Experiment No.7

Loop Antenna

This example is intended to show you how to create, simulate, and analyze a 10 Meter loop Antenna using the Ansoft HFSS Design Environment.

Ansoft HFSS Design Environment:

The following features of the Ansoft HFSS Design Environment are used to create this passive device model:

3D Solid Modeling:

Primitives: Cylinders, Sphere

Boolean: Union, Subtract, Connect

Boundaries/Excitations:

Excitations: Wave Ports

Boundaries: Radiation

Results:

Plotting: Radiation Pattern

Design Review:

Port Size/Type:

Since the port is external to the model we could use a Wave Port. The size of the port is determined by the physical dimensions of the sheet created by gap inside the feed of loop antenna.

Free Space:

Since we are evaluating a radiating structure, we need to create a free space environment for the device to operate in. This can be achieved by using the Radiation Boundary condition. We will use a Radiation Boundary since the surface will be rectangular box. The Radiation Boundary needs to be placed at least 1/4 from radiating devices.

Getting Started:

Launching Ansoft HFSS:

To access Ansoft HFSS, click the Microsoft **Start** button, select **Programs**, and select the **Ansoft, HFSS 10** program group. Click **HFSS 10**.

Setting Tool Options:

To set the tool options:

Note: In order to follow the steps outlined in this example, verify that the following tool options are set:

- 1. Select the menu item **Tools > Options > HFSS Options**
- 2. HFSS Options Window:

1. Click the **General** tab Use Wizards for data entry when creating new boundaries: _ **Checked**

Duplicate boundaries with geometry: _ Checked

2. Click the OK button

3. Select the menu item**Tools > Options > 3D Modeler Options.**

4. 3D Modeler Options Window:

1. Click the **Operation** tab

Automatically cover closed polylines: _ Checked

2. Click the **Drawing** tab

Edit property of new primitives: _ Checked

3. Click the **OK** button

Opening a New Project:

To open a new project:

1. In an Ansoft HFSS window, click the _ On the Standard toolbar, or select the menu item **File > New.**

2. From the Projectmenu, select Insert HFSS Design.

Set Solution Type:

To set the solution type:

- 1. Select the menu item **HFSS** > **Solution Type**
- 2. Solution Type Window:

1. Choose Driven Modal
2. Click the OK button

Solution Type: Project8 - HFSSModel1

© Driven Modal
© Driven Modal
© Driven Terminal
© Eigenmode
© K
© Cancel

I. Select the menu item 3D Modeler > Units
2. Set Model Units:

1. Select Units: meter
2. Click the OK button

Set Default Material:
To set the default material:
Using the 3D Modeler Materials toolbar, choose copper

Create Circular Waveguide:

Create upper rib of antenna

- 1. Select the menu item **Draw > Cylinder**
- 2. Using the coordinate entry fields, enter the cylinder position

X: 0.0, Y: 0.0, Z: 0.02 Press the Enter key

- 3. Using the coordinate entry fields, enter the radius:
- dX: 0.01, dY: 0.0, dZ: 0.0 Press the Enter key
- 4. Using the coordinate entry fields, enter the height:

dX: 0.0, dY: 0.0, dZ:1.326 Press the Enter key

To set the name:

1. Select the Attribute tab from the Properties window.

- 2. For the Value of Name type: L_1
- 3. Click the **OK** button

To fit the view:

	Orive	en Modal		
	O Drive	en Terminal		
	O Eiger	nmode		
	OK	Ca	incel	
nits	Set Model	Units		
	Select units:	meter	×	
	E Rezcale	to new units		
		OK.	D	ancel
choose co	opper	()] (0	pper	• Model
r				
the cylin	der pos	ition		
y				
the radiu	s:			
r key				
the heigh	nt:	\langle		
er key				
rties wind	low.		z	

 $|\mathbf{X}|$

X

1. Select the menu item **View > Fit All > Active View**.

Or press the CTRL+D key

Create Circular rib of antenna:

Create lower rib of antenna

1. Select the menu item **Draw > Cylinder**

2. Using the coordinate entry fields, enter the cylinder position

X: 0.0, Y: 0.0, Z: -0.02 Press the Enter key

3. Using the coordinate entry fields, enter the radius:

dX: 0.01, dY: 0.0, dZ: 0.0 Press the Enter key

4. Using the coordinate entry fields, enter the height:

dX: 0.0, dY: 0.0, dZ:-1.326 Press the Enter key

To set the name:

