INTRODUCTION TO COMPUTER & MICROPROCESSOR

What is a Computer?

A computer is an electronic machine that accepts information, stores it until the

information is needed, processes the information according to the instructions provided by the

user, and finally returns the results to the user. The computer can store and manipulate large

guantities of data at very high speed, but a computer cannot think. A computer makes decisions

based on simple comparisons such as one number being larger than another.

Although the

computer can help solve a tremendous variety of problems, it is simply a machine. It cannot

solve problems on its own.

Computer Generations
From the 1950’s, the computer age took off in full force. The years since then have been

divided into periods or generations based on the technology used.

Table (1.1): Generations of computer

Generation

Technology & Architecture

Software & Applications

Systems

First
(1945-54)

Vacuum tubes, Relay memories, CPU
driven by PC and accumulator; fixed
point Arithmetic

Machine & Assembly
language, Single user Basic
I/O using programmed
and Internet mode.

ENIAC TIFRAC
IBM 701 Princeton IAS

Second (1955-
64)

Discrete Transistors, Core Memories,
Floating point, Arithmetic 1/0,
processors, Multiplexed memory access

HLL used with compilers,
batch processing,
Monitoring, Libraries

IBM7099

CDC 1604

Third
(1965-71)

Integrated circuits, Microprogramming,
Pipelining, Caching, Lookahead
Processing

Multiprogramming, Time
sharing OS, Multi-user
applications

IBM 360/700
CDC 6000
TA-ASC PDP-8

Fourth
(1971-Present)

LSI/VLSI and Semiconductor memory,
Microprocessors technology,
Multiprocessors, vector super-
computing, multi computer

Multiprocessor OS,
languages, Compilers

VAX 9800, Cray X-MP,
IBM 3600, Pentium
Processor based
systems (PCs), Ultra
SPARC

Fifth
(present &
Beyond)

artificial intelligence and still in
development,

parallel processing,
superconductors, voice
recognition Applications

Cray/MPP, TMC/CM-5,
Intel paragon, Fujitsu
VP500

Types of Computers

Computer now comes in a variety of shapes and sizes, which could be roughly classified

according to their processing power into five sizes: super large, large, medium, small, and tiny.

Microcomputers are the type of computers that we are most likely to notice and use in our

everyday life. In fact there are other types of computers that you may use directly or indirectly:

K/
A X4

Supercomputers-super large computers: supercomputers are high- capacity machines
with hundreds of thousands of processors that can perform more than 1 trillion
calculations per second. These are the most expensive but fastest computers available.
"Supers," as they are called, have been used for tasks requiring the processing of
enormous volumes of data, such as doing the U.S. census count, forecasting weather,
designing aircraft, modeling molecules, breaking codes, and simulating explosion of
nuclear bombs.

Mainframe computers - large computers: The only type of computer available
until the late 1960s, mainframes are water- or air-cooled computers that vary in size
from small, to medium, to large, depending on their use. Small mainframes are often
called midsize computers; they used to be called minicomputers. Mainframes are used
by large organizations such as banks, airlines, insurance companies, and colleges-for
processing millions of transactions. Often users access a mainframe using a terminal,
which has a display screen and a keyboard and can input and output data but cannot by
itself process data.

Workstations - medium computer: Introduced in the early 1980s, workstations, are
expensive, powerful computers usually used for complex scientific, mathematical, and
engineering calculations and for computer-aided design and computer-aided
manufacturing. Providing many capabilities comparable to midsize mainframes,
workstations are used for such tasks as designing airplane fuselages, prescription drugs,
and movie special effects. Workstations have caught the eye of the public mainly for
their graphics capabilities, which are used to breathe three-dimensional life into movies
such as Jurassic Park and Titanic. The capabilities of low-end workstations overlap those

of high-end desktop microcomputers.

«* Microcomputer - small computers: Microcomputers, also called personal computers (PC),
can fit next to a desk or on a desktop, or can be carried around. They are either stand-
alone machines or are connected to a computer network, such as a local area network. A
local area network (LAN) connects, usually by special cable, a group of desktop PCs and
other devices, such as printers, in an office or a building. Microcomputers are of several
types:

e Desktop PCs: are those in which the case or main housing sits on a desk, with
keyboard in front and monitor (screen) often on top.

e Tower PCs: are those Microcomputer in which the case sits as a "tower," often on the
floor beside a desk, thus freeing up desk surface space.

e Laptop computers (also called notebook computers): are lightweight portable
computers with built-in monitor, keyboard, hard-disk drive, battery, and AC adapter
that can be plugged into an electrical outlet; they weigh anywhere from 1.8 to 9
pounds.

e Personal digital assistants (PDAs) (also called handheld computers or palmtops)
combine personal organization tools-schedule planners, address books, to-do lists.
Some are able to send e-mail and faxes. Some PDAs have touch-sensitive screens. Some
also connect to desktop computers for sending or receiving information.

e Microcontrollers-tiny computers: Microcontrollers, also called embedded computers,
are the tiny, specialized microprocessors installed in "smart" appliances and
automobiles. These microcontrollers enable PDAs microwave ovens, for example, to

store data about how long to cook your potatoes and at what temperature.

Basic Blocks of a Microcomputer
All Microcomputers consist of (at least):

1. Microprocessor Unit (MPU) MPU is the brain of microcomputer
2. Program Memory (ROM)

3. Data Memory (RAM)

4. Input / Output ports

5. Bus System

<

CPU] QOutput
Data Bus
. >
‘ I I Control Bus
<
Address Bus

Fig. (1.1): Basic Block of a Microcomputer

Input Units -- "How to tell it what to do"

Devices allow us to enter information into the computer. A keyboard and mouse

are the standard way to interact with the computer. Other devices include mice,

scanners, microphones, joysticks and game pads used primarly for games.

Output Units -- “"How it shows you what it is doing"

Devices are how the manipulated information is returned to us. They commonly

include video monitors, printers, and speakers.

Bus System

O A Bus is a common communications pathway used to carry information between the

various elements of a computer system

U The term BUS refers to a group of wires or conduction tracks on a printed circuit

board (PCB) though which binary information is transferred from one part of the

microcomputer to another

O The individual subsystems of the digital computer are connected through an

interconnecting BUS system.

U There are three main bus groups

o ADDRESS BUS
<> DATA BUS
o CONTROL BUS

Data Bus
The data bus consists of 8, 16, or 32 parallel signal lines. As indicated by the double-

ended arrows on the data bus line in Figure (1.1), the data bus lines are bidirectional. This
means that the CPU can read data in from memory or from a port on these lines, or it can
send data out to memory or to a port on these lines. Many devices in a system will have
their outputs connected to the data bus, but only one device at a time will have its outputs
enabled. Any device connected on the data bus must have three-state outputs so that its

outputs can be disabled when it is not being used to put data on the bus.

Address Bus
The address bus consists of 16, 20, 24, or 32 parallel signal lines. On these lines the CPU

sends out the address of the memory location that is to be written to or read from. The number
of memory locations that the CPU can address is determined by the number of address lines. If
the CPU has N address lines, then it can directly address 2" memory locations. For example, a
CPU with 16 address lines can address 2'° or 65,536 memory locations, a CPU with 20 address
lines can address 2°° or 1,048,576 locations. When the CPU reads data from or writes data to a

port, it sends the port address out on the address bus.

Control Bus
The control bus consists of 4 to 10 parallel signal lines. The CPU sends out signals on

the control bus to enable the outputs of addressed memory devices or port devices. Typical

control bus signals are Memory Read, Memory Write, I/O Read, and I/O Write.

Main memory
The memory section usually consists of a mixture of RAM (Random Access Memory) and

ROM (Read Only Memory). It may also have magnetic floppy disks, magnetic hard disks, or
optical disks (CDs, DVDs).
The duties of the memory are :
¢ To store programs
+* To provide data to the MPU on request

¢+ To accept result from the MPU for storage

O Main memory Types
% ROM : read only memory. Contains program (Firmware). does not lose its
contents when power is removed (Non-volatile)
¢ RAM: random access memory (read/write memory) used as variable data,
loses contents when power is removed volatile. When power up will contain

random data values

Central Processing Unit (Microprocessor)
The central processing unit or CPU controls the operation of the computer. In a

computer the CPU is a microprocessor. The CPU controls the operation of the computer.
The CPU fetches binary-coded instructions from memory, decodes the instructions into a
series of simple actions, and carries out these actions in a sequence of steps. The CPU also
contains an address counter or instruction pointer register, which holds the address of the
next instruction or data item to be fetched from memory; general-purpose registers, which
are used for temporary storage of binary data; and circuitry, which generates the control

bus signals.

Evaluation of the Microprocessors

The evolution of microprocessors has been known to follow Moore's Law when it comes
to steadily increasing performance over the years. This law suggests that the complexity of an
integrated circuit, with respect to minimum component cost, doubles every 18 months. This
dictum has generally proven true since the early 1970s. From their humble beginnings as the
drivers for calculators, the continued increase in power has led to the dominance of
microprocessors over every other form of computer; every system from the largest mainframes
to the smallest handheld computers now uses a microprocessor at its core.

Motorola and Intel have invented most of the microprocessors over the last decade.

Table (1.2) lists some of types that belong to these companies (families) of microprocessors.

Table (1.2): Some Types of Microprocessors

-6 -

Company 4 bit 8 bit 16 bit 32 bit 64 bit
4004 8008 8088/6 80386 80860
Il 4040 8080 80186 80486 Pentium
8085 80286
78000
Zilog 780 78001
78002
6300 63006 63020
Motorola 6302 63008 63030
6309 63010 63040

The Microprocessor-Based Personal Computer System

Figure (1.2) shows the block diagram of the personal computer. The block diagram is

composed of four parts:

Memory

Memory
Bus

DRAM
SRAM
Cache
ROM
Flash
EEPROM

Microprocessor

S086
through
Pentium IV

)| VO System
VESA
1_)C_l Serial
]:l_S_—‘L Plotter
;:i: Kevboard
Floppy
Tape
Hard Drive
Mouse
Scanner
DYVD
CDROM
Momnitor
Printer

Fig. (1.2): The block diagram of the personal computer

1. Bus Architecture:- Three buses:

o Address

o,

% Data

K/

¢ Control:

Address bus >
Microprocessor /\14 Data bus >
MWTC —— -
MRDC — P -
1OWC
1ORC —

?—
1RAVE AVAVE IRV VAV

ROM DRAM Kevboard Printer

Fig. (1.3): The block diagram of computer system showing the buses structure

2. The memory

The memory structures of all Intel 80X86-Pentium 4 personal computer systems are

similar. This includes the first personal computers based upon the 8088 introduced in 1981 by
IBM to the most powerful high-speed versions of today based on the Pentium 4. Figure (1.4)
illustrates the memory map of a personal computer system.
The memory system is divided into three main parts: TPA (Transient Program Area), system area,
and XMS (Extended Memory System). The type of microprocessor in your computer determines
whether an extended memory system exists. If the computer is based upon an older 8086 or
8088 (a PC or XT), the TPA and system areas exist, but there is no extended memory area. The PC
and XT contain 640K bytes of TPA and 384K bytes of system memory, for a total memory size of
IM bytes. We often call the first 1M byte of memory the real or conventional memory system
because each Intel microprocessor is designed to function in this area by using its real mode of
operation.

Computer systems based on the 80286 through the Pentium 4 not only contain the TPA
(640K bytes) and system area (384K bytes), they also contain extended memory. These machines
are often called AT class machines.

The TPA: The transient program area (TPA) holds the DOS operating system and other programs
that control the computer system. The TPA also stores DOS application programs. The length of

the TPA is 640K bytes. Figure (1-5) shows the memory map of the TPA.

-8 -

The System Area: The system area contains program on rather a ROM or flash memory, and

areas of RAM for data storage. Figure (1-6) shows the memory map of the system area.

9FFFF
9FFFO

O8E30
08490
02530
01 160
]
00500
00400
]

Fig. (1.5):

MSDOS program

Free TPA

NS\

COMMAND.COM

Device drivers

MSDOS program

10.SY'S program

DOS communicalion area

BIOS communication area

Interrupt vector

The memory map of

the TPA area of a PC

3.1/0 System

The 1/0 devices

I M byte of
real m emur}-‘{

<—

Extended

memary

N\

System area

384k byte

TPA
640k byte

Fig. (1.4): The memory map

allow the

of the PC

microprocessor to

communicate between itself and the outside world. The I/O

space in a computer system extends from port O000H to port

FFFFH. The 1/O space allows the computer to access up to 64k

different 8-bit 1/0 devices.

found in many personal computer systems.

Figure (1-7)

shows the 1/0 map

The 1/O area contains two major sections. The area

below I/O location 0400H is considered reserved for system

devices. The remaining area is available 1/O space for expansion

on newer devices.

FFFFF
BIOS system ROM
F O
Free area
Hard disk controller ROM
LAN contreller ROM
CRO00
Video BIOS ROM
CO00
= Video RAM
Text area
Bl’}l’}f’}f} b
Video RAM
igraphics area)
LX)

Fig. (1.6): The system area of a

FFFF

03F§
03F0
03D0
0378
0320
02F8
0060
0040
0020
0000

typical PC

IO expansion area

A

COMI1

Flopov disk controller
CGA adapter
LPTI
Hard disk controller

COM2
8255 (PIA)
Timer (8§253)
Interrupt controller
DMA controller

Fig. (1.7): The I/O map of a PC

8086 Microprocessor

The main features of 8086 up are:

» Itis a 16-bit Microprocessor (up). It’s ALU, internal registers works with 16bit binary word.
> 8086 has a 20 bit address bus can access up to 2°°= 1 MB memory locations.
» 8086 has a 16bit data bus. It can read or write data to a memory/port either 16bits or 8 bit
at a time.
It can support up to 64K I/O ports.
It provides 14, 16 -bit registers.
Frequency range of 8086 is 6-10 MHz
It has multiplexed address and data bus ADO- AD15 and A16 — A19.
It requires single phase clock with 33% duty cycle to provide internal timing.
It can prefetch up to 6 instruction bytes from memory and queues them in order to speed
up instruction execution.
» It requires +5V power supply.
» A 40 pin dual in line package.
» 8086 is designed to operate in two modes, Minimum mode and Maximum mode.
0 The minimum mode is selected by applying logic 1 to the MN / MX input pin.
This is a single microprocessor configuration.
0 The maximum mode is selected by applying logic 0 to the MN / MX input pin.

This is a multi-microprocessors configuration.

Architecture or Functional Block Diagram of 8086

The microarchitecture of a processor is its internal architecture-that is, the circuit building
blocks that implement the software and hardware architectures of the 8086 microprocessors.
The microarchitecture of the 8086 microprocessors employs parallel processing-that is, they are
implemented with several simultaneously operating processing units. Figure (2-1) shows the
internal architecture of the 8086 microprocessors. They contain two processing units: the B us

Interface Unit (BID) and the Execution Unit (EU).

- 10 -

GENERAL
EU REGISTERS

OPERANDS

b

| FLAGS

SEGMENT
REGISTERS

BIU INSTRUCTION PONINTER

ADDERSS
GENERATION
AND BUS
CONTROL

INSTUCTION
QUEUE

Fig. (2.1): Internal architecture of the 8086 microprocessor.

BUS INTERFACE UNIT:

It provides a full 16 bit bidirectional data bus and 20 bit address bus.

The bus interface unit connects the microprocessor to external devices. BIU performs

following operations:

» Instruction fetching

» Reading and writing data of data operands for memory

» Inputting/outputting data for input/output peripherals.

» And other functions related to instruction and data acquisition.
To implement above functions, the BIU contains the segment registers, the instruction
pointer, address generation adder, bus control logic, and an instruction queue.

The BIU uses a mechanism known as an instruction stream queue to implement pipeline

architecture.

-11 -

EXECUTION UNIT

¢ The Execution unit is responsible for decoding and executing all instructions.

e The EU consists of arithmetic logic unit (ALU), status and control flags, general-purpose
registers, and temporary-operand registers.

e The EU extracts instructions from the top of the queue in the BIU, decodes them,
generates operands if necessary, passes them to the BIU and requests it to perform the
read or write by cycles to memory or I/O and perform the operation specified by the
instruction on the operands.

e During the execution of the instruction, the EU tests the status and control flags and
updates them based on the results of executing the instruction.

Software Model of the 8086 Microprocessor

As a programmer of the 8086 you must become familiar with the various registers in the EU
and BIU. The 8086 microprocessor has a total of fourteen registers that are accessible to the
programmer. It is divided into four groups. They are:

e Four General purpose registers

e Four Index/Pointer registers

e Four Segment registers

o Two other register

Fig. (2.2): Software Model of the 8086 microprocessor.
-12 -

General purpose registers:

Accumulator register consists of two 8-bit registers AL and AH, which can be combined together
and used as a 16-bit register AX. AL in this case contains the loworder byte of the word, and AH
contains the high-order byte. Accumulator can be used for 1/O operations and string
manipulation.

Base register consists of two 8-bit registers BL and BH, which can be combined together and
used as a 16-bit register BX. BL in this case contains the low-order byte of the word, and BH
contains the high-order byte. BX register usually contains a data pointer used for based, based

indexed or register indirect addressing.

Genceral Purpose Registers

Accnmulator AX - : Multiply, divide, T/0

Base BX Pointer to base addresss (data)
Connt CX Count for loops, shifts

Data DX Multiply, divide, IO

Count register consists of two 8-bit registers CL and CH, which can be combined together and
used as a 16-bit register CX. When combined, CL register contains the loworder byte of the
word, and CH contains the high-order byte. Count register can be used in Loop, shift/rotate
instructions and as a counter in string manipulation
Data register consists of two 8-bit registers DL and DH, which can be combined together and
used as a 16-bit register DX. When combined, DL register contains the low order byte of the
word, and DH contains the high-order byte. Data register can be used as a port number in I/O
operations. In integer 32-bit multiply and divide instruction the DX register contains high-order
word of the initial or resulting number.
Index or Pointer Registers

These registers can also be called as Special Purpose registers.
Source Index (SI) is a 16-bit register. Sl is used for indexed, based indexed and register indirect
addressing, as well as a source data address in string manipulation instructions. Used in

conjunction with the DS register to point to data locations in the data segment.

