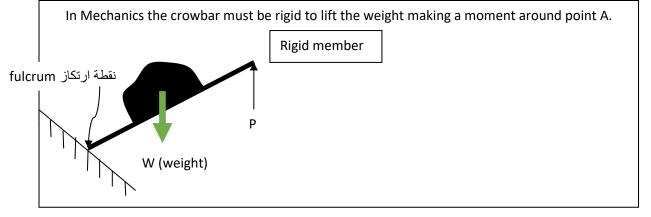
Q/ what is strength of Materials?

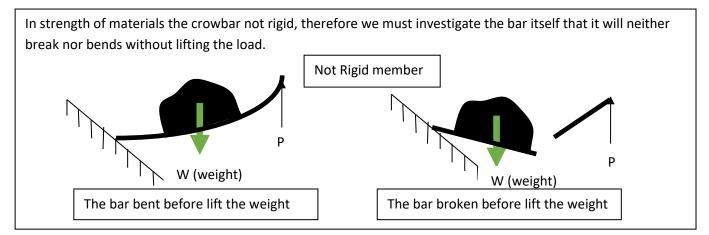
Bodies: are solid objects, like steel cable, gear teeth, beams, and axle shaft. (No liquid, No gases).

*Rigid Bodies*: means the bodies do not stretch, bend, or twist.

Equilibrium: means the rigid bodies are not accelerating (Not dynamic). Only 3 Equations

*Statics*: is the study of forces acting in equilibrium on rigid bodies.


*Engineering Mechanics:* the field of mechanics covers the relations between forces on rigid bodies in statics (equilibrium).


*Strength of Materials*: study the behavior of materials under loads.

(Investigate the internal resistance and deformations of solid bodies subjected to loads).

Q/ What is the difference between Engineering Mechanics and Strength of Materials?

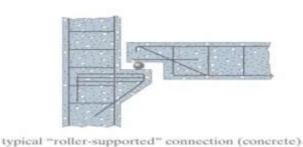
| A/ | Engineering Mechanics      | Strength of Materials        | fulcrum نقطة ارتكاز<br>Crowbar عتلة |
|----|----------------------------|------------------------------|-------------------------------------|
|    | The body in<br>Equilibrium | The body in<br>Equilibrium   |                                     |
|    | The body is <b>Rigid</b>   | The body is <b>Not Rigid</b> | 'A <sup>T</sup> W (weight)          |
|    |                            |                              | Р                                   |

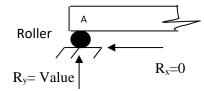


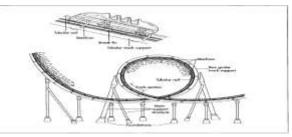


Q/ Which is the real assumption, Engineering Mechanics or Strength of Materials?

A/ Strength of Materials.


In Strength of Materials we keep the assumptions of bodies in equilibrium, but we drop the "Rigid" assumption. Because:

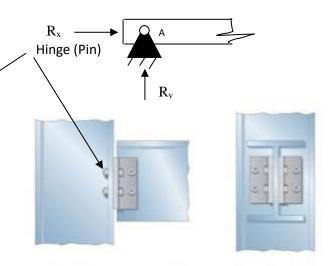

- Real cables stretch under tension.
- Real floor joists bend when you walk across a wood floor.
- Real axle shafts twist under torsion load.


### Types of Support:

1-Roller:

- You can rotate a member at point A, therefore No resistance moment at point A.
- You can move the member horizontally, therefore No resistance force  $R_x$  at point A.
- You can Not move the member vertically, there is a force  $R_y$  at point A.
- ∴ 1 unknown force



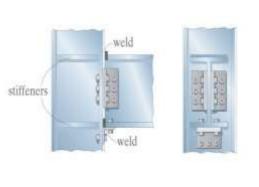


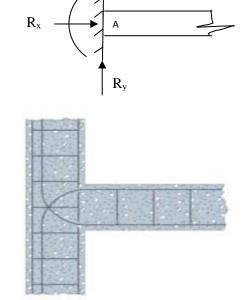



## 2- Hinge (Pin):

- You can rotate a member at point A, therefore No resistance moment at point A.
- You can Not move the member horizontally, there is a force  $R_x$  at point A.
- You can Not move the member vertically, there is a force  $R_y$  at point A.
- $\therefore$  2 unknown force







typical "pin-supported" connection (metal)