1. Select the Attribute tab from the Properties window.

2. For the Value of Name type: L_2

3. Click the **OK** button

To fit the view:

1. Select the menu item **View > Fit All > Active View**.

Or press the CTRL+D key

Create Circular rib of antenna:

Create rib of antenna corresponding to previous the upper and lower ribs

1. Select the menu item **Draw > Cylinder**

2. Using the coordinate entry fields, enter the cylinder position

X: 0.0, Y: 2.692, Z: -1.346 Press the Enter key

3. Using the coordinate entry fields, enter the radius:

dX: 0.01, dY: 0.0, dZ: 0.0 Press the Enter key

4. Using the coordinate entry fields, enter the height:

dX: 0.0, dY: 0.0, dZ:2.692 Press the Enter key

To set the name:

1. Select the Attribute tab from the Properties window.

2. For the Value of Name type: L_3

3. Click the **OK** button

To fit the view:

1. Select the menu item **View > Fit All > Active View**.

Or press the **CTRL+D** key

Set Grid Plane:

To set the grid plane:

1. Select the menu item **3D Modeler > Grid Plane >zx**

Window H	lelp			
XY -	3D	•	Ъ	6
XY YZ				
ZX				

Create Horizontal Circular rib of antenna:

Create horizontal rib of antenna

1. Select the menu item **Draw > Cylinder**

2. Using the coordinate entry fields, enter the cylinder position

X: 0.0, Y: 0.0, Z: 1.346 Press the Enter key

3. Using the coordinate entry fields, enter the radius:

dX: 0.01, dY: 0.0, dZ: 0.0 Press the Enter key

4. Using the coordinate entry fields, enter the height:

dX: 0.0, dY:2.692, dZ:0.0 Press the Enter key

To set the name:

1. Select the Attribute tab from the Properties window.

2. For the Value of Name type: L_4

3. Click the **OK** button

To fit the view:

1. Select the menu item **View > Fit All > Active View**.

Or press the CTRL+D key

Create Spherical join:

Create Spherical join between ribs of antenna

1. Select the menu item **Draw** >**Sphere**

2. Using the coordinate entry fields, enter the sphere position

X: 0.0, Y: 0.0, Z: 1.346 Press the Enter key

3. Using the coordinate entry fields, enter the radius:

dX: 0.01, dY: 0.0, dZ: 0.0 Press the Enter key

4. Using the coordinate entry fields, enter the height:

dX: 0.0, dY:0.0, dZ:0.0 Press the Enter key

To set the name:

1. Select the Attribute tab from the Properties window.

2. For the Value of Name type: Sphere1

3. Click the **OK** button

To fit the view:

1. Select the menu item **View > Fit All > Active**

View.

Or press the CTRL+D key

Create Spherical join:

Create Spherical join between ribs of antenna

1. Select the menu item **Draw >Sphere**

2. Using the coordinate entry fields, enter the sphere position

X: 0.0, Y: 2.692, Z: 1.346 Press the Enter key

3. Using the coordinate entry fields, enter the radius:

dX: 0.01, dY: 0.0, dZ: 0.0 Press the Enter key

4. Using the coordinate entry fields, enter the height:

To set the name:

1. Select the Attribute tab from the Properties window.

2. For the Value of Name type: Sphere2

3. Click the **OK** button

To fit the view:

Select the menu item **View > Fit All > Active View**.

Or press the **CTRL+D** key

Create Circular rib of antenna with two joints:

To create circular rib of antenna with two joints:

Create a Cylinder

Position 0,0,-1.346

Dx= 0.01

Y=2.692

Create spher

Position :0,2.692, -1.346

Radius dx= 0.01

Create spher

Position: 0,0, -1.346

Radius: dx= 0.01

cylinder

Create Horizontal Circular rib of antenna with two joints:

Create horizontal rib of antenna corresponding to horizontal previous rib:

- 1. Select the Attribute tab from the **3D modeler design tree.**
- 2. Select **L_4**, and select the menu item **Toolbars** > **Mirror Duplicate**.
 - 1. Using the coordinate entry fields, enter the sphere position
 - X: 0.0, Y: 0.0, Z: 0.0 Press the Enter key
 - 2. Using the coordinate entry fields, enter the radius:
 - dX: 0.0, dY: 0.0, dZ: 1.0 Press the Enter key

To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: **L_5**
- 3. Click the **OK** button

To fit the view:

Select the menu item **View > Fit All > Active View**.

Attribute tab from the **3D modeler design tree**.