-13 -

Destination Index (DI) is a 16-bit register. Used in conjunction with the ES register in string
operations. Dl is used for indexed, based indexed and register indirect addressing, as well as a
destination data address in string manipulation instructions. In short, Destination Index and SI

Source Index registers are used to hold address.

Pointer and Index Registers

1 0
Stack Pointer SP Pointer to top of stack
Base Pointer BP Pointer to base address (stack)
Source Index b | Source string/index pointer
Destination Index DI Destination string/index pointer
15 0

Stack Pointer (SP) is a 16-bit register pointing to program stack, ie it is used to hold the address
of the top of stack. The stack is maintained as a LIFO with its bottom at the start of the stack
segment (specified by the SS segment register).Unlike the SP register, the BP can be used to
specify the offset of other program segments.
Base Pointer (BP) is a 16-bit register pointing to data in stack segment. It is usually used by
subroutines to locate variables that were passed on the stack by a calling program. BP register is
usually used for based, based indexed or register indirect addressing.
Segment Registers

Most of the registers contain data/instruction offsets within 64 KB memory segment.
There are four different 64 KB segments for instructions, stack, data and extra data. To specify
where in 1 MB of processor memory these 4 segments are located the processor uses four
segment registers.
Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor
instructions. The processor uses CS segment for all accesses to instructions referenced by
instruction pointer (IP) register. CS register cannot be changed directly. The CS register is

automatically updated during far jump, far call and far return instructions.

Segment Registers

Code Segment CS
Data Segment DS
Stack Segment SS
Extra Segment ES

-14 -

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program stack.
By default, the processor assumes that all data referenced by the stack pointer (SP) and base
pointer (BP) registers is located in the stack segment. SS register can be changed directly using
POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program data.
By default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX)
and index register (SI, DI) is located in the data segment. DS register can be changed directly
using POP and LDS instructions.

Extra segment (ES) used to hold the starting address of Extra segment. Extra segment is
provided for programs that need to access a second data segment. Segment registers cannot be

used in arithmetic operations.
Other registers of 8086

Instruction Pointer (IP) is a 16-bit register. This is a crucially important register which is used to
control which instruction the CPU executes. The ip, or program counter, is used to store the
memory location of the next instruction to be executed. The CPU checks the program counter to
ascertain which instruction to carry out next. It then updates the program counter to point to
the next instruction. Thus the program counter will always point to the next instruction to be
executed.

Flag Register determines the current state of the processor. They are modified automatically by
CPU after mathematical operations, this allows to determine the type of the result, and to
determine conditions to transfer control to other parts of the program. 8086 has 9 flags and they
are divided into two categories:

1. Status Flags

Status Flags represent result of last arithmetic or logical instruction executed. Conditional

flags are as follows:

» Carry Flag (CF): This flag indicates an overflow condition for unsigned integer arithmetic.

It is also used in multiple-precision arithmetic.
» Auxiliary Flag (AF): If an operation performed in ALU generates a carry/barrow from lower

nibble (i.e. DO D3) to upper nibble (i.e. D4 — D7), the AF flag is set i.e. carry given by D3 bit to

- 15 -

D4 is AF flag. This is not a general-purpose flag, it is used internally by the processor to
perform Binary to BCD conversion.

» Parity Flag (PF): This flag is used to indicate the parity of result. If lower order 8-bits of the
result contains even number of 1%s, the Parity Flag is set and for odd number of 1"s, the
Parity Flag is reset.

» Zero Flag (ZF): It is set; if the result of arithmetic or logical operation is zero else it is reset.

» Sign Flag (SF): In sign magnitude format the sign of number is indicated by MSB bit. If the
result of operation is negative, sign flag is set.

» Overflow Flag (OF): It occurs when signed numbers are added or subtracted. An OF

indicates that the result has exceeded the capacity of machine.

Overflow Flag Auxiliary Carry Flag

Direction Flag Parity Flag

Interrupt Flag Carry Flag
OF|DF| IF |TF|SF|Z2F AF PF CF

15 |14 |13 |12 |11 10 =) = I S = 4 3 2 1 8)

/{g\

Trap Flag Sign Zero Flag

2. Control Flags
Control flags are set or reset deliberately to control the operations of the execution unit.
Control flags are as follows:
1. Trap Flag (TP):
> Itis used for single step control.
> It allows user to execute one instruction of a program at a time for debugging.
> When trap flag is set, program can be run in single step mode.
2. Interrupt Flag (IF):
> Itis an interrupt enable/disable flag.
> If it is set, the maskable interrupt of 8086 is enabled and if it is reset, the interrupt
is disabled.
> It can be set by executing instruction sit and can be cleared by executing CLI

instruction.

- 16 -

3. Direction Flag (DF):

> Itis used in string operation.

> If it is set, string bytes are accessed from higher memory address to lower memory

address.

> When it is reset, the string bytes are accessed from lower memory address to

higher memory address.

MEMORY SEGMENTATION

The 8086 microprocessor operate in
the Real mode memory addressing. Real
mode operation allows the microprocessor to
address only the first 1M byte of memory
space. The first 1M byte of memory is called
either the real memory or conventional
memory system. Even though the 8086 has a
1M byte address space, not all this memory is
active at one time. Actually, the 1M bytes of
memory are partitioned into 64K byte
(65,536) segments. The 8086-80286
microprocessors allow four memory segments

shows these memory segments.

EXTRA

CODE r—

DATA _l DATAS1

STACK S

CODE

Segment Registers

DATASZ

MEMORY

. Figure 2-3

Fig. (2.3): Real Mode,

Segmented Memory Model.

Think of segments as windows that can be moved over any area of memory to access

data or code. Also note that a program can have more than four segments, but can only access

four segments at a time.

Example: Let the segment registers be assigned as follow: CS = 0009H, DS = OFFFH, SS =

10EOQ, and ES = 3281H. We note here that code segment and data segment are overlapped while

other segments are disjointed.

17 -

Segment registers

CS
DS
SS
ES

00000

- 1Mbyte memory unit

00090

—»

OFFFO

Code segment

=

Data segment

0009H (64kbyte) These two
OFFFH segments are
10EOH |—— . overlapped
L —
3281H 20E00
\~ Stack segment
(64kbyte)
—
» —
32810
> Extra segment
(64kbyte)
—
FFFFF

In the real mode a combinational of a segment address and offset address access a

memory location. All real mode memory address must consist of a segment address plus an

offset address. The microprocessor has a set of rules that apply to segments whenever memory

is addressed. These rules define the segment register and offset register combination (see Table

2-1). For example, the code segment register is always used with the instruction pointer to

address the next instruction in a program. This combination is CS:IP. The code segment register

defines the start of the code segment and the instruction pointer locates the next instruction

within the code segment

TABLE (2-1): 8086 default 16 bit segment and offset address combinations

Special Purpose

Instruction address

Stack address

Top of the stack

BX, DI,SI, an 8-bit number, or a 16-bit number J| Data address

DI for string instructions

String destination address

This combination (CS:IP) locates the next instruction executed by the microprocessor. For

example if CS = 1400H and IP = 1200H, the microprocessor fetches its next instruction from

memory location:

- 18 -

Physical address=Segment base address*10+Offset (Effective) address
PA = SBA * 10+ EA
=1400H*10+1200H=15200H.

15 SEGMENT DISPLACEMENT o

| Offset |

"y -

15 o
| Segment o o0 o of

N
I

| Physical Address (20bit) |

Fig. (2.3): Generating a physical address

Q: What is segmentation? What are its advantages? How is segmentation implemented in
typical microprocessors?
Ans:

Segment memory addressing divides the memory into many segments. Each of these
segments can be considered as a linear memory space. Each of these segment is addressed by a
segment register. However since the segment register is 16 bit wide and the memory needs 20
bits for an address the 8086 appends four bits segment register to obtain the segment address.
Therefore, to address the segment 10000H by , say the SS register, the SS must contain 1000H.
The first advantage that memory segmentation has is that only 16 bit registers are required both
to store segment base address as well as offset address. This makes the internal circuitry easier
to build as it removes the requirement for 20 bits register in case the linear addressing method is
used. The second advantage is relocatability.

- 19 -

8086 Addressing Mode

Introduction

Program is a sequence of commands used to tell a microcomputer what to do.

Each command in a program is an instruction

Programs must always be coded in machine language before they can be executed by the
microprocessor.

A program written in machine language is often referred to as machine code.

Machine code is encoded using 0s and 1s

A single machine language instruction can take up one or more bytes of code

In assembly language, each instruction is described with alphanumeric symbols instead of
with 0s and 1s

Instruction can be divided into two parts : its opcode and operands

Op-code identify the operation that is to be performed.

Each opcode is assigned a unique letter combination called a mnemonic.

Operands describe the data that are to be processed as the microprocessor carried out,
the operation specified by the opcode.

For example, the move instruction is one of the instructions in the data transfer group of
the 8086 instruction set.

Execution of this instruction transfers a byte or a word of data from a source location to a
destination location.

MOWV A BX

[I

Opcode Destination Source
Operands
Addressing Mode of 8086

An addressing mode is a method of specifying an operand. The 8086 addressing modes

categorized into three types:

1. Register Addressing

2.

Immediate Addressing

3. Memory Addressing

Register addressing mode
In this addressing mode, the operands may be:

regl6: 16-bit general registers: AX, BX, CX, DX, Sl, DI, SP or BP.
reg8 : 8-bit general registers: AH, BH, CH, DH, AL, BL, CL, or DL.

- 20 -

e Sreg:segment registers: CS, DS, ES, or SS. There is an exception: CS cannot be a
destination.
For register addressing modes, there is no need to compute the effective address. The operand
is in a register and to get the operand there is no memory access involved.

Example: Register Operands

MOV AX, BX ; movregl6, regl6
ADD AX, SI ; add regl6, regl6
MOV DS, AX ; mov Sreg, regl6

Some rules in register addressing modes:
1. You may not specify CS as the destination operand.

Example: MOV CS, 02H —> wrong
2. Only one of the operands can be a segment register. You cannot move data from one segment
register to another with a single MOV instruction. To copy the value of CS to DS, you would have
to use some sequence like:

MOV DS,CS -> wrong

MOQV AX, CS

MOV DS, AX -> the way we do it
3. You should never use the segment registers as data registers to hold arbitrary values. They
should only contain segment addresses.

Immediate Addressing Mode

In this addressing mode, the operand is stored as part of the instruction. The immediate
operand, which is stored along with the instruction, resides in the code segment -- not in the
data segment. This addressing mode is also faster to execute an instruction because the operand
is read with the instruction from memory. Here are some examples:

Example: Immediate Operands

MOV AL, 20 ; Copies a 20 decimal into register AL
MOV BX,55H ; Copies a 0055H into register BX

MQV S1,0 ; Copies a 0000H into register SI

MOV DX, ‘Ahmed’ ; Copies an ASCII Ahmed into register DX

MOV CL, 10101001B ; Copies a 10101001 binary into register CL

Memory Addressing Modes

To reference an operand in memory, the 8086 must calculate the physical address (PA) of
the operand and then initiate a read or write operation of this storage location. The 8086 MPU is
provided with a group of addressing modes known as the memory operand addressing modes

-21 -

for this purpose. Physical address can computed from a segment base address (SBA) and an
effective address (EA). SBA identifies the starting location of the segment in memory, and EA
represents the offset of the operand from the beginning of this segment of memory.
PA=SBA (segment): EA (offset)
PA=segment base: base + index + Displacement

8 bit displacement
PA= 16 bit displacement

EA:base + 1ndex + Dlsplacement

There are different forms of memory addressing modes
1. Direct Addressing

2. Register indirect addressing

3. Based addressing

4. Indexed addressing

5. Based indexed addressing

6. Based indexed with displacement

1. Direct Addressing Mode

Direct addressing mode is similar to immediate addressing in that information is encoded
directly into the instruction. However, in this case, the instruction opcode is followed by an
effective address, instead of the data. As shown below:

CS
DS|
PA=" SS (- Direct address

ES

e

Default is DS
For example the instruction

Example: Immediate Operands

MOV AL, DS:[2000H] ; move the contents of the memory location with offset 2000
or MOV AL, [2000H] into register AL

MOV AL,DS:[8088H] ; move the contents of the memory location with offset 8088
or MOV AL,[8088H] into register AL

MOV DS:[1234H],DL ; stores the value in the DL register to memory location with
or MOV [1234H],DL offset 1234H

- 22 -

By default, all displacement-only values provide offsets into the data segment. If you
want to provide an offset into a different segment, you must use a segment override prefix
before your address. For example, to access location 1234H in the extra segment (ES) you would
use an instruction of the form MOV AX,ES:[1234H)]. Likewise, to access this location in the code
segment you would use the instruction MOV AX, CS:[1234H].

2. Register Indirect Addressing Mode
This mode is similar to the direct address except that the effective address held in any of
the following register: BP, BX, SI, and DI. As shown below:

MOV AL, [BX] (E)SS BX
MOV AL, [BP] PA=Y gg (- 2‘1’
MOV AL, [SI] /ES DI
MOV AL, [DI]

Default 1s DS

The [BX], [SI], and [DI] modes use the DS segment by default. The [BP] addressing mode uses the
stack segment (SS) by default. You can use the segment override prefix symbols if you wish to
access data in different segments. The following instructions demonstrate the use of these
overrides:

MOV AL, CS:[BX]

MOV AL, DS:[BP]

MOV AL, SS:[SI]

MOV AL, ES:[DI]

For example:
MOV SI, 1234H
MOV AL, [SI]

If SI contains 1234H and DS contains 0200H the result produced by executing the instruction is
that the contents of the memory location at address:

PA = 02000H + 1234H

= 03234 are moved to the AX register.

3. Based Addressing Mode

In the based addressing mode, the effective address of the operand is obtained by adding
a direct or indirect displacement to the contents of

either base register BX or base pointer register BP. Cs o
. DS BX | 4 |8-bit displacement
The physical addresses calculate as shown: PA=% g5 (Y Bp 16-bit displacement
ES

-23-

For example if BX=1000, DS=0200, and AL=EDH, for the following instruction:
MOV [BX] + 1234H, AL

EA=BX+1234H = 1000H+1234H = 2234H
PH=DS*10+EA =0200H*10+2234H =4234H

So it writes the contents of source operand AL (EDH) into the memory location 04234H. If BP is
used instead of BX, the calculation of the physical address is performed using the contents of the
stack segment (SS) register instead of DS. This permits access to data in the stack segment of
memory.

Hov ALt MOV AL (6P

"""l [ee |-~
D3 IE I-_

“&ﬂtl—g——lll NOY n,m]g_ AL

+
| i
| ¢
03
4. Indexed Addressing Modes

In the Indexed addressing mode, the effective address of the operand is obtained by
adding a direct or indirect displacement to the contents of either Sl or DI register. The physical
addresses calculate as shown below:

The indexed addressing modes use the

following syntax: DS | | SI| & |8-bitdisplacement
MOV AL, [SI] PA=% g5 (9 DI 16-bit displacement

MOV AL, [DI] ES
MOV AL, [SI+DISP] "
MOV AL, [DI+DISP]
5. Based Indexed Addressing Modes

Combining the based addressing mode and the indexed addressing mode results in a
new, more powerful mode known as based-indexed addressing mode. This addressing mode can
be used to access complex data structures such as two-dimensional arrays. As shown below this
mode can be used to access elements in an m X n array of data. Notice that the displacement,
which is a fixed value, locates the array in memory. The base register specifies the m coordinate

- 24 -

of the array, and the index register identifies the n coordinate. Simply changing the values in the
base and index registers permits access to any element in the array.

MOV AL, [BX+SI]

MOV AL, [BX+DI] CS

ps| . BX ST 8-bit displacement
MOV AL, [BP+Sl] PA=Y g (VY BP (77 pr + 9 16-bit displacement
MOV AL, [BP+DI] ES

Suppose that BX contains 1000H and si contains 880H. Then the instruction
MOV AL,[BX][SI]

would load AL from location DS:1880h.
Likewise, if BP contains 1598h and DI contains 1004,

MOV AX,[BP+DlI]
will load the 16 bits in AX from locations SS:259C and SS:259D.
The addressing modes that do not involve BP use the data segment by default. Those that have
BP as an operand use the stack segment by default.

WOV AL (x| ’—vﬁ_" AN M 48P | |—>=L_~,—-r Al
+
|

(s — [
[¢ “Br ¢
(55 L 55] Lo

6. Based Indexed Plus Displacement Addressing Mode
These addressing modes are a slight modification of the base/indexed addressing modes
with the addition of an eight bit or sixteen bit constant. The following are some examples of

these addressing modes

MOV AL, DISP[BX][SI] MY A {5+ el
MOV AL, DISP[BX+DlI] —L+,—_—h
MOV AL, [BP+SI+DISP] 3 _'|_
MOV AL, [BP][DI][DISP] E |
You may substitute DI in the figure T
above to produce the [BX+DI+disp] IZ“H bl
addressing mode. MOV AL [BPsE+dagl
1 e o |
+ = -
;
:
E a5y | o=

Q: Compute the physical address for the specified operand in each of the following instructions.
The register contents and variable are as follows: (CS)=0A00H, (DS)=0BO0OH, (SS)=0DOOH,
(SI)=0FFOH, (DI)=00BOH, (BP)=00EAH and (IP)=0000H, LIST=00FOH, AX=4020H, BX=2500H.