Μ

#### 3- Fixed end:

- You can Not rotate a member at point A, there is a moment M at point A.
- You can Not move the member horizontally, there is a force  $R_x$  at point A.
- You can Not move the member vertically, there is a force  $R_y$  at point A.
- ∴ 3 unknown force





typical "fixed-supported" connection (metal)

typical "fixed-supported" connection (concrete)

## <u>Units</u>

## 1- SI System of units and prefixes

# SI = International System= Metric System

| Quantity           | Unit         | Symbol | Definition          |
|--------------------|--------------|--------|---------------------|
| Length             | Meter        | m      | -                   |
| Mass               | Gram         | g      | -                   |
| Force or Weight    | Newton       | N      | kg.m/s <sup>2</sup> |
| Stress or Pressure | Pascal       | Pa     | N/m <sup>2</sup>    |
| Moment or Torque   | Newton meter | N.m    | -                   |

1 MPa = 1 N/mm<sup>2</sup> 1 Pa = 1 N/m<sup>2</sup>

| Prefix | Abbreviate |   | Multiplier       |
|--------|------------|---|------------------|
| Nano-  | n          | = | 10-9             |
| Micro- | μ          | = | 10-6             |
| Milli- | m          | Ш | 10-3             |
| Centi- | С          | = | 10-2             |
| Kilo-  | k          | Н | 10 <sup>3</sup>  |
| Mega-  | М          | = | 106              |
| Giga-  | G          | = | 109              |
| Tera-  | Т          | Η | 10 <sup>12</sup> |

\_\_\_\_\_

# 2- US System of units and prefixes

US = British Units =English Units

| Quantity           | Unit                                 | Symbol | Definition           |
|--------------------|--------------------------------------|--------|----------------------|
| Length             | Foot                                 | ft.    | -                    |
| Force or Weight    | Pound                                | Ib.    | -                    |
| Stress or Pressure | s or Pressure Pounds per square inch |        | Ib./in. <sup>2</sup> |
| Moment or Torque   | Foot pound                           | ft.Ib. | -                    |

| Hint: US unit symbols are abbreviations with period: |
|------------------------------------------------------|
| write the unit foot "ft." not "ft"                   |
| write the unit inch "in." not "in"                   |
| except for "psi" and "ksi" write without period      |
|                                                      |

| Unit  |   | Equivalent<br>conversion<br>factor |
|-------|---|------------------------------------|
| 1 ft. | = | 12 in.                             |
| 1 yd. | = | 3 ft.                              |
| 1 kip | = | 1,000 Ib.                          |
| 1 ksi | = | 1,000 psi                          |
| 1 ton | = | 2,000 Ib.                          |

# Prefixes of US System

US System does not use prefixes to indicate scale, except for "kips" for "kilo pounds"

1 kips=1,000 pounds (Ib.), instead of that we use equivalent conversion factor.

| US unit |   | SI unit   | Example 1: b=83 in.                                                                                                                               |
|---------|---|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 in.   | = | 2.54 cm   | Find the area of triangle in square ft?<br>$A = b \times h$                                                                                       |
| 1 ft.   | = | 30.48 cm  | $A = 83 (in.) \times 45 (ft.)$ h=45 ft.                                                                                                           |
| 1 Ib.   | = | 4.448 N   | A = $\frac{83}{12}$ (ft.) * 45 (ft.) = 311.25 ft <sup>2</sup>                                                                                     |
| 1 psi   | = | 6895 Pa   | Example 2:                                                                                                                                        |
| 1 psi   | = | 6.895 kPa | Calculate the stress in psi if $P = 7000$ Ib. and $A = 3ft^2$                                                                                     |
| 1 ksi   | = | 6.895 MPa | $\sigma = \frac{P}{A} = \frac{7000 \text{ (lb.)}}{3 \text{ (ft.)}^2} = \frac{7000 \text{ (lb.)}}{3 \times (12 \text{ in.)}^2} = 16.2 \text{ psi}$ |

### Conversion factors between SI and US units:

Example 3: convert 1 GPa to the unit of  $N/m^2$ ?

$$1 \text{ GPa} = 1000 \times (\text{MPa}) = 1000 \times \left(\frac{\text{N}}{\text{mm}^2}\right) = 1000 \times \left(\frac{\text{N}}{(\frac{1}{1000})^2 \cdot \text{m}^2}\right) = 10^3 \times \frac{\text{N}}{\text{m}^2} \times 10^6 = 10^9 \frac{\text{N}}{\text{m}^2}$$
  
or 1 GPa = 10<sup>9</sup> Pa = 10<sup>9</sup>  $\left(\frac{\text{N}}{\text{m}^2}\right)$