- 2. Select all ribs starting from L_1, L_2, L_3, L_4 and L_5.
- 3. Select the menu item Modeler > Boolean>Unite.

To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: Loop_Antenna
- 3. Click the **OK** button

To fit the view:

Select the menu item **View > Fit All > Active View**.

Or press the **CTRL+D** key

Create Horizontal Circular rib of The Feed:

To create horizontal rib of the feed

1. Select the menu item **Draw > Cylinder**

2. Using the coordinate entry fields, enter the cylinder position

X: 0.0, Y: 0.0, Z: 0.02 Press the Enter key

3. Using the coordinate entry fields, enter the radius:

dX: 0.01, dY: 0.0, dZ: 0.0 Press the Enter key

4. Using the coordinate entry fields, enter the height:

dX: 0.0, dY:-1.743, dZ:0.0 Press the Enter key

To set the name:

1. Select the Attribute tab from the Properties window.

2. For the Value of Name type: Feed_1

To fit the view:

Select the menu item **View > Fit All > Active View**.

Or press the CTRL+D key

Create Spherical join:

Create Spherical join between ribs of feed

1. Select the menu item **Draw** >**Sphere**

2. Using the coordinate entry fields, enter the sphere position

X: 0.0, Y: 0.0, Z: 0.02 Press the Enter key

3. Using the coordinate entry fields, enter the radius:

dX: 0.01, dY: 0.0, dZ: 0.0 Press the Enter key

4. Using the coordinate entry fields, enter the height:

dX: **0.0**, dY:**0.0**, dZ:**0.0** Press the **Enter** key

To set the name:

1. Select the Attribute tab from the Properties window.

2. For the Value of Name type: Sphere3

3. Click the **OK** button

To fit the view:

Select the menu item **View > Fit All > Active View**.

Or press the CTRL+D key

Create Horizontal Circular rib of The Feed:

To create horizontal rib corresponding to previous feed

1. Select the menu item **Draw > Cylinder**

2. Using the coordinate entry fields, enter the cylinder position

X: 0.0, Y: 0.0, Z: -0.02 Press the Enter key

3. Using the coordinate entry fields, enter the radius:

dX: 0.01, dY: 0.0, dZ: 0.0 Press the Enter key

4. Using the coordinate entry fields, enter the height:

dX: 0.0, dY:-1.743, dZ:0.0 Press the Enter key

To set the name:

1. Select the Attribute tab from the Properties window.

2. For the Value of Name type: Feed_2

3. Click the **OK** button

To fit the view:

Select the menu item View > Fit All > Active

View.

Or press the CTRL+D key

Create Spherical join:

Create Spherical join between ribs of feed

1. Select the menu item **Draw >Sphere**

2. Using the coordinate entry fields, enter the sphere position

X: 0.0, Y: 0.0, Z: -0.02 Press the Enter key

3. Using the coordinate entry fields, enter the radius:

dX: 0.01, dY: 0.0, dZ: 0.0 Press the Enter key

4. Using the coordinate entry fields, enter the height:

dX: 0.0, dY:0.0, dZ:0.0 Press the Enter key

To set the name:

1. Select the Attribute tab from the Properties window.

2. For the Value of Name type: Sphere4

3. Click the **OK** button

To fit the view:

Select the menu item **View > Fit All > Active View**.

Or press the **CTRL+D** key

Create Loop antenna with transmission feed:

To create loop antenna from all previous:

- 1. Select the Attribute tab from the **3D modeler design tree.**
- 2. Select all ribs starting from Loop_Antenna, Feed1, Feed2, sphere3 and sphere4.

3. Select the menu item **Modeler > Boolean>Unite.**

Select the menu item **View > Fit All > Active View**.

Or press the **CTRL+D** key

Set Grid Plane:

To set the grid plane:

Select the menu item **3D Modeler** >

Grid Plane >YZ

Window	Help		
XY 💌	3D	•	5 G
- XY / YZ	-1-1	-77	TT
ZX	1/-/-	Æ	

<u>Create the Lumped Port</u>

To create a rectangular that represents the port:

1. Select the menu item**Draw > Rectangle**

2. Using the coordinate entry fields, enter the center position

X: 0.0, Y: -1.743, Z: -0.01 Press the Enter key

3. Using the coordinate entry fields, enter the radius of the circle:

dX: **0.0**, dY: **0.02**,

the Enter key

To set the name:

- 1. Select the Attribute tab from the Properties window.
- 2. For the Value of Name type: p1
- 3. Click the **OK** button

To select the object p1:

- 1. Select the menu item Edit > Select > By Name
- 2. Select Object Dialog,
 - 1. Select the objects named: **p1**
 - 2. Click the **OK** button

<u>Create Lumped Port Excitation</u>:

To assign lumped port excitation

1. Select the menu item **HFSS** > **Excitations** >

Assign >Lumped Port

2. Wave Port: General

- 1. Name: **p1**
- 2. Click the Next button

3. Lumped Port: Modes

1. Number of Modes: 1

2. For Mode 1, click the None column and select New Line

3. Using the coordinate entry fields, enter the vector position

X:0.0, Y: -1.733, Z: 0.0 Press the Enter key

4. Using the coordinate entry fields, enter the vertex

dX: 0.0, dY:-1.733, dZ: 0.01 Press the Enter key

5. Click the **Next** button

6. Click the **Finish** button

Name: P1	
-Full Port Impedance	9
Resistance: 50	ohm 💌
Reactance: 0	ohm 💌
	Use Defaults

ped Port : Modes 📃		
Mode	, Integration Line	Characteristic Impedance (Zo)
1	None	Zpi
	Use [Defaults

Window Help

YZ ZX

XY 💌 3D

🖸 🛛 🖪

Set Grid Plane:

To set the grid plane:

Select the menu item **3D Modeler > Grid Plane >XY**

Set Default Material

To set the default material:

Using the 3D Modeler Materials toolbar, choose vacuum

Create Air:

Create Air

- 1. Select the menu item **Draw** >**Box**
- 2. Using the coordinate entry fields, enter the cylinder position

X:-3.0, Y: -3.0, Z:-4.5 Press the Enter key

3. Using the coordinate entry fields, enter the radius:

dX:6.0, dY: 9.0, dZ: 9.0 Press the Enter key

To set the name:

1. Select the Attribute tab from the Properties window.

2. For the Value of Name type: Air

3. Click the **OK** button

To fit the view:

Select the menu item **View > Fit All > Active View.**

Create Radiation Boundary:

To create a radiation boundary:

- 1. Select the menu itemEdit > Select > By Name
- 2. Select Object Dialog,
 - 1. Select the objects named: Air
 - 2. Click the **OK** button
 - 3. Select the menu item **HFSS** > **Boundaries** > **Assign**> **Radiation**
 - 4. Radiation Boundary window
 - 1. Name: **Rad1**
 - 2. Click the **OK** button

Analysis Setup:

To create an analysis setup:

- 1. Select the menu itemHFSS > Analysis Setup > Add Solution Setup
- 2. Solution Setup Window:
 - 1. Click the General tab:
 - Solution Frequency: 28MHz
 - Maximum Number of Passes: 10
 - Maximum Delta S per Pass: 0.02
 - 2. Click the **OK** button

Addingfrequency sweep Analysis Setup:

To create an analysis frequency sweep setup:

- 1. Select the menu itemHFSS > Analysis Setup > Add frequency sweep
- 2. Solution Edit Sweep Window:
 - 1- Sweep name: Sweep1

Sweep type: Fast

2- Frequency setup:

Type: linear setup

- Start: 0.1 MHz
- Stop: 40 MHz

Step size: 0.01 MHz

3- Save fields cheked

Save Project:

To save the project:

- 1. In an Ansoft HFSS window, select the menu item **File > Save As**.
- 2. From the Save As window, type the Filename: hfss_LoopA
- 3. Click the Save button

Model Validation

To validate the model:

1. Select the menu item **HFSS** > **Validation Check** 2. Click the Close button Note: To view any errors or warning messages, use the Message Manager. Analyze: To start the solution process: Select the menu item **HFSS** > **Analyze All** Setup1: Solving Ports on Local Machine -Adapting p1, Pass 9 Abort **Create Reports:** Create Terminal S-Parameter Plot - Magnitude To create a report: 1. Select the menu item **HFSS** > **Results** > **Create Report** 2. Create Report Window: 1. Report Type: Terminal S Parameters 2. Display Type: Rectangular 3. Click the **OK** button 3. Traces Window: 1. Solution: Setup1: Sweep1 2. Domain: Sweep 3. Click the Y tab 1. Category: Terminal S Parameter 2. Quantity: St (p1,p1),

- 3. Function: **dB**
- 4. Click the **Add Trace** button
- 4. Click the **Done** button

5. Select the menu **Report 2D > Mark All Traces** Click the Min button.

Discussion:

- 1- What are the difference between small square loop antenna and small circular?
- 2- Why loop antenna used in angle finding application?