1) Destination operand of the instruction

2) Source operand of the instruction

3) Destination operand of the instruction

4) Source operand of the instruction

5) Destination operand of the instruction

6) Source operand of the instruction

7) Destination operand of the instruction

8) Source operand of the instruction

9) Destination operand of the instruction

10)
11)
12)
13)
14)

15)

Destination operand of the instruction
Source operand of the instruction
Source operand of the instruction
Destination operand of the instruction
Destination operand of the instruction

Source operand of the instruction

- 26 -

MOV LIST [BP+DI] , AX

MOV CL, [BX+200H]

MOV [DI+6400H] , DX

MOV AL, [BP+SI-400H]

MOV [DI+SP], AX

MOV CL, [SP+200H]

MOV [BX+DI+6400H] , CX

MOV AL, [BP- 0200H]

MOV [SI] , AX

MOV [BX][DI]+0400H,AL

MOV AX, [BP+200H]

MOV AL, [SI-0100H]

MOV DI, [SI]

MOV [DI]+CFOOH,AH

MOV CL, LIST[BX+200H]

8086 Instruction Set

The instructions of 8086 are classified into SIX groups. They are:

1. DATA TRANSFER INSTRUCTIONS
ARITHMETIC INSTRUCTIONS
BIT MANIPULATION INSTRUCTIONS
STRING INSTRUCTIONS
PROGRAM EXECUTION TRANSFER INSTRUCTIONS
PROCESS CONTROL INSTRUCTIONS

oukwnN

1. DATA TRANSFER INSTRUCTIONS

The DATA TRANSFER INSTRUCTIONS are those, which transfers the DATA from any one
source to any one destination. The data’s may be of any type. They are again classified into four
groups. They are:

General — Purpose Byte Or |Special Address Simple Input And Flag Transfer
Word Transfer Transfer Instruction [Output Port Transfer [Instructions
Instructions Instruction

MOV LEA IN LAHF

XCHG LDS ouT SAHF
XLAT LES PUSHF
PUSH POPF
POP

MOV Instruction

The MOV instruction copies a word or a byte of data from a specified source to a
specified destination. Data can be moved between general purpose-registers, between a general
purpose-register and a segment register, between a general purpose-register or segment
register and memory, or between a memory location and the accumulator. Note that memory-
to-memory transfers are note allowed.

Mnemonic | Meaning Format Operation Flags Effected
MoV Move MOV D,S |(S) — (D) none
Example:
MOV CX, 037AH ; Move 037AH into the CX; 037A —» CX
MOV AX, BX ; Copy the contents of register BX to AX; BX — AX
MOV DL,[BX] ; Copy byte from memory at BX to DL ; DS*10+BX — DL

27 -

XCHG Instruction - Exchange XCHG destination, source

The Exchange instruction exchanges the contents of the register with the contents of
another register (or) the contents of the register with the contents of the memory location.
Direct memory to memory exchanges are not supported. The both operands must be the same
size and one of the operand must always be a register.

Mnemonic | Meaning Format Operation Flags Effected
XCHG Excgange | MOV DS (D) © (S) none
Example:
XCHG cx, [037A]H ;[(DS* 10)+ 037A] & CX
XCHG AX, [BX] ; [(DS* 10)+ BX] <> AX
XCHG DL, [BP+200H] ; [(SS* 10)+ BP +200] & DL

Example 1: For the figure below. What is the result of executing the following instruction?
XCHG AX, [0002]

Solution
Memory Memory Memory Memory
address content address content
01000] 11 01000 11
os [o100 01001 | AA os o100 01001 | AA
01002 | EF 01002 |74
01003 | 80 01003 | 30
AX | 3074 : AX 80EF
01004 | 47 01004 | 47
01005 | 8D 01005 | 8D
Before : After

XLAT/XLATB Instruction - Translate a byte in AL

XLAT exchanges the byte in AL register from the user table index to the table entry,
addressed by BX. It transfers 16 bit information at a time. The no-operands form (XLATB)
provides a "short form" of the XLAT instructions.

Mnemonic | Meaning Format Operation Flags Effected
XLAT Translate XLAT AL « (DS*10+(AL)+(BX)) none

Example 2: For the figure below, what is the result of executing the following instruction?
XLAT

- 28 -

Solution:

ps | o100
AX xx03
BX | 0040

The stack

Memory
address

Memory
content

01040

11

01041

AA

01042

EF

01043

80

01044

47

01045

8D

Before

DS

AX

BX

Memory Memory
address content

01040 | 11
01041 | AA
01042 | 74
Xx80 01043 | 80
0020 01044 | 47

01045] 8D
After

0100

The stack is implemented in the memory and it is used for temporary storage of
information such as data and addresses. The stack is 64Kbytes long and is organized from a
software point of view as 32Kwords.
e SS register points to the lowest address word in the stack
e SP and BP points to the address within stack
e Data transferred to and from the stack are word-wide, not byte-wide.

e The first address in the Stack segment (SS : 0000) is called End of Stack.
* The last address in the Stack segment (SS : FFFE) is called Bottom of Stack.
* The address (SS:SP) is called Top of Stack.

B8088/8086

Memory
{word-wide] |

SS:FFFEH |
|

O

.

s

|
|

'—n-Ji S5:0000H

SS5:5P

.

Stack
segment

-29.-

Bottom of stack

Top of stack

End of stack

PUSH and POP Instructions

The PUSH and POP instructions are important instructions that store and retrieve data
from the LIFO (Last In First Out) stack memory. The general forms of PUSH and POP instructions
are as shown below:

Mnemonic Meaning Format Operation Flags Effected

PUSH Push word onto the stack | PUSH S (SP) < (SP-2) None
((SP)) «(S)

POP Pop word off stack POPD D < ((SP)) None

(SP) = (SP+2)

® POP instruction is used to read word from the stack.
e PUSH instruction is used to write word to the stack.
* When a word is to be pushed onto the top of the stack:
0 The value of SP is first automatically decremented by two
0 and then the contents of the register written into the stack.
e When a word is to be popped from the top of the stack the
0 the contents are first moved out the stack to the specific register
0 then the value of SP is incremented by two.

Example 3: let AX=1234H, SS=0105H and SP=0006H. Figure below shows the state of stack prior
and after the execution of next program instructions:

PUSH AX
POP BX
POP AX
Memory Memory Memory Memory
address content address content
01058 | 90 01058 | 90
01057 | DD :oax| 1234 01057 | DD
AX | 1234 :
01056 | DF : 01056 | DF
¢ BX|] 5D00
BX | 5D00 01055 | 1F : 01055 | 12
01054 | 55 L sp[o00a 01054 | 34
Sp | 0006 01053 | 52 01053 | 52
ioss
ss| o105 01052] CO 0105 01052] CO
01051 | 00 01051] 00
01050] 02 01050 j 02
(a) Initial State (b) After execution of PUSH AX

- 30 -

Memory Memory Memory Memory
address content address content
01058 | 90 01058 | 90
01057 | DD i ax [ooor 01057 | DD
AX | 1234 :
01056 | DF : 01056 | DF
i oBx| 1234
BX | 1234 01055 | 12 : 01055} 12
— 01054 | 34 i sp| ooos 01054 | 34
sp 01053 | 52 01053 | 52
iss
ss| o105 01052 | CO 0105 01052 | CO
01051 | 00 01051 | 00
01050 | 02 01050 | 02
(c) After execution of POP BX (d) After execution of POP AX

LEA, LDS, and LES (Load Effective Address) Instructions
These instructions load a segment and general purpose registers with an address directly
from memory. The general forms of these instructions are as shown below:

Mnemonic Meaning Format Operation Flags Effected
Load register with
LEA Effective Address LEA regl6, EA | EA — (regl6) none
LDS Load register and Ds with LDS reg16, EA [PA] — (regl6) none
words from memory [PA+2] — (DS)
LES Load register and ES with LES reg16, EA [PA] — (regl6) None
words from memory [PA+2] — (ES)
Example4:
LEA BX, PRICE ;Load BX with offset of PRICE in DS
LEA BP, SS:STAK ;Load BP with offset of STACK in SS
LEA CX, [BX][DI] :Load CX with EA=BX + DI
LDS BX, [4326] ; copy the contents of the memory at displacement 4326H in DS to BL,
contents of the 4327H to BH. Copy contents of 4328H and 4329H in DS to DS register.
A Memory Memory
Example 5: Assuming that (BX)=100H, DI=200H, address content
DS=1200H, Sl= FOO2H, AX= 0105H, and the following 12300 |11
memory content. what is the result of executing the 12301 | AA
following instructions?
12302 EF
a. LEA SI,[DIl+ BX+2H]
b. MOV SI, [DI+BX+2H] 12303 | 80
c. LDS CX , [300] 12304 |47
d. LES BX, [DI+AX] 12305 8D
12306 | 5A
12307 92
12308 | C5

- 31 -

Solution:

a.LEA SI,[DI+BX+2H

Sl = (DI) + (BX) + 2H= 0200H+0100H+0002H= 0302H
b. MOV S|, [DI+BX+2H]

EA=(DI+BX+2H)= 0302H
PA=DS*10+EA=1200*10+0302=12302

S| = 80EFH

c.LDS CX , [300]
PA = DS*10+EA= 1200H*10+300H = 12300H
CX= AA11H and DS=80EFH

d. LES BX, [DI+AX]

EA = (DI+AX)= 0200H+0105H =0305H

PA= DS*10+EA = 1200H*10+0305H = 12305H
BX =5A8DH and ES=C592H

IN and OUT Instruction

There are two different forms of IN and OUT instructions: the direct 1/O instructions and
variable 1/0 instructions. Either of these two types of instructions can be used to transfer a byte
or a word of data. All data transfers take place between an I/O device and the MPU’s
accumulator register. The general form of this instruction is as shown below:

Mnemonic Meaning Format Operation Flags Effected
IN Input direct IN Acc, Port (Acc) « (Port) none
Input variable IN Acc, DX (Acc) <« (DX)
oUT Output dire.ct OUT Port, Acc (Port) < (Acc) none
Output variable | OUT DX, Acc (DX) « (Acc)
Example:
IN AL,0C8H ;Input a byte from port 0C8H to AL
IN AX, 34H ;Input a word from port 34H to AX
OUT 3BH, AL ;Copy the contents of the AL to port 3Bh
OUT 2CH,AX ;Copy the contents of the AX to port 2Ch

For a variable port IN instruction, the port address is loaded in DX register before IN instruction.
DX is 16 bit. Port address range from 0000H — FFFFH.

Example: (a)

MOV DX, OFF78H ;Initialize DX point to port

IN AL, DX ;Input a byte from a 8 bit port OFF78H to AL

IN AX, DX ;Input a word from 16 bit port to OFF78H to AX.
Example: (b)

-32.-

MOV DX, OFFF8H ;Load desired port address in DX
OUT DX, AL ; Copy the contents of AL to FFF8h
OUT DX, AX ;Copy content of AX to port FFF8H

LAHF Instruction - Load Register AH From Flags

LAHF instruction copies the value of SF, ZF, AF, PF, and CF, into bitsof 7,6, 4, 2,0
respectively of AH register. This LAHF instruction was provided to make conversion of assembly
language programs written for 8080 and 8085 to 8086 easier.

SAHF instruction - Store AH Register into FLAGS
SAHF instruction transfers the bits 0-7 of AH of SF, ZF, AF, PF, and CF, into the Flag
register.

PUSHF Instruction - Push flag register on the stack
This instruction decrements the SP by 2 and copies the word in flag register to the
memory location pointed to by SP.

POPF Instruction - Pop word from top of stack to flag - register.

This instruction copies a word from the two memory location at the top of the stack to
flag register and increments the stack pointer by 2.

- 33 -

Signed and Unsigned Numbers

An 8 bit number system can be used to create 256 combinations (from 0 to 255), and the
first 128 combinations (0 to 127) represent positive numbers and next 128 combinations (128 to
255) represent negative numbers.

Unsigned Signed

Number Number -1

-2 0
0000 0000 255 !

254] 2
0000 0001 .
0000 0010 "
MEGATIVE POSITIVE
HALF HAL®
0111 1111 ;
1000 0000 RN 4
i 126
1000 0001 o 128 127

1111 1110

1111 1111

In Decimal in order to get - 2, we subtract 2 from the number of combinations (256),
which gives, 256 - 2 = 254,

In Binary all the Signed Numbers have a '1' in the Most Significant Bit (MSB) position
which represents a negative number and a '0' in the Most Significant Bit (MSB) position which
represents a positive number.

Also, in Binary, the 2's Complement of a number is the negative equivalent of the positive
number.

‘Equation HBinary HHexHSigned‘
|2 = |0000 0010102 | +2 |
I1's Complement =|| 1111 1101 | FD | |
Add 1" [+0000 0001 +01]| |
[2's Complement =||[1111 1110 |[FE | 2 |

So, as above, +2 = 0000 0010 and the 2's Complement is 1111 1110 which represents - 2.

- 34 -

A 16 bit number system can be used to create 65536 combinations (from 0 to 65535),
and the first 32768 combinations (0 to 32767) represent positive numbers and next 32768
combinations (32768 to 65536) represent negative numbers.

In a 16 bit number system the Signed Numbers have a '1l' in the Most Significant Bit
(MSB) position 1xxx xxxx xxxx xxxx which represents a negative number. A '0' in the Most
Significant Bit (MSB) position 0xxx xxxx Xxxx Xxxx which represents a positive number.

2. ARITHMETIC INSTRUCTIONS

These instructions are those which are useful to perform Arithmetic calculations, such as
addition, subtraction, multiplication and division. They are again classified into four groups. They
are:

Addition Subtraction Multiplication Division
Instructions Instructions Instructions Instructions

SUB
ADD SBB DIV
ADC DEC IDIV
INC NEG AAD
AAA CMP CBW
DAA AAS CWD
DAS

The state that results from the execution of an arithmetic instruction is recorded in the
flags register. The flags that are affected by the arithmetic instructions are C, A, S, Z, P, O.

2.1 Addition Instructions:
The general forms of these instructions are shown below

Mnemonic Meaning Format Operation Flags Effected
ADD Addition appD,s | 1) (D) 0,5, A P,C
carry — (CF)
ADC Add with carry apcp,s | OHPIHCR=> (D) 50 a b ¢
carry — (CF)
INC Increment by 1 INCD (D)+1 > D 0,S,Z,A P
DAA Decimal adjust for addition | DAA S,Z,A,P,C
AAA ASCII adjust for addition AAA A C
EXAMPLE:
ADD AL,74H ;Add immediate number 74H to content of AL
ADC CL,BL ;Add contents of BL plus carry status to contents of CL Results in CL

- 35 -

ADD DX, [SI] ;Add word from memory at offset [SI] in DS to contents of DX
Addition of Un Signed numbers:

ADD CL, BL

Assume that CL=01110011 =115 decimal ; BL=01001111 = 79 decimal
Resultin CL= 11000010 = 194 decimal

Addition of Signed numbers
ADD CL, BL
Assume that CL=01110011 =+ 115 decimal ; BL=01001111 = +79 decimal
Result in CL = 11000010 = - 62 decimal
; Incorrect because result is too large to fit in 7 bits.

INC Instruction - Increment - INC destination
INC instruction adds one to the operand and sets the flag according to the result. INC
instruction is treated as an unsigned binary number.

Example:
Assume AX = 7FFFh
INC AX ;After this instruction AX = 8000h

DAA Instruction - Decimal Adjust after Addition

% The contents after addition are changed from a binary value to two 4-bit binary coded
decimal (BCD) digits. S, Z, AC, P, CY flags are altered to reflect the results of the

operation.

% DAA instruction used to perform an adjust operation similar to that performed by AAA

but for the addition of packed BCD numbers instead of ASCIl numbers.

% Since DAA can adjust only data that are in AL, the destination register for ADD

instructions that process BCD numbers should be AL.
% DAA must be invoked after the addition of two packed BCD numbers.

Example: Assume that AL contains 29H (the BCD code for decimal number 29), BL contain 13H
(the BCD code for decimal number 13), and AH has been cleared. What is the result of executing

the following instruction sequence?

ADD AL, BL
DAA

CF CF cr[0]

Before v After ADD instruction § After DAA instruction

- 36 -

AAA Instruction - ASCII Adjust after Addition

*

AAA will adjust the result of the two ASCII characters that were in the range from 30h
(“0”) to 39h(“9”).This is because the lower 4 bits of those character fall in the range of O-
9.The result of addition is not a ASCII character but it is a BCD digit.

AAA instruction specifically used to adjust the result after the operation of addition two
binary numbers which represented in ASCII.

AAA instruction should be executed immediately after the ADD instruction that adds
ASCII data.

Since AAA can adjust only data that are in AL, the destination register for ADD
instructions that process ASCIl numbers should be AL.

Example: what is the result of executing the following instruction sequence?

ADD AL , BL
AAA

Assume that AL contains 32H (the ASCII code for number 2), BL contain 34H (the ASCII code for
number 4) , and AH has been cleared.
Solution:

A 06

L
BL| 34 |
cr[0]

After AAA instruction

N EE : AL[66 |
B 34 | BLL 34 |

CF CF

Before b After ADD instruction

2.2 Subtraction Instructions:

Subtraction subgroup of instruction set is similar to the addition subgroup.
For subtraction the carry flag CF acts as borrow flag

If borrow occur after subtraction then CF = 1.

If NO borrow occur after subtraction then CF = 0.

Subtraction subgroup content instruction shown in table below

Mnemonic Meaning Operation Flags Effected

SuB

(S)-(D) — (D)
borrow — (CF)

Subtraction 0,S,7,A P C

SBB

(S)-(D) -(CF)— (D)

Subtract with b
ubtract with borrow borrow —s (CF)

0,S5,Z,A,P,C

DEC

Decrement by 1 (D)-1—>D 0,S,Z, AP

NEG

0-(D)— (D)
1— (CF)

Negative

0,S,Z,A,P,C

CMP

Compare (S) - (D) 0,5,Z,APC

DAS

Decimal adjust for Subtraction S,Z,A,P,C

AAS

ASCII adjust for Subtraction A C

-37 -

Example:

SUB CX, BX ; BX—CX; Resultin CX
SBB CH, AL ; AL—CH-CF ;Resultin CH
SBB 3427H, AX ; Subtract immediate number 3427H from AX

Subtracting unsigned number

Assume that CL=10011100 = 156 decimal ; BH =00110111 =55 decimal
SUB BH, CL

CL=01100101 =101 decimal ; CF, AF,SF,ZF=0,0OF, PF=1

Subtracting signed number

Assume that CL = 00101110 = + 46 decimal ; BH =01001010= + 74 decimal
SUB BH, CL

CL=11100100 = - 28 decimal ; CF=1, AF, ZF =0,SF = 1 result negative

DEC Instruction - Decrement destination register or memory DEC destination.
DEC instruction subtracts one from the operand and sets the flag according to the result.
DEC instruction is treated as an unsigned binary number.

