Torsion of Thin-Walled Tubes

The torque applied to thin-walled tubes is expressed as

$$
T=2 A q
$$

where T is the torque in $N \cdot m m, A$ is the area enclosed by the centerline of the tube (as shown in the stripefilled portion) in mm^{2}, and q is the shear flow in N / mm.

The average shearing stress across any thickness t is

$$
\tau=\frac{q}{t}=\frac{T}{2 A t}
$$

Thus, torque T ca also be expressed as

$$
T=2 A t \tau
$$

Solved Problems in Torsion of Thin-Walled Tubes

Problem 337

A torque of $600 \mathrm{~N} \cdot \mathrm{~m}$ is applied to the rectangular section shown in Fig. P-337.
Determine the wall thickness t so as not to exceed a shear stress of 80 MPa . What is the shear stress in the short sides? Neglect stress concentration at the corners.

Solution 337

$T=2 A t \tau$
Where: $\quad T=600 \mathrm{~N} \cdot \mathrm{~m}=600000 \mathrm{~N} \cdot \mathrm{~mm}$
A $30\langle 00\rangle \quad 2400 \mathrm{~mm}^{2}$

- $=80 \mathrm{Mru}$
$600000-7(2400)(t)(80)$
$t=1.5625 \mathrm{~mm}$

At any convenient center O within the section, the farthest side is the shortest side, thus, it is induced with the maximum allowable shear stress of 80 MPa .

Problem 338
A tube 0.10 in. thick has an elliptical shape shown in Fig. P-338. What torque will cause a shearing stress of 8000 psi?

Figure P-338

Solution 338

Problem 339

A torque of $450 \mathrm{lb} \cdot \mathrm{ft}$ is applied to the square section shown in Fig. $\mathrm{P}-339$. Determine the smallest permissible dimension a if the shearing stress is limited to 6000 psi.

Figure P-339

$$
\begin{aligned}
& T=2 A t \tau \\
& \text { Where: } \quad T=450 \mathrm{lb} . \mathrm{ft} \\
& \mathrm{~T}=450(12) \mathrm{lb}-\mathrm{in} \\
& \mathrm{~A}=\mathrm{a}^{2} \\
& \tau=6000 \mathrm{psi} \\
& 450(12)=2 a^{2}(0.10)(6000) \\
& a=2.12 \mathrm{in}
\end{aligned}
$$

Problem 340

A tube 2 mm thick has the shape shown in Fig. P-340. Find the shearing stress caused by a torque of $600 \mathrm{~N} \cdot \mathrm{~m}$.

Solution 340

Figure P-340

$$
\begin{aligned}
& T=2 A t \tau \\
& \text { Where: } \quad \begin{array}{l}
\mathrm{A}=\pi\left(10^{2}\right)+80(20)=1914.16 \mathrm{~mm}^{2} \\
\mathrm{t}=2 \mathrm{~mm} \\
\quad \mathrm{~T}=600 \mathrm{~N} \cdot \mathrm{~m}=600000 \mathrm{~N} \cdot \mathrm{~mm} \\
600000=2(1914.16)(2) \tau \\
\tau=78.36 \mathrm{MPa}
\end{array}
\end{aligned}
$$

Problem 341

Derive the torsion formula $\tau=\mathrm{T} \rho / \mathrm{J}$ for a solid circular section by assuming the section is composed of a series of concentric thin circular tubes. Assume that the shearing stress at any point is proportional to its radial distance.

Solution 341

$$
\begin{aligned}
& T=2 A t \tau \\
& \text { Where: } \quad \mathrm{T}=\mathrm{dT} ; \mathrm{A}=\pi \rho^{2} ; \mathrm{t}=\mathrm{d} \mathrm{\rho} \\
& \qquad \frac{\tau}{\rho}=\frac{\tau_{\max }}{r} ; \tau=\frac{\tau_{\max } \rho}{r} \\
& d T=2 \pi\left(\rho^{2}\right) d \rho\left(\frac{\tau_{\max } \rho}{r}\right) \\
& T=\frac{2 \pi \tau_{\max }}{r} \int_{0}^{r} \rho^{3} d \rho \\
& T=\frac{2 \pi \tau_{\max }}{r}\left[\frac{\rho^{4}}{4}\right]_{0}^{r} \\
& \left.T=\frac{2 \pi \tau_{\max }}{r}\left(\frac{r^{4}}{4}\right){ }_{T}\right) \\
& T=\frac{\tau_{\max }}{r}\left(\frac{\pi r^{4}}{2}\right) \\
& T=\frac{\tau_{\max }}{r} J \\
& \tau_{\max }=\frac{T r}{J} \text { and it follows that } \tau=\frac{T \rho}{J}
\end{aligned}
$$

Helical Springs

When close-coiled helical spring, composed of a wire of round rod of diameter d wound into a helix of mean radius R with n number of turns, is subjected to an axial load P produces the following stresses and elongation:

The maximum shearing stress is the sum of the direct shearing stress $\tau_{1}=P / A$ and the torsional shearing stress $\tau_{2}=\operatorname{Tr} / \mathrm{J}$, with $\mathrm{T}=\mathrm{PR}$.

$$
\begin{aligned}
& \tau=\tau_{1}+\tau_{2}=\frac{P}{\pi d^{2} / 4}+\frac{16(P R)}{\pi d^{3}} \\
& \tau=\frac{16 P R}{\pi d^{3}}\left(1+\frac{d}{4 R}\right)
\end{aligned}
$$

This formula neglects the curvature of the spring. This is used for light spring where the ratio $d / 4 R$ is small.

For heavy springs and considering the curvature of the spring, a more precise formula is given by: (A.M.Wahl Formula)

$$
\tau=\frac{16 P R}{\pi d^{3}}\left(\frac{4 m-1}{4 m-4}+\frac{0.615}{m}\right)
$$

where m is called the spring index and $(4 m-1) /(4 m-4)$ is the Wahl Factor.

The elongation of the bar is

$$
\delta=\frac{64 P R^{3} n}{G d^{4}}
$$

Notice that the deformation δ is directly proportional to the applied load P. The ratio of P to δ is called the spring constant k and is equal to

$$
k=\frac{P}{\delta}=\frac{G d^{4}}{64 R^{3} n} \text { in } \mathrm{N} / \mathrm{mm}
$$