Example:

MOV AX, 8000H ; AX =8000h

DEC AX ; After this instruction AX = 7999h

DEC BL ; Subtract 1 from the contents of BL register

NEG Instruction - From 2’s complement — NEG destination
NEG performs the two’s complement subtraction of the operand from zero and sets the
flags according to the result.
MOV AX, 2CBh
NEG AX ;after executing NEG result AX =FD35h.

CMP Instruction - Compare byte or word -CMP destination, source.

The CMP instruction compares the destination and source i.e., it subtracts thesource
from destination. The result is not stored anywhere. It neglects the results, but sets the flags
accordingly. This instruction is usually used before a conditional jump instruction.

Example:

MOV AL, 5

MOV BL, 5

CMP AL, BL ; AL=5, ZF =1 (so equal!)
RET

DAS Instruction - Decimal Adjust after Subtraction
This instruction corrects the result (in AL) of subtraction of two packed BCD values. The
flags which modify are AF, CF, PF, SF, ZF
if low nibble of AL >9 or AF = 1 then:
-AL=AL-6

- 38 -

-AF=1

if AL > 9Fh or CF = 1 then:

-AL=AL-60h

-CF=1

Example:

MOV AL, OFFh ; AL = OFFh (-1)
DAS ; AL=99h, CF=1
RET

AAS Instruction - ASCII Adjust for Subtraction

AAS converts the result of the subtraction of two valid unpacked BCD digits to a single
valid BCD number and takes the AL register as an implicit operand. The two operands of the
subtraction must have its lower 4 bit contain number in the range from 0 to 9 .The AAS
instruction then adjust AL so that it contain a correct BCD digit.

MOV AX, 0901H ; BCD 91
SUB AL, 9 ; Minus 9
AAS ; Give AX =0802 h (BCD 82)

Example:(a)
;AL =0011 1001 =ASCII 9
;BL=0011 0101 =ASCII 5

SUB AL, BL ;(9 - 5) Result : ;AL =00000100 = 04(BCD), CF=0
AAS ;Result : AL=00000100 =BCD 04 , CF = 0 NO Borrow required
Example:(b))

;AL=0011 0101 =ASCII 5

;BL=0011 1001 = ASCII 9
SUB AL, BL ;(5-9)Result : AL=11111100=—-4in 2’s complement CF =1
AAS ;Results :AL = 0000 0100 =BCD 04, CF = 1 borrow needed

2.3 Multiplication and Division Instructions

The 8086 has instructions for multiplication and division of binary, BCD numbers, and
signed or unsigned integers. Multiplication and division are performed on bytes or on words. Fig
below shows the form of these instructions.

Mnemonic Meaning Operation

MUL Multiply (Unsigned) (AL)*(S8) = (AX) ; (AX)*(S16) — (DX)(AX)
Q((AX)/(S8)) — (AL) ; R((AX)/(S8)) — (AH)
DIV Division (Unsigned) Q((DX,AX)/(S16)) —> (AX);
R((DX,AX)/(S16)) — (DX)

IMUL Integer Multiply (Signed) (AL)*(S8) = (AX) ; (AX)*(S16) — (DX)(AX)
Q((AX)/(S8)) — (AL) ; R((AX)/(S8)) — (AH)
IDIV Integer Divide (Signed) Q((DX,AX)/(S16)) —> (AX);
R((DX,AX)/(S16)) — (DX)

-39 -

Adjust AL for Multiplication Q((AL)/(10)) > (AH); R((AL)/(10)) — (AL)

Adjust AL for Division (AH)*10+(AL) — (AL) ; 00 — (AH)

Convert byte to word (MSB of AL) — (All bits of AH)

Convert word to double word (MSB of AX) — (All bits of DX)

Example 13: what is the result of executing the following instruction?

(a) MUL CL

(b) IMUL CL

Assume that AL contains FFH (the 2’complement of the number 1), CL contain FEH (the
2’complement of the number 2).

Solution :
AL FF¥ _f-.x| FDi2
cL[_FE - a[FE]
Before After MUL
AL FF¥ i AX D02
cL| FE i cL| FE
Before After IMUL
Example:
;69 * 14
; AL =01000101 = 69 decimal
; BL=00001110 = 14 decimal
IMUL BL ; AX=03C6H =+ 966 decimal , MSB = 0 because positive result , - 28 * 59
; AL=11100100 = - 28 decimal ,BL = 00001110 = 14 decimal
IMUL BL ; AX=F98Ch =- 1652 decimal, MSB = 1 because negative result
Example:

Assume that each instruction starts from these values: AL = 85H, BL = 35H, AH = OH
(a) MULBL =AL.BL=85H * 35H = 1B89H ->AX = 1B89H

(b) IMUL BL =AL . BL= 2’SAL * BL= 2’S(85H) * 35H =7BH * 35H
=1977H->2's comp—>E689H > AX.

- 40 -

AX _ 0085H _

(c) DIVBL = — = =
BL 35H _ _
AH (remainder) AL (quotient)
| 1B | 02 |
AX 0085H AH (remainder) AL (quotient)
(d). IDIVBL = LT mng S | 1B | 7 |
Example:

Assume that each instruction starts from these values: AL = F3H, BL = 91H, AH = O0H
(a) MULBL=AL.BL=F3H *91H = 89A3H >AX = 89A3H

(b) IMUL BL = AL . BL= 2’SAL * 2’SBL= 2’S(F3H) *2’S(91H) =0DH * 6FH = 05A3H —>AX.

AX F3H
(c) DIVBL = = 00F3 = 1 quotient and 62H remainder:
91H
AH (remainder) AL (quotient)
| 62 | 01
(d) IDIVBL = AX_ OOFSH _ 00FsH _ -, quotient and 15H remainder:

BL 2S(91H) 6FH

AH (remainder) AL (quotient) Positive

| 15 | 02 | But ————— = Negative ,So
Negative

AH (remainder) AL (quotient) — AH (remainder) AL (quotient)
| 15 \ 2°S (02) \ \ 15 \ FE

Example:
Assume that each instruction starts from these values: AX= FOOOH, BX= 9015H, DX= 0000H

DX AX
8713 | BOO0O |

(@) MUL BX = AX.BX = FOOOH * 9015H = ‘

(b) IMUL BX =2'S(FOO0OH) *2’S(9015H) = 1000 * 6FEB = DX AX

| 06FE | BO0O

-4] -

(c) DIVBL = AX = FO00H =0B6DH — more than FFH — Divide Error
L 15H
(d)IDIVBL = AX = 2'S(FO00H) = 1000H = C3H — more than 7FH — Divide Error
BL 15H 15H
Example:
Assume that each instruction starts from these values: AX = 1250H, BL = 90H
AX 1250H . .
(a) DIVBL = BL- ooH AH (remainder) AL (quotient)
| 50H | 20H |
(b) IDIVBL = AX _ 1250H _ p05|t|ye _ posmv.e _ 1250H _ 1250H _
90H negative 2'negative 2'(90H) 70H
AH (remainder) AL (quotient)
\ 60H \ 29H |
But M = Negative , So
Negative
AH (remainder) AL (quotient) AH (remainder) AL (quotient)
| 60H | 2’e9H) |] 60H | D7H

AAM Instruction - ASCII adjust after Multiplication

AAM Instruction - AAM converts the result of the multiplication of two valid unpacked
BCD digits into a valid 2-digit unpacked BCD number and takes AX as an implicit operand. To give
a valid result the digits that have been multiplied must be in the range of 0 — 9 and the result
should have been placed in the AX register. Because both operands of multiply are required to
be 9 or less, the result must be less than 81 and thus is completely contained in AL. AAM
unpacks the result by dividing AX by 10, placing the quotient (MSD) in AH and the remainder

(LSD) in AL.

Example:

MOV AL, 5

MOV BL, 7

MUL BL ;Multiply AL by BL, result in AX
AAM ;After AAM, AX =0305h

- 42 -

AAD Instruction - ASCII adjust before Division

ADD converts unpacked BCD digits in the AH and AL register into a single binary number
in the AX register in preparation for a division operation. Before executing AAD, place the Most
significant BCD digit in the AH register and Last significant in the AL register. When AAD is
executed, the two BCD digits are combined into a single binary number by setting
AL=(AH*10)+AL and clearing AH to O.

Example:
MOV AX,0205h ;The unpacked BCD number 25
AAD ;After AAD, AH=0 and AL=19h (25).

After the division AL will then contain the unpacked BCD quotient and AH will contain the
unpacked BCD remainder.

Example:
;AX=0607 unpacked BCD for 67 decimal CH=09H.
AAD ;Adjust to binary before division AX=0043 = 43H =67 decimal.
DIV CH ;Divide AX by unpacked BCD in CH, AL = quotient = 07 unpacked BCD, AH

= remainder = 04 unpacked BCD

CBW Instruction - Convert signed Byte to signed word
CBW converts the signed value in the AL register into an equivalent 16 bit signed value in
the AX register by duplicating the sign bit to the left. This instruction copies the sign of a byte in
AL to all the bits in AH. AH is then said to be the sign extension of AL.
Example:
; AX =00000000 10011011 = - 155 decimal
CBW ; Convert signed byte in AL to signed word in AX.
; Resultin AX=11111111 10011011 and = - 155 decimal

CWD Instruction - Convert Signed Word to - Signed Double word
CWD converts the 16 bit signed value in the AX register into an equivalent 32 bit signed

value in DX: AX register pair by duplicating the sign bit to the left.
The CWD instruction sets all the bits in the DX register to the same sign bit of the AX register.
The effect is to create a 32- bit signed result that has same integer value as the original 16 bit
operand.
Example:
Assume AX contains C435h. If the CWD instruction is executed, DX will contain FFFFh since bit 15
(MSB) of AX was 1. Both the original value of AX (C435h) and resulting value of DX : AX
(FFFFC435h) represents the same signed number.
Example:

;DX = 00000000 00000000 and AX =11110000 11000111 =- 3897 decimal
CWD ;Convert signed word in AX to signed double word in DX:AX

;Result DX=11111111 11111111 and AX=11110000 11000111 =-3897
decimal.

- 43 -

3. BIT MANIPULATION INSTRUCTIONS

These instructions are used to perform Bit wise operations.

LOGICAL INSTRUCTIONS | SHIFT INSTRUCTIONS |ROTATE INSTRUCTIONS

NOT
AND SHL / SAL
OR SHR
XOR SAR
TEST

ROL
ROR
RCL
RCR

3.1 Logical Instructions

% The 8086 processor has instructions to perform bit by bit logic operation on the specified
source and destination operands.

Uses any addressing mode except memory-to-memory and segment registers

These instructions perform their respective logic operations.

Figure below shows the format and the operand for these instructions.

% 3k %

Mnemonic Meaning Format Operation Flags Effected
NOT Logical NOT NOTD |(D)— (D) None
AND Logical AND ANDD,S | (S).D)— (D) 0,5,Z P,C
OR Logical Inclusive OR ORD,S (S)+D)— (D) 0,5 7270P,C
XOR Logical Exclusive OR XORD,S | (S)® D) — (D) 0,S,20P,C

Logical AND: used to clear certain bits in the operand(masking)
Example: Clear the high nibble of BL register

AND BL, OFH 5 (xxxxxxxx AND 0000 1111 = 0000 xxxx)
Example: Clear bit 5 of DH register
AND DH, DFH 5 (oxoxxxxxx AND 1101 1111 = xxOxxxxx)

Logical OR: Used to set certain bits
Example: Set the lower three bits of BL register

OR BL, O7H ; (xxxxxxxx OR 0000 0111 = xxxx x111)
Example: Set bit 7 of AX register

ORAH, 80H ; (xxxxxxxx OR 1000 0000 = 1xxxxxXX)
Logical XOR

% Used to invert certain bits (toggling bits)
% Used to clear a register by XORed it with itself

Example: Invert bit 2 of DL register

XOR BL, 04H 5 (xxxxxxxx OR 0000 0100 = xxxx X XXxx)
Example: Clear DX register

XOR DX, DX (DX will be 0000H)

-44 -

3.2 Shift instructions

% Shift instructions can perform two basic types of shift operations; the logical shift and the
arithmetic shift. Also, each of these operations can be performed to the right or to the left.

% Shift instructions are used to
» Align data
» lIsolate bit of a byte of word so that it can be tested
» Perform simple multiply and divide computations
3% The source can specified in two ways
» Value of 1 : Shift by One bit
» Value of CL register : Shift by the value of CL register

Note that the amount of shift specified in the source operand can be defined explicitly if it

is one bit or should be stored in CL if more than 1.

SHL, SHR, SAL, and, SAR instructions:
The operation of these instructions is described in figure below.

Mnem. Meaning Format Operation

Flags Effected

Shift the (D) left by the number
of bit positions equal to Count
and fill the vacated bits
positions on the right with zeros

Shift arithmetic
left /shift logical
left

SAL D, Count
SHL D, Count

SAL/SHL

CPS, 2
A undefined
O undefined if
count #1

Shift the (D) right by the number
of bit positions equal to Count
and fill the vacated bit positions
on the left with zeros

shift logical right SHR D,Count

CPS, 2
A undefined
O undefined if
count #1

Shift the (D) right by the number
of bit positions equal to Count
and fill the vacated bit positions
on the left with the original
most significant bit

w1 —

Shift arithmetic
right

CF
SAL N ‘ . }' 0
- | CF
SHR 0 '-i . ‘
CF

SAR

—X

Iy

sign hit

- 45 -

CPS, 2
A undefined
O undefined if
count #1

Example: let AX=1234H what is the value of AX after execution of next instruction

SHL AX, 1
Solution:
x| o[oTo[170]0]1]0]0]0]171]0]1]0]0 A before
SNy INIIy
ol lo0o1l001/0001110/11/00I0F 0 AX after

Example:
MOV CL, 2H
SHR DX, CL
Solution:
o/0(0|{1/0/0/1 0/0/0/1(1/0/1(0[|0] x DX before
{oToTololo]1 oo 170]o]o[1]1]0]1] [0 DX after

Example: Assume CL= 2 and AX= 091AH. Determine the new contents of AXAnd CF after the
instruction SAR AX, CL is executed.

Solution:
c:\n\n 0/1/0/01/0/0 0|1 1\[:1 1.0 AX before
."':\\\\\\\\ \\\\\\\\\\\\?x\ \\H
E AN N SN N N NN NN N NN = AX aft
0/0/0(/1/0/0/1/0/0/0/11/0{10/0 \l e

CF
This operation is equivalent to division by powers of 2 as long as the bits shifted out of the LSB are zeros.

Example: Multiply AX by 10 using shift instructions
Solution:

SHL AX, 1

MOV BX, AX

MOV CL,2

SHL AX,CL

ADD AX, BX

Example: Assume DL contains signed number; divide it by 4 using shift instruction?
Solution:

MOV CL , 2

SAR DL, CL

- 46 -

3.2 Rotate instructions

*

*
*
*

They have the ability to rotate the contents of either an internal register or a storage
location in memory.
Also, the rotation that takes place can be from 1 to 255 bit positions to the left or to the

right.

Moreover, in the case of a multibit rotate, the number of bit positions to be rotated is
specified by the value in CL.
The operation of these instructions is described in figure below.

Meaning

Format

Operation

Flags Effected

Rotate left

ROL D, Count

Rotate the (D) left by the number of bit
positions equal to Count. Each bit shifted
out from the leftmost bit goes back into
the rightmost bit position.

C
O undefined if
count #1

Rotate right

ROR D,Count

Rotate the (D) right by the number of bit
positions equal to Count. Each bit shifted
out from the rightmost bit goes back into
the leftmost bit position.

C, O undefined
if count #1

Rotate left
through carry

RCL D,Count

Same as ROL except carry is attached to
(D) for rotation.

C, O undefined
if count #1

Rotate right
through carry

RCL

ROL

RCR

ROR

RCR D,Count

CF

Same as ROR except carry is attached to
(D) for rotation.

CF

-47 -

C, O undefined
if count #1

Example: Assume AX = 1234H , what is the result of executing the instruction
ROL AX, 1
Solution:

[olo]o[1]0[o[170[0]o1 1]o[1]o]o] [O] Axbefore

AX after

1661‘565656%{5;6601*

Example: Find the addition result of the two hexadecimal digitspacked in DL.
Solution:

MOV CL, 04H

MOV BL, DL

RORDL, CL

AND BL, OFH

AND DL, OFH

ADD DL, BL

Test instruction: is similar to the AND instruction. The difference is that the AND instruction
change the destination operand, while the TEST instruction does not. A TEST only affects the
condition of the flag register, which indicates the result of the test. The TEST instruction uses the
same addressing modes as AND instruction.

Example: If (CL) =04H and AX=1234A. Determine the new contents of AX and the carry flag after
executing the instructions:

a) ROLAX, 1
b) ROR AX, CL
Solution:
a
@) Bj1]5 Bit0
0 U‘ AX before

LI T
loJofi]olo]1]ololo1]1]0o]1] DMU)T. AX after
Bitl5 510 | CF

(b)
Bitls Bit0
ofoToTiToTo 1 ToTo o 1] 1Jo[1] 0] ol AX before
CF
ot fofofofot]ofo]1[olofo[o[1]1] ‘ AX after
~F |Bitls ™"

- 48 -

4. STRING INSTRUCTIONS
The string instructions function easily on blocks of memory. They are user friendly
instructions, which help for easy program writing and execution. They can speed up the
manipulating code. They are useful in array handling, tables and records. By using these string
instructions, the size of the program is considerably reduced.
Five basic String Instructions define operations on one element of a string:
Move byte or word string MOVSB/MOVSW
Compare string CMPSB/CMPSW
Scan string SCASB/SCASW
Load string LODSB/LODSW
Store string STOSB/STOSW

kR k% 3k

The general forms of these instructions are as shown below:

Flags

Meaning Format Operation Effected

((DS)*10+(SI)) — ((ES)*10+ (D))

(SI) + 1 — (SI); (DI) £ 1 — (DI) [byte]
(SI) + 2 — (SI); (DI) £ 2 — (DI) [word]
((DS)*10+(S1)) - ((ES)*10+ (D1))

(SI) £ 1 — (SI); (DI) £ 1 —> (DI) [byte]
(SI) £ 2 — (SI); (DI) £ 2 — (DI) [word]
(AL) or (AX) - ((ES)*10+ (DI))

MOVSB/

Move string MOVSW

CMPSB/

Compare string CMPSW

SCASB/

scasw | (P £1—(DI) [byte]

(DI) £2 — (DI) [word]
((DS)*10+ (SI)) — (AL) or (AX)
(SI) £ 1 — (SI) [byte]

(SI) £ 2 — (SI) [word]

(AL) or (AX) — ((ES)*10+ (DI))
(DI) £1 — (DI) [byte]

(DI) £ 2 — (DI) [word]

Scan string

LODSB/

Load string LODSW

STOSB/

Store string STOSW

Auto-indexing of String Instructions

Execution of a string instruction causes the address indices in Sl and DI to be either
automatically incremented or decremented. The decision to increment or decrement is made
based on the status of the direction flag. The direction Flag: Selects the auto increment (D=0) or
the auto decrement (D=1) operation for the DI and Sl registers during string operations.

Mnemonic Meaning Operation Flags Effected

CLD Clear DF 0 — (DF) DF
STD Set DF 1 — (DF) DF

- 49 -

Prefixes and the String Instructions

In most applications, the basic string operations must be repeated in order to process
arrays of data. Inserting a repeat prefix before the instruction that is to be repeated does this,
the repeat prefixes of the 8086 are shown in table below. For example, the first prefix, REP,
caused the basic string operation to be repeated until the contents of register CX become equal
to 0. Each time the instruction is executed, it causes CX to be tested for O. If CX is found not to be
0, it is decremented by 1 and the basic string operation is repeated. On the other hand, if it is O,
the repeat string operation is done and the next instruction in the program is executed, the
repeat count must be loaded into CX prior to executing the repeat string instruction.

Mnemonic Used with Meaning
MOVS
REP STOS
LODS
CMPS Repeat while not end of string and strings are equal
SCAS CX#0 & ZF=1

CMPS Repeat while not end of string and strings are not equal
SCAS CX#0 & ZF=0

Repeat while not end of string
CX=z0

REPE/REPZ

REPNE/REPNZ

Example 1: Write a program loads the block of memory locations from OAOOOH through OAOOFH
with number 5H.

Solution:
MOV AX, OH
MOV DS, AX
MOV ES, AX
MQV AL, 05
MQV DI, AOOOH
MOV CX, OFH
CLD

AGAIN: STOSB
LOOP AGAIN

Example 2: write a program to copy a block of 32 consecutive bytes from the block of memory
locations starting at address 2000H in the current Data Segment(DS) to a block of locations
starting at address 3000H in the current Extra Segment (ES).

Solution:
CLD
MOV AX, data_seg
MOV DS, AX
MOV AX, extra_seg
MOV ES, AX

-850 -

MOV CX, 20H
MOV SI, 2000H
MOV DI, 3000H
MOVSB

REP

Example 3: Write a program that scans the 70 bytes start at location DOH in the current Data
Segment for the value 45H, if this value is found replace it with the value 29H and exit scanning.

Solution:
MOV AX,data-seg
MOV DS, AX
CLD
MOV DI, 00DOH
MOV CX, 0046H
MOV AL, 45H
REPNE
SCASB
DEC DI
MOV [Dl], 29H
HLT

Example 4: Write a program to move a block of 100 consecutive bytes of data starting at offset
address 400H in memory to another block of memory locations starting at offset address 600H.
Assume both block at the same data segment FOOOH. Use loop instructions.

Solution :
MOV CX, 64H
MOV AX, FOOOH
MOV DS, AX
MOV ES, AX
MOV SI, 400H
MOV DI, 600H
CLD
NXTPT: MOVSB
LOOP NXTPT
HTL

Example 5: Explain the function of the following sequence of instructions
MOV DL, 05
MOV AX, 0AOOH
MOV DS, AX
MOV SI, 0
MOV CX, OFH

-51 -

AGAIN: INCSI
CMP [SI], DL
LOOPNE AGAIN

Solution: The first 5 instructions initialize internal registers and set up a data segment the loop in
the program searches the 15 memory locations starting from Memory location AOO1H for the
data stored in DL (O5H). As long as the value In DL is not found the zero flag is reset, otherwise it
is set. The LOOPNE Decrements CX and checks for CX=0 or ZF =1. If neither of these conditions is
met the loop is repeated. If either condition is satisfied the loop is complete. Therefore, the loop
is repeated until either 05 is found or all locations in the address range AOO1H through AOOF
have been checked and are found not to contain 5.

Example 6: Implement the previous example using SCAS instruction.

Solution:
MOV AX, OH
MOV DS, AX
MOV ES, AX
MOV AL, 05
MOV DI, AOO1H
MOV CX, OFH
CLD

AGAIN: SCASB
LOOPNE AGAIN

-52 -

5. CONTROL TRANSFER INSTRUCTIONS
These instructions transfer the program control from one address to other address. (Not
in a sequence). They are again classified into four groups. They are:

Unconditional Conditional Transfer Iteration Control Interrupt
Transfer Instructions [Instructions Instructions Instructions

JMP JA/INBE JLE/ING LOOP INT
CALL JAE/INB INC LOOPE / LOOPZ INTO

RET JB/JNAE JNE/JNZ LOOPNE/LOOPNZ IRET

JBE/INA JNO

IC JNP /JPO
JE/)Z INS
JG/INLE JO
JGE/INL JP/JPE
JL/INGE |JS

5.1 JUMP Instruction
8086 allowed two types of jump operation. They are the unconditional jump and the
conditional jump.

5.1.1 Unconditional jump:

JMP (Jump) unconditionally transfers control from one code segment location to
another. These locations can be within the same code segment (near control transfers) or in
different code segments (far control transfers). There are two basic kinds of unconditional
jumps:

1. Intrasegment Jump: is limited to addresses within the current code segment. This type of
jump is achieved by just modifying the value in IP.

2. Intersegment Jump: permit jumps from one code segment to another. Implementation
of this type of jump requires modification of the contents of both CS and IP.

Short— Lable (8bit)

Near — Lable (16 bit)

Regptrl6 (I P= (reg.))
Memptr16 (IP = contentof M.L)

1. Intrasegment Jump

IP = first 16 bit
Far — Lable

2. Intersegment Jump CS = second 16 bit

(IP = content of first 2 byte J
Memptr

CS = content of second 2 byte

- B3 -

Example 1: Assume the following state of 8086: (CS)=1075H, (IP)=0300H, (SI)=A00H, (DS)=400H,
(DS:A00)=10H, (DS:A01)=B3H, (DS:A02)=22H, (DS:A03)=1AH. To what address is program control
passed if each of the following JMP instruction is execute?

(a) IMP 85 = 1075:85 = Short jump
(b) JIMB 1000H = 1075:1000 = Near jump
(c) IMP [SI] = 1075:B310 = Nearjump
(d) JMP SI = 1075: 0A00 = Near jump
(e) JMP FAR [SI] — 1A22:B310 = Farjump
(f)JMP 3000:1000 = 3000:1000 = Farjump

5.1.2 Conditional Jump
The conditional jump instructions test the following flag bits: S, Z, C, P, and O. If the
condition under test is true, a branch to the label associated with jump instruction occurs. If the
condition is false, the next sequential step in the program executes. Tables below are a list of
each of the conditional jump instructions.
Tablel: Unsigned Conditional Transfers

Condition Tested

JA/INBE above/not below nor equal (CForZF)=0
JAE/INB above or equal/not below CF=0
JB/JNAE below/not above nor equal CF=1
JBE/INA below or equal/not above (CForZF)=1
JC Carry CF=1

JE/1Z equal/zero ZF=1

JNC not carry CF=0
JNE/INZ not equal/not zero ZF=0
JNP/JPO not parity/parity odd PF=0

JP/JPE parity/parity even PF=1

JCXZ CX register is zero CForZF=0

Table2: Signed Conditional Transfers

Meaning “Jump if..... ” Condition Tested

JG/JNLE greater/not less nor equal ((SF xor OF) or ZF) =0
JGE/JNL greater or equal/not less (SFxorOF) =0
JL/INGE less/not greater nor equal (SFxor OF) =1

JLE/ING less or equal/not greater ((SFxor OF) or ZF) =1
JNO not overflow OF=0
JNS not sign (positive, including 0) SF=0
JO Overflow OF=1
JS sign (negative) SF=1

-54 -

Example 2: Write a program to move a block of 100 consecutive bytes of data string at offset
address 8000H in memory to another block of memory location starting at offset address AOOOH.
Assume that both blocks are in the same data segment value 3000H.
Solution:

MOV AX, 3000H

MOV DS, AX

MOV SI, 8000H

MOV DI, AOOOH

MOV CX, 64H

NXT: MOV AH, [SI]

MOV [DI], AH

INC SI

INC DI

DECCX

JNZ NXT

HLT

Example 3: Write a program to add (50)H numbers stored at memory locations start at
4400:0100H, then store the result at address 200H in the same data segment.
Solution:

MOV AX, 4400H

MOV DS, AX

MOV CX, 0050HEBIcounter

MOV BX, 0100HE offset

Again: ADD AL, [BX]

INC BX label

DECCX

JNZ Again

MOV [0200], AL

5.2 CALL and RET Instructions

% A subroutine is a special segment of program that can be called for execution form any
point in program.
There two basic instructions for subroutine : CALL and RET
CALL instruction is used to call the subroutine.
RET instruction must be included at the end of the subroutine to initiate the return
sequence to the main program environment.
Just like the JMP instruction, CALL allows implementation of two types of operations: the
intrasegment call and intersegment call.
Every subroutine must end by executing an instruction that returns control to the main
program. This is the return (RET).
The operand of the call instruction initiates an intersegment or intrasegment call
The intrasegment call causes contents of IP to be saved on Stack.
The Operand specifies new value in the IP that is the first instruction in the subroutine.

E IR I S S T

- 55 -

% The Intersegment call causes contents of IP and CS to be saved in the stack and new
values to be loaded in IP and CS that identifies the location of the first instruction of the
subroutine.

3% Execution of RET instruction at the end of the subroutine causes the original values of IP

and CS to be POPed from stack.
Main program

Example 4: :

CALL 1234h . | Subroutine
CALL BX Call 5phrtlulipe A First instruc
CALL [BX] Next instruction —

CALL DWORD PTR [DI]

Call subroutine A

Next instruction

Return

Example5: write a procedure named Square that squares the contents of BL and places the
result in BX.
Solution:
Square: PUSH AX
MOV AL, BL
MUL BL
MOV BX, AX
POP AX
RET

Example6: write a program that computes y = (AL)> + (AH)? + (DL)?, places the result in CX. Make
use of the SQUARE subroutine defined in the previous example. (Assume result y doesn’t exceed
16 bit)
Solution:

MOV CX, 0000H

MOV BL,AL

CALL Square

ADD CX, BX

MOV BL,AH

CALL Square

ADD CX, BX

MOV BL,DL

CALL Square

ADD CX, BX

HLT

- 56 -

5.3 Iteration Control Instructions

The 8086 microprocessor has three instructions specifically designed for implementing
loop operations. These instructions can be use in place of certain conditional jump instruction
and give the programmer a simpler way of writing loop sequences. The loop instructions are
listed in table below:

Mnemonic Meaning Format Operation

(CX)<(CX)-1

Jump to location defined by short-label if
(CX) # 0; otherwise, execute next
instruction

(CX)«(CX)-1

LOOP LOOP short-label

LOOPE/ Loop while equal/ LOOPE/LOOPZ Jump to location defined by short-label if
LOOPZ loop while zero short-label (CX) #0; an d (ZF)=1; otherwise, execute
next instruction

(CX)<(CX)-1

LOOPNE/LOOPNZ | Jump to location defined by short-label if
short-label (CX) # 0; and (ZF)=0; otherwise, execute
next instruction

Loop while not
equal/ loop while not
zero

LOOPNE/
LOOPNZ

Example: Write a program to move a block of 100 consecutive bytes of data starting at offset
address 400H in memory to another block of memory locations starting at offset address 600H.
Assume both block at the same data segment FOOOH. (Similar to the example viewed in lecture 6
at page 59). Use loop instructions.
Solution:

MOV AX, FOOOH

MOV DS, AX

MOV SI, 0400H

MOV DI, 0600H

MOV CX, 64H

NEXTPT: MOV AH, [SI]

MOV [DI], AH

INC SI

INC DI LOOP NEXTPT

HLT

6. PROCESS CONTROL INSTRUCTIONS
These instructions are used to change the process of the Microprocessor. They change
the process with the stored information. They are again classified into two groups. They are:
1. Flage Control Instructions
2. External Hardware Synchronization Instructions

-57 -

6.1 Flag Control Instructions:
These instructions directly affected the state of flags. Figure below shows these
instructions.

Mnemonic

Meaning

Format

Operation

Flags Effected

STC

Set Carry Flag

STC

1 —> (CF)

CF

CLC

Clear Carry Flag

CLC

0 — (CF)

CF

CcMC

Complement Carry Flag

CMC

(CF)~(cP)

CF

STD

Set Direction Flag

STD

1 — (DF)

DF

CLD

Clear Direction Flag

CLD

0 — (DF)

STI

Set Interrupt Flag

STI

1 (IF)

Cul

CLI

Clear Interrupt Flag 0— (IF)

Example: Write an instruction sequence to save the current contents of the 8086’s flags in the
memory location pointed to by S| and then reload the flags with the contents of memory
location pointed to by DI
Solution:

LAHF

MOV [SlI], AH

MOV AH, [DlI]

SAHF
Example: Clear the carry flag without using CLC instruction.
Solution:

STC

CcMC

6.2 External Hardware Synchronization Instructions:

Mnemonic
HLT
WAIT
ESC
LOCK
NOP

Meaning

Halt processor
Wait for TEST pin activity

Escape to external processor interface
Lock bus during next instruction
No operation

- 58 -

The 8086 Microprocessor Hardware Specifications

Pin Diagram of 8086 and Pin description of 8086
Figure (1) shows the Pin diagram of 8086. The 8086 can be configured to work in either of two

modes:
¢

¢

The minimum mode is selected by applying logic 1 to the MN/MX input. It is
typically used for smaller single microprocessor systems.

The maximum mode is selected by applying logic 0 to the MN/MXinput. It is
typically used for larger multiple microprocessor systems.

Depending on the mode of operation selected, the 8086 signals can be categorized in three

groups.
¢

The first are the signal having common functions in minimum as well as maximum
mode.

The second are the signals which have special functions for minimum mode.

The third are the signals having special functions for maximum mode.

B A I

MODE WDDE
Ves GHDY O % W~ 400 Ve (5P}

ADY Oz A0 AD15
A013 O3 a8 Aes3
A012 04 37 ATISe
ADiT OS5 35[0 Alarss
A010 OB a5] A1S56
Al O7 24 O BHE=T
ADE & 30 WNETE
ADT o 320 ®O
ADs o 82 34 g R@GID HOLD
Aps Qun 2 30 RQGETT HLDA
Al Oz z0 0 LOCK R

As O3 20 5 LTS

AD2 4 270 | OTIFE

A O 5 - m i) TEN

ADO 6 265 Gs0 ALE
M O a7 24 1] Q51 IFTA
TR [] 18 73 TEST

CLE 412 22 g mEADY
Wes (N0 O] 20 [RESET

Fig. 1: Pin Diagram of 8086

- 59 -

Minimum mode Operation

» Figure (2) show block diagram of minimum mode.

» Minimum mode operation is the least expensive way to operate the 8086.

» In minimum mode, the 8086 itself provides all the control signals needed to implement the
memory and I/0 interfaces.

» These control signals are identical to those of the Intel 8085A an earlier 8-bit microprocessor.

» This mode allows the 8085A peripherals to be used with the 8086 without any special
consideration.

Maximum mode Operation

» Figure (3) show block diagram of maximum mode.

» This mode supports existence of more than one processor in a system i.e. multiprocessor
system.

» In a multiprocessor system environment more than one processor exists in the system, and
each processor is executing its own program.

» In maximum mode the 8086 provides facilities by generating some of the control signals
externally.

» In maximum-mode, a separate chip (the 8288 Bus Controller) is used to help in sending
control signals over the shared bus.

Power supply

Vce GND

T T

[INTR

Address / data bus
<:L>ADO-AD15,
INTA 16/S3-A19/S6
Interrupt TEST
Interface < > p— ALE
NMI [r— BHE/S7
—>| 8086 MPU _
|ﬁ M'/IO
RESET ;
K |ﬁ DT/R Memoryllo
S Controls
HOLD pr— RD
ﬁ
Interface €
Mode Select r P A— READY
MN/MX >

I

CLK
Fig. 2: Minimum mode block diagram of 8086

- 60 -

Bus

AWTC

ORC

E

Ajs,
/S3-Aq10/Ss
y—Dis
BHE
EADY

51, QSe

Fig. 3: Maximum mode block diagram of 8086

The signals common for both minimum & maximum modes:

Common Signals

AD15-ADO

Function

Address/Data Bus

Bidirectional , 3-state

A19/S6 - A16/S3

Address/Status

Output, 3-state

MN / MX

Minimum/Maximum mode control

Input

RD

Read Control

Output, 3-state

TEST

Wait on test control

Input

READY

Wait state control

Input

RESET

System reset

Input

CLK

System clock

Input

Vcc

+5V

Input

GND

Ground

Input

BHE /S7

Bus High Enable/Status

Input

INTR

Interrupt Request

Input

NIM

non maskable interrupt Request

-61 -

Input

* ¥

Table (1): The common signals for both minimum & maximum modes
Address/Data Bus (AD15-AD0): These line contain the address bus which is 20 bits long
[AO (the LSB) to A1g (the MSB)] whenever ALE is logic 1, and contain the data bus which is
16 bits long [DO (the LSB) to D15 (the MSB)] whenever ALE is logic 0.

Address/Status signals (A19/56,A18/55,A17/54,A16/S3) : These are the time multiplexed
to provide address signals (A19-A16) and status lines (S6-S3). Bits S6 always remains logic
0, bit S5 indicates the condition of interrupt flag (IF) bits. S4 and S3 together form a 2-bit
binary code that identifies which of the internal segment registers was used to generate
the physical address that was output on the address bus during the current bus cycle (See
Table 2)

Extra Data Segment

Stack Segment

Code or No Segment

Data Segment

Table (2)

MN/MX : is an input pin used to select one of this mode .when MN/MX is high the 8086
operates in minimum mode .In this mode the 8086 is configured to support small single
processor system using a few devices that the system bus .when MN/MX is low 8086 is
configured to support multiprocessor system.

Read (RD): is logic O (low) when the data is read from memory or 1/O location.

TEST : is an input pin and is only used by the wait instruction. If the TEST pin goes LOW

(logic 0), execution will continue (WAIT instruction functions as a NOP), else if TEST pin
goes HIGH (logic 1) the processor remains in an idle state.

READY : If the READY pin goes LOW (logic 0) the processor enters into wait state and

remains in an idle state. If the READY pin goes HIGH (logic 1) it has no effect on the
operation of the processor.

RESET: is the system set reset input signal. If this pin held HIGH for a minimum of four
clocking periods causes to processor to reset itself and start execution from FFFFOH i.e
reinitialize the system.

Clock Input (CLK): The clock input provides the basic timing for processor operation and
bus control activity. Its an asymmetric square wave with 33% duty cycle (HIGH for one-
third of the clocking period and LOW for two-third).

Vcc: +5V power supply for the operation of the internal circuit.

GND: Ground for the internal circuit. The 8086 microprocessor have two pins labeled GND
both must be connected to ground for proper operation.

-62 -

% Bus High Enable/Status (BHE /S7): The bus high enable signal goes low to indicate the
transfer of data over the higher order (D15-D8). The state S7 is always logic 1.

3% Interrupt Request (INTR) : is a maskable interrupt input. This is a triggered input. This is
sampled during the last clock cycles of each instruction to determine the availability of the
request. If any interrupt request is pending (IF=1), the processor enters the interrupt

acknowledge cycle (INTA becomes active) after the current instruction has complete
execution.

% NIM: is the non maskable interrupt input. The NMI is not maskable internally by
software. A transition from low to high initiates the interrupt response at the end of the
current instruction.

Minimum mode interface signals

Minimum mode Signals (MN/MX =Vcc)
Function

Memory/I0 Control Output, 3-state

WRITE Control Output, 3-state
Address Latch Enable Output

Data Transmit/Receive Output, 3-state

Data Enable Output, 3-state
Hold request Input

Hold Acknowledgment Output
Interrupt Acknowledgment Output

Table (3): Minimum mode Signals.

% Memory/10 (M/10): This is a status line logically equivalent to S2 in maximum mode.
When it is LOW, it indicates the CPU is having an I/O operation, and when it is HIGH, it
indicates that the CPU is having a memory operation.

% WRITE (m): indicates that the processor is performing a write memory or write 1/0
cycle, depending on the state of the M/I0 signal.

% Interrupt Acknowledge (INTA): This signal is used as a read strobe for interrupt
acknowledge cycles. i.e. when it goes low, the processor has accepted the interrupt.

3% Address Latch Enable (ALE) : It is an output signal provided by the 8086 and can be used
to demultiplexed ADO to AD15 in to A10 toA15 and DO to D15. This signal is active high
and is never tristated.

3% Data Transmit/Receive (DT/ﬁ): This output is used to decide the direction of data flow
through the transceiver (bidirectional buffers). When (DT/§= 1) the processor sends

data out (transmitting), when (DT/ﬁ = 0) the processor receiving data.
sk Data Enable (DEN): activate external data bus buffers.

- 63 -

*

*

HOLD: When an external device wants to take control of the system bus (Data, Address,
Control), it signals to the 8086 by switching HOLD to logic 1. The hold input requests a
direct memory access (DMA).

Hold Acknowledge : The processor, after receiving the HOLD request, issues the hold
acknowledge signal on HLDA pin, indicates that the 8086 has entered the hold.

Maximum mode interface signals

*

*

Maximum mode Signals (MN/MX =GND)
Function

RQ/GT0,(RQ/GT1) | Request/Grant bus access control | Bidirectional

(S2, S1,50) Status Lines Output, 3-state

LOCK Bus priority lock control Output, 3-state
QSs1, Qso Queue Status Output

Table (4): Maximum mode Signals.

Request/Grant (RQ /GTO,(RQ /GT1): These lines are bidirectional, and are used to both
request and grant a DMA operation in maximum mode.

LOCK : This output pin indicates that other system bus master will be prevented from
gaining the system bus, while the LOCK signal is low. The LOCK signal is activated by the
‘LOCK’ prefix instruction and remains active until the completion of the next instruction.

Status Lines (ﬁ, ﬁ,%): These three bit are input to the external bus controller device
8288, which decodes them to identify the type of next bus cycle. Table (5) shows the
function of these status bits in maximum mode.

CPU Cycle 8288 Command

Interrupt Acknowledge | INTA

Read I/O port IORC

Write 1/0 port IOWC, AIOWC
Halt None

Code Access MRDC

Read Memory MRDC

Write Memory MWTC,AMWC
Passive None

0
0
0
0
1
1
1
1

R =[O 0O|kRr|R | O|O
R O | O|Rr|O|—R|O

Table (5): Bus Status Codes

- 64 -

% Queue Status (QS1, QS2): provide status to allow external tracking of the internal 8086
instruction queue. These pins are provided for access by the numeric coprocessor (8087).
Table (6) shows the operation of the queue status bits.

Indication

No Operation (Queue is idle)

First Byte of the opcode from the queue
Empty Queue

Subsequent Byte from the Queue

Table (6): Queue Status bits

SYSTEM CLOCK

% To synchronize the internal and external operations of the microprocessor a clock (CLK)
input signal is used. The CLK can be generated by the 8284 clock generator IC.

% The 8086 is manufactured in three speeds: 5 MHz, 8 MHz and 10 MHz.

% For 8086, we connect either a 15-, 24- or 30-MHz crystal between inputs X1 and X2 of the
clock chip (see Fig. 4).

% The fundamental crystal frequency is divided by 3 within the 8284 to give either a 5-, 8- or
10-MHz clock signal, which is directly connected to the CLK input of the 8086.

17] 8284 8086
XTAL | X4 g 19

O
T8 x,
13

F/C

Fig. 4: Connecting the 8284 to the 8086.

Bus cycle and time state
A bus cycle defines the basic operation that a microprocessor performs to communicate
with external devices. Example of bus cycles are
* Memory read
e Memory write
* |0 read
¢ |0 write
The bus cycle of 8086 microprocessors consists of at least four clock periods (T1, T2, T3, and T4)
% During T1 the 8086 puts an address on the bus.
% During T2 the 8086 puts the data on the bus (for write memory cycle) and maintained
through T3 and T4

- 65 -

3% During T2 the 8086 puts the bus in high-Z state (for read cycle) and then the data to read
must be available on the bus during T3 and T4.
These four clock states give a bus cycle duration of 125 ns x 4= 500 ns in an 8-MHz system.

Idle States

If no bus cycles are required, the microprocessor performs what are known as idle state.
During these states, no bus activity takes place. Each idle state is one clock period long, and any
number of them can be inserted between bus cycles. Idle states are performed if the instruction
gueue inside the microprocessor is full and it does not need to read or write operands form
memory.

Wait States

Wait states can be inserted into a bus cycle. This is done in response to request by an
event in external hardware instead of an internal event such as a full queue. The READY input of
the 8086 is provided specifically for this purpose. As long as READY is held at the 0 level, wait
states are inserted between states T3 and T4 of the current bus cycle, and the data that were on
the bus during T3 are maintained. The bus cycle is not completed until the external hardware
returns READY back to the 1 logic level.

Read Cycle

The read bus cycle begins with state T1. During this period, the 8086 output the 20bit
address of the memory location to be accessed on its multiplexed address/data bus AD, through
AD1s and multiplexed lines Aj/Ss through A;9/Ss. Note that at the same time a pulse is also

produced at ALE. The signal BHE is also supplied with the address lines. (Figure 5)

Write Cycle
The write bus cycle is similar to the read bus cycle except that signal WR instead of the
signal RD and signal DT/ﬁ is set to 1.

- 66 -

' ONE BUS CYCLE |

CLK

T S LT T
o Coewor y—(n
r
|

7 \ am

Fig. 5: Minimum-mode memory read bus cycle of the 8086.

- 67 -

(a)

The 8086 Memory Interface

Memory Devices

% Simple or complex, every microprocessor-based system has a memory system.

3% Almost all systems contain four common types of memory:
¢ Read only memory (ROM)
¢ Flash memory (EEPROM)
¢ Static Random access memory (SARAM)
¢ Dynamic Random access memory (DRAM).

s Before attempting to interface memory to the microprocessor, it is essential to

understand the operation of memory components.

Memory Pin Connections
Figure (1) shows a general form diagram of ROM and RAM pins. Pin connections common to
all memory devices are:
¢ Address connections
¢ Data connections
¢ Selection connections
¢ Control connections

Address connections: All memory devices have address inputs that select a memory location
within the memory device. Address inputs are labeled from Aq to A,

Data connections: All memory devices have a set of data outputs or input/outputs. Today many
of them have bi-directional common I/O pins.

Selection connections: Each memory device has an input that selects or enables the memory
device. This kind of input is most often called a chip select (E), chip enable (&) or simply
select (_S) input.

RAM memory generally has at least one CSor S input and ROM at least one CE.

¢ Ifthe &, E, B input is active the memory device perform the read or write.
¢ Ifitis inactive the memory device cannot perform read or write operation.
¢ If more than one CSconnection is present, all most be active to perform read or write

data.

Control connections:
¢ A ROM usually has only one control input, while a RAM often has one or two control inputs.

¢ The control input most often found on the ROM is the output enable (O_E) or gate (CT),
this allows data to flow out of the output data pins of the ROM.

68

¢ A RAM memory device has either one or two control inputs. If there is one control input it

is often called R/W .

¢ This pin selects a read operation or a write operation only if the device is selected by the

selection input (CS)

— Ag Oy —
Ay O OUTPUT OR
ADDRESS | INPUTVOUTPUT
CONMECTION | CONMNECTION
As Oy
- Aw GN
WEb___
s OF WRITE
SELECT READ

Fig. 1: Memory Component

Read-only memory (ROM)

*

L O S S S S S

Read-only memory (ROM) permanently stores programs/data resident to the system, and
must not change when power disconnected

Often called nonvolatile memory, because its contents do not change even if power is
disconnected.

A device we call a ROM is purchased in mass quantities from a manufacturer.
programmed during fabrication at the factory

The EPROM (erasable programmable read-only memory) is programmed in the field on a
device called an EPROM programmer.

Also erasable if exposed to high-intensity ultraviolet light, depending on the type of
EPROM.

The PROM (programmable read-only memory) is also programmed in the field by burning
open tiny Nichrome or silicon oxide fuses. Once it is programmed, it cannot be erased.

A newer type of read-mostly memory (RMM) is called the flash memory.

Flash memory is also often called an EEPROM (electrically erasable programmable ROM)
or EAROM (electrically alterable ROM) or a NOVRAM (nonvolatile RAM)

Electrically erasable in the system, but they require more time to erase than normal RAM.
The flash memory device is used to store setup information for systems such as the video
card in the computer.

69

Static Random Access Memory (SRAM)

% A Static RAM is a volatile memory device which means that the contents of the memory
array will be lost if power is removed.

% Unlike a dynamic memory device, the static memory does not require a periodical refresh
cycle and generally runs much faster than a dynamic memory device.

% Static RAM is used when the size of the read/write memory is relatively small, today, a
small memory is less than 1M byte.

% The main difference between ROM and RAM is that RAM is written under normal
operation, whereas ROM is programmed outside the computer and normally is only read.

Dynamic Random Access Memory (DRAM)
3% Available up to 256M X 8 (2G bits).
% DRAM is essentially the same as SRAM, except that it retains data for only 2 or 4 ms on an
integrated capacitor.
% After 2 or 4 ms, the contents of the DRAM must be completely rewritten (refreshed),
because the capacitors, which store a logic 1 or logic O, lose their charges.

8086 Memory Interface
% The memory address space of the 8086-based microcomputers has different logical and
physical organizations (see Fig. 2).

1M Bytes 512K Bytes 512K Bytes
FFFFF FFFFF FFFFE
FFFFE FFFFD FFFFC
) p— —>
AA 0— O0—
—t /] —
2 5 4
1 3 2
0 1 0
VAN
U \/
D,D, DysDy D, D,
AgA, BHE Ao
(a) (b)

Fig. 2: (a) Logical memory organization, and (b) Physical memory organization
(high and low memory banks) of the 8086 microprocessor.

% Logically, memory is implemented as a single 1M x 8 memory chunk. The byte-wide
storage locations are assigned consecutive addresses over the range from 0000OH
through FFFFFH

% Physically, memory is implemented as two independent 512 Kbyte banks: the low (even)
bank and the high (odd) bank. Data bytes associated with an even address (00000H,

70

00002H, etc.) reside in the low bank, and those with odd addresses (00001H, 00003H,
etc.) reside in the high bank.
% Address bits A; through Ajg select the storage location that is to be accessed. They are

applied to both banks in parallel. A and bank high enable (ﬁ) are used as bank-select
signals.
% The memory locations 00000-FFFFF are designed as odd and even bytes. To distinguish

between odd and even bytes, the CPU provides a signal called BHE (bus high enable).
BHE and Aq are used to select the odd and even byte, as shown in the table below.

BHE A0 Function
0 0 Choose both odd and even memory bank
0 1 Choose only odd memory bank
1 0 Choose only even memory bank
1 1 None is chosen

Minimum mode Memory Interface
% Figure (3) show block diagram of minimum mode 8086 memory interface.

ALE P
<]j ADq-AD15 >

. Memory

RD Pi Subsystem

8086 WR > and bus

MPU _ interface

M/o Pl Circuit
DT/R- >
Vce DEN- >
|_ BHE P

MN/MX

Fig. 3: Minimum mode memory interface

% The control signals provided to support the interface to the memory subsystem are
ALE, M/10, DT/R, RD, WR, DENand BHE

% When Address latch enable (ALE) is logic 1 it signals that a valid address is on the bus.
This address can be latched in external circuitry on the 1-to-0 edge of the pulse at ALE.

E S M/E (memory/10) and DT/ﬁ tells external circuitry whether a memory or 1/0 transfer

is taking place over the bus, and whether the 8086 will transmit or receive data over the
bus.

71

% The bank high enable (BHE) signal is used as a memory enable signal for the most
significant byte half of the data bus, D8 through D15.

% The signals WR (write) and RD (read) identify that a write or read bus cycleis in
progress.

s DEN (data enable), is also supplied. It enables external devices to supply data to the
microprocessor.

Maximum mode Memory Interface
% Figure (4) show block diagram of maximum mode memory interface.
% In maximum mode the 8086 not directly provides all control signal to support the
memory interface.
% Instead, an external Bus Controller (8288) provides memory commands and control
signals as shown in table (5) in lecture (8).

MRDC
MWTC
AMW
Bus c
controller ALE

8288 -
DEN

CLK O——

Y

L

Y

- Memory
8086 o subsystem
and bus
iinterface
circuitry
Ag-Aqg
1 MNAX < ADy-AD, >

Fig. 4: Maximum mode memory interface

Memory expansion

In many applications, the microcomputer system requirement for memory is greater than
what is available in a single device. There are two basic reasons for expanding memory capacity:
1. The byte-wide length is not large enough
2. The total storage capacity is not enough bytes.

Both of these expansion needs can be satisfied by interconnecting a number of ICs.

72

Example 1: show how to implement 32Kx 16 EPROM using two 32Kx8 EPROM?

Solution:
EPROM 0
Ay © + MU0 Dy
A, O | |
A, O | 27C256 L op,
2KX8 |
[: ;
Ay O ! _ B B, 7 1
' CE OE | !
G p
C5 © —
MEMR > . |
|
|
| | EPROM 1 o Dy
|
' 270256
— 0
: | 32K XS : P
f !
- | = 0Dy
= | CE OF.
|]
i

Example 2: Design 8086’s memory system consisting of 512K bytes of RAM memory and 128K
bytes of ROM use the devices in figure below. RAM memory is to reside over the address range
00000H through 7FFFFH and the address range of the ROM is to be AOOOOH through BFFFFH

|::> Address \:> Address
— WEData (:::} — OE Data :>
+ OF
SRAM EFROM
(4310004) (27C512)
128Kx8 b Kx8

Example 3: Design 8086’s memory system consisting of 64K bytes of ROM memory, make use of
the devices in figure below. The memory is to reside over the address range 60000H through
6FFFFH

|::> Address
— DE Data ::>

EPROM
(27C256)
32Kx8

73

Example 4: Design a 8086 memory system consisting of 1Mbytes, Using 64Kx 8 memory.

Solution:
DE-D15
507
High bank
A1-AE gh ban
L
oo-OF
_I:—I-I
A-A15 |
5
1
1 5
g
Ayr g s
A
.FL!E_ = 2 1n E) 5
A .3 [nEn
15 ¥ [_dﬂ-
¥a
m/TD s T |
BAT - il Lo 8
TALEIIN
Lovw bank
B4l w B
Do-07 - |
| | -
: AD-ATS —
{1
|
]
kil
2 |
¥a — |
Fa 1
Ao 2 |
i

Example5: show how to implement 64Kx 8 EPROM using two 32Kx8 EPROM?

Example5: show how to implement 32Kx 32 EPROM using four 32Kx8 EPROM?

74

The 8086 Input/output Interface

This lecture describes the 10 interface circuits of an 8086-based microcomputer system.
The input/output system of the microprocessor allows peripherals to provide data or receive
results of processing the data. This is done using 1/O ports.
3% 8088/8086 architecture implements independent memory and input/output address
spaces
% Memory address space- 1,048,576 bytes long (1M-byte)—00000H-FFFFFH
% Input/output address space- 65,536 bytes long (64K-bytes)—0000H-FFFFH
% Input/output can be implemented in either the memory or /O address space
3% Each input/output address is called a port
% The 8086 microcomputers can employ two different types of input/output (1/0):
e Isolated /0.
e Memory-mapped I/O.

FFFFFy¢
. Memory A
: address .
% space % FFFF,;
‘:' /0 address space
00001, 0001,
00000, 0000,

Fig. (1): 8086 memory and I/0 Interface

Isolated Input/output
3% Using isolated 1/O a microcomputer system, the I/O devices are treated separate from
memory.
The part of the I/O address space from address 0000H through OOFFH is referred to as
Page 0 as shown in figure (2).
Supports byte and word I/O ports
64K independent byte-wide I/O ports
32K independent aligned word-wide 1/0 ports

* k% 3k

75

3% Advantages of isolated 1/0

1. Complete memory address space available for use by memory

2. Special instructions have been provided in the instruction set of the 8086 to
perform isolated 1/O operation. This instructions tailored to maximize
performance

3% Disadvantage of Isolated 1/0

All inputs/outputs must take place between an I/O port and accumulator (AL or AX)
register

FFFFyg Port B5535
1O acdress
space
[OOFEg Port 266
O0FE 4 Part 254
Pae 09 0004, Part 4
00034 Port 3 -
Port 1 {16400t port}
D002 g Port 2 |
D001 Part 1 Sl
Pory O [16-bit porth
L 00005 Part 0

_—
-

Fig. (2): Isolated I/O port.

Memory-mapped Input/output

* ok ok ok %k

Memory mapped |/O—a part of the memory address space is dedicated to I/O devices
For Example: (EOOOOH-EOFFFH) — 4096 memory addresses assigned to 1/O ports
EOOOOH, EO001H, and EO002H correspond to byte wide ports 0,1, and 2
EOOOOH and EO001H correspond to word-wide port O at address EOOOOH
Advantages of memory mapped I/O

1. Instructions that affect data in memory (MOV, ADD, AND, etc.) can be used to

perform 1/O operations

2. 1/0 transfers can take place between I/O port and any of the registers
Disadvantage of memory mapped I/O

1. Memory instructions perform slower

2. Part of the memory address space cannot be used to implement memory

76

FFFFF,5

Mamary
address
spaca
OFFF4g
WO ports
o ”
addresses ’Eﬂﬂﬂ.?rﬁ
|EDDD2 g |
EO00145 | '
|E0000,4

L Por 4095
IO ports
o Pon3d b Bt 1
Port 2 7| (16-bit port)
Por 1) Port 0
Port 0 | {16-bil porf)

Fig. (3): Memory Mapped 1/0 port.

Differences between Isolated 1/0 and Memory Mapped 1/0:

Isolated 1/0 No. Memory Mapped I/O

Isolated I/O uses separate memory space. 01 Memor.y mapped I/0 uses memory from
the main memory.

Limited instructions can be used. Those are Any instruction which references to

IN, OUT, INS, OUTS. 02 | memory can be used. (MOV, AND XCHG,
SUB)

Faster because I/O instructions is Slower because memory instructions

specifically designed to run faster than 03 | execute slower than the special I/0

memory instructions instructions

The memory address space is not affected | 04 | Part of the memory address space is lost

Th d for Isolated I/O devi

e addresses for Isolated I/O devices are Memory mapped I/O devices are treated
called ports. 05

as memory locations on the memory map

77

Minimum Mode Interface
% Similar in structure and operation to memory interface
% 1/0 devices—can represent LEDs, switches, keyboard, serial communication port, printer
port, etc.
% 1/0 data transfers take place between 1/0 devices and MPU over the multiplexed-address
data bus ADO-AD7, A8-A15
% This interface use the control signals review

Vce

ALE = pulse to logic 1 tells bus interface circuitry to latch I/O address

RD = logic O tells the I/O interface circuitry that an input (read) is in progress
WR = logic O tells the 1/0O interface circuitry that an output (write) is in progress
M/E = logic 0 tells I/O interface circuits that the data transfer operation is for
the 10 subsystem

DT/ﬁ = sets the direction of the data bus for input (read) or output (write)
operation

DEN = enables the interface between the 1/0 subsystem and MPU data bus

110
E <—> .
AL g Device 0
/] ADg-AD;5 l\
N 1/ o
—P .
soss) q /0 Device 1
Interface
WR:
MPU _ > Circuit :
M/IO: <]
]
DT/R- > '
|_ DEN > /0
o ¢ > _
BH q Device N

MN/MX

Fig. (4): Minimum mode 8086 system 1/0 Interface.

Maximum Mode Interface
% Maximum-mode interface differences review
3% 8288 bus controller produces the control signals for I/O subsystem:
% Signal changes

e IORC replaces RD

e |OWC and AIOWC replace WR
e DEN is complement of DEN
° M/E no longer needed (bus controller creates separate |0 read/write controls)

78

IORC
- > Device 0
_ B lowe
So So AIOWC
g B ALE Vo
— _ — Device 1
S:—p1S, DTR 110
8086 —] Interface
MPU 8288 | _oen) circut '
A .
/] :
]
N ADo-AD15 L
MN/W m /O
‘ Device N

Fig. (5): Maximum mode 8086 system 1/O Interface.

IN and OUT Instruction

There are two different forms of IN and OUT instructions: the direct I/O instructions and
variable I/0 instructions. Either of these two types of instructions can be used to transfer a byte
or a word of data. All data transfers take place between an I/O device and the MPU’s
accumulator register. The general form of this instruction is as shown below:

Mnemonic Meaning Format Operation Flags Effected
IN Input direct IN Acc, Port (Acc) < (Port) none
Input variable | IN Acc, DX (Acc) « (DX)
oOUT Output din?ct OUT Port, Acc (Port) « (Acc) none
Output variable | OUT DX, Acc (DX) < (Acc)
Example:
IN AL,0C8H ;Input a byte from port 0C8H to AL
IN AX, 34H ;Input a word (two byte) from port 34H, 35H to AX
OUT 3BH, AL ;Copy the contents of the AL to port 3Bh
OUT 2CH,AX ;Copy the contents of the AX to port 2CH, 2DH

For a variable port IN instruction, the port address is loaded in DX register before IN instruction.
DX is 16 bit. Port address range from 0000H — FFFFH.

Example: (a)

MOV DX, OFF78H ;Initialize DX point to port

IN AL, DX ;Input a byte from a 8 bit port OFF78H to AL

IN AX, DX ;Input a word from 16 bit port to OFF78H,0FF79H to AX.

79

Example: write a series of instructions that will output FFH to an output port located at address
BOOOH of the I/O address space.
Solution:

MOV DX, BOOOH

MOV AL, FF

OUT DX, AL
Example: Data are to be read from two byte-wide input ports at addresses AAH and A9H and
then output as a word to a word-wide output port at address BOOOH. Write a series of
instructions to perform this input/output operation.
Solution:

IN AL, AAH

MOV AH, AL

IN AL, A9H

MOV DX, BOOOH

OUT DX, AX

Input/Output Bus Cycles

The input/output bus cycles are essentially the same as those involved in the memory
interface. Figure show the output bus cycle of the 8086. It’s similar to the write cycle except for

the signal M/E.

e ONEBUS CYCLE >
i T, L T2 b TS t T,

' : | " |

Aol Se- Ae/Ss «x TS Ot -
A.IND{BI-[EIS? :>—-<m)m<ﬁ.ss_ BHE OL,!>< STATUS OU1T >—

ALE—/‘\

bEN % ' ——
_____ i o

Fig. (6): Input bus cycle of 8086.

80

«———ONE BUS CYCLE i
: T h | Ty E

| 2 g [:

CLK _/—_/—_/—_/—_/__
Auern‘A \‘IrSJ ¢ NHE OLIT

A:\il') Bi !IIFt.a’S? D—G)mzl_ss. BHE OL r>< STATUS OUT >‘

ADs5-ADy ADDRESS OUT

PO B /
M/I0 :

" \ /

e = J __ T
DT/R / \

DEN \ /[
-

Fig. (7): Output bus cycle of 8086.

Byte-Wide Input and Output Ports using Isolated 1/0
Figure (8) shows a circuits diagram of a byte-wide input and output ports (8 bit) using
isolated /0 for an 8086 based microcomputer system. From this diagram there is four parts:

Demultiplexing circuit:

% Two 74F373 octal latches are used to form a 16-bit address latch. These devices latch the
address Ag through A;s synchronously with the ALE pulse. The latched address outputs are
labeled A, through Ass,.

Remember that address lines A;¢ through A;g are not involved in the 1/0O interface.
Data bus transceiver buffer in 8086 system is implemented using 74F245 octal bus IC's,

* %

where the control inputs ‘DIR’ and ‘G’ is used to control the data flow (An — Bn) or
(Bn —An).

% Figure (9) shows the block and circuit diagram of the 8-bit Data bus transceiver buffer IC.
Also note thatG input is used to enable the buffer operation, whereas DIR input selects
the direction of intended data transfer

81

o)

o

indinopndu

Jayng Jo yoje

lapogaq

Buixajdiyinwag

a
0 |«
- N3d
dia
(jeuonoeup-1g) Jud
JoNROsUEI |
A N| snqeeq Ll
Lq-0 av-"av
AA ad 1v Sedvl
Iayng
Hod
nduj
yvedvl —
9
d io -
L] —
4 veg)
: = £
[] I —
= : o) oy
_ m =
20 ! sepoosp |9 o
= tg sy [3 o sseev "
A ‘a-°q td | Indinoandul (@
yoe geldv, |V Ty €Ledv.
to& _n_
Indino ’
A0
pLEvL 7 —
A0
UM

A
ﬁ _\\
A °
ﬁ _\
J0
5
aan 0
O\

XIW/ININ

NdA
9808

—0

20A\

A byte-wide input and output ports using Isolated I/P for an 8086 based.

Fig. (8)

82

% Assume that the device is enabled by applyingé = 0. Now if DIR is set to logic O, the
output of AND gate 1 will be 0 and all the odd numbered buffers (G3, G5, G7 and so on)
will be off. So the data path from An to Bn will be disabled. But the output of AND gate 2
will be logic 1 and all the even numbered buffers (G4, G6, G8 and so on) will be ON.
Consequently, the data path from Bn to An will be ENABLED.

% Similarly, forG =0and DIR = logic 1, data path from An to Bn will be ENABLED.

R LL—— "

j_c 1 i -
N - e =
e
By l—__:_‘:.fﬂ L (18 g
ﬁ - tr L] | . "l-_\.
: T | .@ L LTI
e
LY
5] ‘-I:
Ad - T |~ -—__,::.: |{45} e
06} - '
As T | T | L J—
Once enabled with G =0 e T T F
DIE="0"=» B, == ﬁ,; -—f,_“-“-\‘,.r" | 13} 56
DIR="1"' 2 A.=> B, ; T ? Ei;
-«.‘_“_—li“i:' BT
Az 18 M~
T " “‘{ | LTI

Fig. (9): The block and circuit diagram of the 8-bit Data bus transceiver buffer IC.

Decoder circuit:
% A 74F138 (3 Line-to- 8 Line decoder) is used for decoder circuit. Address lines Ay -A;s, are
applied to AND gate, output of AND gate and address line Ag, provide two of the three
enable inputs of the 74F138 input/output address decoder. These signals are applied to

enable input G, and G_ZB respectively.

83

The decoder requires one more enable signal at its G,, input, which is supplied by the
complement of M/E.

#* The enable inputs must be G_ZB Q G, =001 to enable the decoder for operation.
#* The condition G_ZB=O corresponds to an even address, and §=o represent the fact that
an 1/0 bus cycle is in progress. G, =1 is achieved if the output of AND gate is logic 1.
% The three address lines A, A, A, are applied to select inputs CBA of the 74F138
decoder.
% When the decoder is enabled, the P output corresponding to these select inputs switches
to logic 0.
The Latch
% For output circuit we need to store the output data so we use latch, for this purpose
74F374 device is selected.
% For Figure (8), the gate at the CLK input of 74F374 has its inputs Pg and WR.
% When valid output data are on the bus, WR switches to logic O.
3% Since Py is also 0, the CLK input of the 74F374 for port 0 switches to logic 0.
% Atthe end of the WR pulse, the clock switches from 0 to 1, a positive transition.
3% This causes the data on Dy —D- to be latched and become available at output lines Og—0-
of port 0
% OE =0 enable the output, the latched data appears at the appropriate port outputs.
The Buffer
s Buffer is used with input ports. In figure (8) the 74F244 octal buffer is used to implement
the port.
% The outputs of the buffer are applied to the data bus for input to the MPU. This buffer has
three-state outputs.
% For Figure (8), the gate at the G input of 74F244 has its inputs P; and RD.
% When an input bus cycle is in progress, RD switches to logic 0.
% Since Py is also 0, the G input of the 74F244 for port 7 switches to logic 0 and the outputs
of 74F244 are enabled.
% In this case, the logic levels at inputs lp — |; are passed onto data bus lines Dy — D5
respectively.
% This byte of data is carried through the enable data bus transceiver to the data bus of the
8086.
% As part of the input operation, the 8086 reads this byte of data into the AL register.
INPUT/OUTPUT Device
% The circuit in figure (8) has 8 LEDs attached to outputs Oy — O; of output port 0. These

LEDs represent output device.

84

% Also, in figure (8) there is 8 switches attached to input Iy — I; of input port 7. These
switches represent input device.

Example 1: For figure (8), what is the I/O address of
a. Port 0 (Pg)
b. Port7(P;)
Assume all unused address bit are at logic 0.
Solution:

To enable ports P — P; — 74F138 decoder must be enabled — G_ZB Q G, =001
G, =1 > output of AND gate =1 — Ay — A5, = 111111111111

: =0—>An=0

=0 M/10 =0

(1]

(1]

(a) To enable Port 0 (Py) :
Input of decoder ABC =000 — Ay Ay A3 =000

Aisy | Arar | Agac | Aol | Azae | Asor | Aol | Ast | Az | Ast | Ast | Agt | Azt | Ay | Ay | Aol

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

I/O address of Port O = FFFOH

(b) To enable Port 7 (P;)
Input of decoder ABC =111 — Ay Ay Az =111

A15L A14L A13L AlZL A11L AlOL A9L ASL A7L A6L A5L A4L A3L AZL A1L AOL

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

I/O address of Port O = FFFEH

Example 2: For the circuit of figure (8), write an instruction sequence that inputs the byte
contents of input port 7 to the memory DS:AOO0OQH.
Solution: The address of Port P7 =FFFEH. The instruction sequence needed to input the byte is:
MOV DX, FFFEH
IN AL, DX
MOV [A000], AL

Example 3: For the circuit of figure (8), write an instruction sequence that outputs contents of
memory location DS:8000H to output port O.
Solution: The address of Port PO =FFFOH. The instruction sequence needed to output the
contents of memory location DS:8000H to output port O is:

MOV DX, FFFOH

MOV AL, [8000]

OUT DX, AL

85

Time Delay Loop and Blinking an LED at an Output Port

The circuit in Figure 1 show how to attach a LED to output port O; of parallel port 0. The
port address is FFFOH, and the LED corresponds to bit 7 of the byte of data that is written to port
0. The circuit use 74LS374 (edge clocked octal latch).

For the LED to turn on, O; must be switched to logic 0, and it will remain on until this
output is switched back to 1. The 74LS374 is not an inverting latch, therefore, to make 05 logic O,
simply write 0 to that bit of the octal latch.

WR
CLK Vee
ALE P,
i CLK (h 2 74F374 LED
Ag-Asst Output /
Py Port
o— s
7ak373 |Au Al 74F138 Latch
@ InputiOutput | Py E:)
<ADO'AD15 > Address 1A B] Address 0:_ = 0,
latch ™~ c decoder :
' I
— '
uo : =3
— .
OE = '
Gaa H
8086 '
MPU _T_ P,
— 0_
M0
74F245
Data bus M
ADg-AD; Transceiver (Do-D-
-_— (bi-directional) | ¥
DTR
DIR
v _ DEN _
© o~ MNMX »G

Fig. (1): Time Delay Loop and Blinking an LED at an Output Port

Example 1: Write instruction sequence to make the LED (in Figure 1) blink.
Solution: we must write a program that first makes 07 logic 0 to turn on the LED, delays for a
short period of time, and then switches O; back to 1 to turn off the LED. This piece of program
can run as a loop to make the LED continuously blink. This is done as follows:
Sequence of instructions needed to initialize0 7 to logic 0.
MOV DX, FFFOH ; Initialize address of port0
MOV AL, 00H ; Load data with bit 7 as logic 0
ON_OFF: OUT DX, AL ; Output the data to port 0

Delay for a short period of time so as to maintain the data written to the LED
MOV CX, FFFFH ; Load delay count of FFFFH
HERE: LOOP HERE ; Time delay loop

The value in bit 7 of AL is complemented to 1 and then a jump is performed to return to the
output operation that writes the data to the output port:

XOR AL, 80H ; Complement bit 7 of AL

JMP ON_OFF ; Repeat to Output the new bit 7

86

Polling technique

% In practical applications, it is sometimes necessary within an I/O service routine to
repeatedly read the value at an input line and test this value for a specific logic level.

*

3% The circuit in Figure 2 show how to attach a switch to input port I, of parallel port 0. The
port address is FFFOH, and the switch corresponds to bit2 of the byte of data that is read

If the switch is open, then bit 2 in AL is 1 and this value is shifted into CF. The program will still
loop until the switch is closed. If the switch closed, then the polling operation is complete and

Let us assume that we want to read the contents of port 0, and that input |5 at this port is

the line that is being polled.

from port 0. The circuit use 74LS244 (unidirectional octal buffer).

It is common practice to poll a switch like this with software waiting for it to close. The

instruction sequence that follows will poll the switch at |, :

MOV CL,

03H

MOV DX, FFFOH
POLL_I2: IN AL, DX
SHR AL, CL
JCPOLL_I2
CONTINUE: ...

the instruction following the JC is executed.

Vee

.—

ALE Po
CLK G
> Aq-Ass >|>—1 p ’)m
O 1
74F373 |Aw 74F138
@ Input/Output P
AD-AD;5 Ao B| Address Jo——
Address decoder H
latch Ast C H
Ao G :
— 0 :
OE Gos E
L N p.
8086 = o—
MPU M0 1
T4F245 ” N
ADg-AD; Data bus (Dy-D7).
Transceiver | ¥ 4
_— (bi-directional)
_ DTR | DR
MN/MX SeEN
DEN —_
P G
RD

Fig. (2): Reading the setting of switch connected to an input port.

T4F244
Input
Port
Buffer

87

Vee

Example: Write a sequence of instructions to read in the contents of ports 1 and port2 in the
circuit shown in figure 2, and save them at consecutive memory addresses AOOOOH and AOOOH in

memory.
Solution:
MOV AX, AOOOH ; set up the segment to start at AOOOH
MOV DS, AX
MOV DX, FFF2H
IN AL, DX ; input from port 1
MOV [0000H], AL ; save the input at AOOOOH
MOV DX, FFF4 ; input form port 2
IN AL, DX
MOV [0001H], AL ; save the input at AOOO1H

INPUT/OUTPUT HANDSHAKING AND A PARALLEL PRINTER INTERFACE

% In some applications, the microcomputer must synchronize the input or output of
information to a peripheral device.

% Two examples of interfaces that may require a synchronized data transfer are a serial
communications interface and a parallel printer interface.

* Sometimes it is necessary as part of the I/O synchronization process first to poll an input
from an 1I/O device and, after receiving the appropriate level at the poll input, to
acknowledge this fact to the device with an output.

% This type of synchronization is achieved by implementing what is known as handshaking
as part of the input/output interface.

3% Conceptual view of the interface between the printer and a parallel printer port. There
are three general types of signals at the printer interface: data, control, and status as
shown in figure 3. |

!

False

e True
/
/ Send data /
Parallel Control
printer et PrintQr
port X
513}”5 /Send contml/
ey l

Fig. (3):

88

*

*

*

¥ ok ok Kk % 3k

The printer is attached to the microcomputer system at a connector known as parallel
printer port.

On a PC, a 25 pin connector is used to attach the printer. Figure 4 show the actual signals
supplied at the pins of this connector are as shown below:

Strobe 10 Ack
Data O 11 Busy
Data 1 12 Paper Empty
Data 2 13 Selection
Data 3 14 Auto Foxed
Data 4 15 Error
Data 5 16 Initialize
Data 6 17 Select in
Data 7 Ground

O |INOD LN WIN |-

Figure (4-a) shows a block diagram of a simple parallel printer interface. Here we find 8
data output lines, (Do-D5), control strobe (STB), and statues signal busy (BUSY).

The MPU outputs data representing the character to be printed through the parallel
printer interface.

Character data are latched at the outputs the parallel interface and are carried to the
data inputs of the printer over data lines Dy-D>.

The STB output of the parallel printer interface is used to signal the printer that new
character data are available.

Whenever the printer is already busy printing a character, it signals this fact to the MPU
with the BUSY input of the parallel printer interface.

This handshake signal sequence is illustrated in figure (4-b).

Figure (4-c) is a flow chart of a subroutine that performs a parallel printer interface
character-transfer operation.

The circuit in figure (5) implements the parallel printer interface in figure (4-a).

ALE——— P

=)=

RD—] Parallel

8086

— Printer .
————————WR—— P
MPU _ Interface Printer
M/IO————— P N
_ L | sTB
DT/R——— P}
Vce DEN- >
—_ .
I_ | —————— BHE———— P BUSY

MN/MX

Fig. (4-a): 1/0 interface that employ handshaking

89

BUSY

0;-Dy X_

5T8

Fig. (4-b): I-i%ndshaking Signals

CSTART >

Initialize
character pointer
and counter

ol

Bl

Printer busy?

Read a character
for the buffer

v

Output character
to DQ—D7

|

Output pulse at
STB

Updata character
address and count
of character

Printer buffer
empty?

Fig. (4-c): Handshaking sequence flow chart

90

ALE

8086
MPU

Transceiver
(bi-directional)

Vee gt MNMX

DIR

G

CLK
T4F374
Output
Port
Latch

OE

[e]
O,
O.

O.
O,
O
(]

O

CLK
T4F374
Output
Port
Latch

OE

Qo

Printer

Po
| cLk ::> c
|l Ag-AssL D
74F138
74::23)73 A Al |nput/Output
ADg-AD1s Address |A2 g Q\::;:Sesr
latch As c
Ao _CEQE
OF [
£]
74F245 A
:ADO-AD7 > Databus K DoD;

Dy D,

74F244
Input
Port
— Buffer
G

lo

A

Busy

Fig. (5): Handshaking printer interface circuits
Example: Write a program that will implement the sequence in figure (4-c) for circuit in figure
(5). Character data are held in memory starting at address DS:3000, and the number of
characters held in the buffer is identified by the count at address DS:6000.

Solution:
MOV AX, DataSeg
MOV DS, AX Setting
MOV CL, [6000] ; (CL) = character count
MOV SI, 3000 ; (SI) = character pointer
MOV DX, FFF4H ; Keep polling till busy=0
POLL-BUZY: IN AL, DX Busy check
AND AL, O1H
JNZ POLL-BUZY
MOV AL, [SI] ; Get the next character
MOV DX, FFFOH Data out
OUT DX, AL And output it to port 0
MOV AL, O0H STB=0
MOV DX, FFF2H
OUT DX, AL
STROBE: MOV BX, OFH Delay for STB duration Strobe pulse
DEC BX
JNZ STROBE
MOV AL, 01 STB=1
OUT DX, AL
:;;\IECCS(QL Update
JNZ POLL-BUZY Repeat till all characters have
been transferred Repeat

HLT

91

92

8255 Programmable Peripheral Interface (PPI)

The 8255 is a widely used, programmable parallel 1/O device. It can be programmed to

transfer data under data under various conditions, from simple 1/0O to interrupt I/0O. It is flexible,
versatile and economical (w hen multiple 1/O ports are required). It is an important general
purpose I/0O device that can be used with almost any microprocessor.
The 8255 has 24 I/0 pins that can be grouped primarily into two 8 bit parallel ports: A and B,
with the remaining 8 bits as Port C. The 8 bits of port C can be used as individual bits or be
grouped into two 4 bit ports: CUpper (CU) and CLower (CL). The functions of these ports are
defined by writing a control word in the control register.

PAS 1 Poa
PAaZ2 2 PAS
Pal [= | PAS
PAD 4 PAT
RD |5 | WR
Cs & RESET
GMD 7 Do
Al 8 o1
AD] D2z
PCY 10 D=
PC& 11 D4
PCS 12 | D5
PC4 [13 D6
Pco |14 D7
PC1 [15 el
pPC2 15 FET
PC3 17 FPES&
FEOQ pe PES
PE1 :19 PE4
PBZ |20 | PB3

Fig. (1): Pin layout of 8255 Programmable Peripheral Interface.

Control Logic of 8255

RD [READ]:- This control signal enables the read operation. When the signal is low, the
microprocessor reads data from a selected I/O port of 8255

WR [WRITE]:- This control signal enables the write operation. When the signal goes low the MPU
(microprocessor) writes into a selected I/O port or the control register.

RESET :- This is an active high signal, A logic high on this line clears the control word register and
set all ports in the input mode. (that is, set as input port by default after reset)

92

cs [CHIP SELECT] :- This is a Chip Select line. If the line goes low it enables the 8255 to respond
to RD and WR signals.

Al - AO :- These are address lines driven by the microprocessor. These address lines are used for
selecting any one of the three ports or a control word.

CS A Ao Selected

0 0 0 Port A

0 0 1 Port B

0 1 0 Port C

0 1 1 Control Register

1 X X 8255 is not selected.

PA; — PAg:- These are eight port A lines that act either as input or output lines depending up on
the control word loaded into the control word register.

PC7 — PC4 : These are four Port C upper lines that can act as input or output lines. This port can
be used for the generation of handshake lines.

PC3 — PCo: These are four port C lower lines that can act as input or output lines. This port can
also be used for the generation of handshake lines.

PB0O — PB7: These are 8 port B lines which can be input or output lines in the same way as port A

DO — D7: These are the data bus lines that carry data or control word to/from the
microprocessor.

3255 functional block diagram []
I
T
Data —=|GA control E Pa —_—
Co-07 =—m—— bus R PAD-PAT
huffer .]
FD L|s=—— FCL —_—
WR ——— & |Readéwrite PC4-PC7
Al control [—L——= |GB control|=——|D
Al ——m logic A,
Feset ——MMM T|e—= PCL —_—
- I A FCO-PC3
Cs
B
| e— FB —_—
= FPBED-FPEY

Fig. (2): Block diagram of 8255 Programmable Peripheral Interface.

93

CONTROL WORD REGISTER

The control register or the control logic or the command word register (CWR) is an 8-bit
register used to select the modes of operation and input/output designation of the ports.The
figure below shows the register called the control register. The contents of this register called
the control word specify an I/O function for each port that is the ports can function
independently as input or output ports, which are achieved by the Control Word Register (CWR).

Bit D7 of the control register specifies the I/0 function or the Bit Set/ Reset function. If
the bit D7=1, bits D6-D0 determine the 1/O function in various modes. If bit D7=0, port C
operates in the Bit Set/Reset (BSR) mode. The BSR control word does not affect functions of port
A and B.

Control word

Dy Dg| Dg| Dg| Dy Dy Dy | Dy
L]
. Port C (lower)
1= Input 0= Output g’
=
)| PortB =
1= Input 0= Qutput
. hode selection (group B)
1=Mode 1 O=Mode O
. Port C (Upper)
1= Input 0= Output o
g
.| FOrtA ':E;
1= Input 0= Output
hode selection [group A)
1¥=Mode 2
| o1=Mode 1
00=Mode O
. 1=1/0 mode
0 =BSR mode
Fig. (3): 8255 Control Word Format.
To communication with peripherals through the 8255, three steps are necessary:
1. Determine the addresses of ports A, B and C and of the control register according to
the Chip Select logic and the address lines Apand A;.
2. Write a control word in the control register.
3. Write 1/0 instructions to communicate with the peripherals through ports A, B and C.

94

Operational modes of 8255

There are two basic operational modes of 8255:
1. Bitset/reset Mode (BSR Mode).
2. Input/Output Mode (I/0 Mode).

The two modes are selected on the basis of the value present at the D7 bit of the Control Word
Register. When D7 = 1, 8255 operates in I/0O mode and when D7 = 0, it operates in the BSR mode

Bit set/reset (BSR) mode

The Bit Set/Reset (BSR) mode is applicable to port C only. Each line of port C (PCy - PC;)
can be set/reset by suitably loading the control word register. BSR mode and I/O mode are

independent and selection of BSR mode does not affect the operation of other ports in 1/O
mode.

Always O D't care Fort C kit select SE'IZFH.E. sat
for BSR mcde

Fig. (4): 8255 Control Word Format for BSR Mode.

e Dy bitis always 0 for BSR mode.

e Bits Dg, D5 and D4 are don't care bits.

e Bits D3, D, and D; are used to select the pin of Port C.
e Bit Dgis used to set/reset the selected pin of Port C.

As an example, if it is needed that PCs be set, then in the control word,
1. Sinceitis BSR mode, D; ='0".
2. Since Dy, Ds, Dg are not used, assume them to be '0'.
3. PCs has to be selected, hence, D3 ='1",D,="'0',D; ="1".
4. PCshasto be set, hence, DO="1".

Thus, as per the above values, 0B (Hex) will be loaded into the Control Word Register (CWR).
D7 D6 D5 D4 D3 D2 D1 DO
0O 0 0O 0O1 0 11

95

Input/Output mode
This mode is selected when D5 bit of the Control Word Register is 1. There are three I/0 modes

1. Mode O - Simple I/O

2. Mode 1 - Strobed 1/0

3. Mode 2 - Strobed Bi-directional I/O
For example, if port B and upper port C have to be initialized as input ports and lower port C and
port A as output ports (all in mode 0):

1. Sinceitisan /O mode, D; = 1.

2. Mode selection bits, D2, D5, D6 are all 0 for mode 0 operation.

3. Port B and upper port C should operate as Input ports, hence, D; = D3 = 1.

4. Port A and lower port C should operate as Output ports, hence, D4 = Dy = 0.
Hence, for the desired operation, the control word register will have to be loaded with 8A (hex).

Example 1: What is the mode and I/O configuration for ports A, B, C of an 82C55 after its
control register is loaded with 82
Solution:

Expressing the control register contents in binary form, we get:
D7 D6 | D5 | D4 | D3 | D2 | D1 | DO
1 0 0 0 0 0 1 0

D0=0 ; port C lower is an output

D1=1 ; port B is an input

D2=0 ; then Group B (port B and port C lower) is in mode 0
D3=0 ; port C upper is an output

D4=0 ; port A is an output port

DsD6 =0 ; then Group A (port A and port C upper) is in mode 0
D7=1 ; then mode set flag is active

Example 2: Write down 82C55 control word that set Port A, Port B and Port C lower as input
in mode 0, and set Port C upper as output in mode 0.

Solution:
DO=1 ; port C lower is an input
D1=1 ; port Bis an input
D2=0 ; then Group B (port B and port C lower) is in mode 0
D3=0 ; port C upper is an output
D4=1 ; port A'is an output port
DsD6 =00 ; then Group A (port A and port C upper) is in mode 0
D7=1 ; then mode set flag is active

Then the control word contain 93H
D7 D6 | D5 | D4 | D3 | D2 | D1 | DO
1 0 0 1 0 0 1 1

96

Example 3: In 8086's8-bit isolated 1/0 system, an 82C55 PPl is connected so that the address of
A, B, C ports, and Control register are 4D08H, 4D09H, 4DOAH and 4DOBH respectively.
a) Draw the circuit diagram.

b) Write program to set Register A, B as input and Register C as output (all in mode 0). Then
continuously receive two unsigned number from Registers A and B, compare them and output
the larger to Register C.

VAN

Solution: —
—
—Q
)
S8 bo—
—
: As| 38
ALE OF ey
ADy-ADys [— 3 74373 jaz_lq*g
(2) A,
"ﬂ"{i
DEN 82C55
DT/R l_l N3
DIR G wA
glbit A P
7‘—» 1 g PB
74245 8-bit PC
__ (1) R
M/10
WR »RD
?D *WR
8086

Then the control word contain 92H

The program

again:

D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO
1 0 0 1 0 0 1 0

MOV AL, 92H

MOV DX, 4DOBH

OUT DX, AL

MOV DL, 08H (because DH is the same)
IN AL,DX

MOV BL, AL

INC DL

IN AL, DX

97

CMP AL, BL
JNC no_exchange
MOV AL, BL

no_exchange: INC DL

delayloop:

OUT DX, AL

MOV CX, FFFFH
DEC CX

IJNZ delayloop

JMP again

Mode 0: Simple Input or Output

This is also called basic I/O mode. In this mode, ports A and B are used as two simple 8-
bit 1/O ports and port C as two 4-bit ports. Each port (or half-port in case of C) can be
programmed to function as simply an input or an output port. The input/output features in
Mode 0 as follows:

1.

5.

Output is latched.
Inputs are not latched.
Ports do not have handshake or interrupt capability.

Any port can be used as input or output port.

4-bit can combined used as a third 8-bit port.

Mode 1: Input or Output with handshake

This is also called strobe I/0 mode. In Mode 1: handshake signals are exchanged between
the MPU and peripherals prior to data transfer. The features of this mode include the following:

1.

Two ports (A and B) function as 8-bit I/O ports. They can be configured either as
input or output ports.

Each port uses three lines from port C as handshake signals. The remaining two lines
of port C can be used for simple 1/0O functions.

Input and output data are latched.

Interrupt logic is supported.

98

1 PA[7:0] > PA[7:0]
PC4 #— STB. PC7 — OBE4
PC5 — IBF, PC6 [AR,
PC3 —» INTR, PC3 — INTR,
8255 <":| PB[7:0] 8255 :> PB[7:0]
PC2 je—— TTB; PC2 — OBFy
PCl — IBF; PCl #— ACKg
PCO » INTRy PCO » INTR,
PC6,7 —m—> PC4,5 K—>

Fig. (5): Mode 1 operation of 8255: Input or Output with handshake.

MODE 1: Input Control Signals
The associated control signals are used for handshaking when ports A & B are configured
as inputs. Port A uses PC; PC,4 PCsand PCy, PC;, PC,. The functions of these signals are as follows:

STB (Strobed input): This signal is generated by a peripheral device to indicate that it has
transmitted a byte of data . The 8255, in response to this signal, generates IBF and INTR.

IBF (input Buffer Full): This signal is an acknowledgement by the 8255A to indicate that it the
input latch has received the data byte. This is reset when the MPU reads the data.

INTR (Interrupt Request) :- This is an output signal that may be used to interrupt the MPU. This
signal is generated if STB, IBF and INTE(Internal flip flop) are all at logic 1. this is reset by the
falling edge of the RD Signal.

INTE (Interrupt Enable): This is an internal flip flop used to enable or disable the generation of
the INTR. The 2 flip flops INTExand INTE; are set/reset using the BSR mode. The INTE, is enabled
or disabled through PC4 and INTEg is enabled or disabled through PC,.

MODE 1: Output Control Signals
The signals when port A & B are configured as output ports as follows:

OBF (Output Buffer Full):- This is an output signal that goes low when the MPU writes data into
the output latch of the 8255 A. This signal indicates to an output peripheral that new data are
ready to be read. It goes high again after the 8255A receives an ACK from the peripheral.

ACK (Acknowledge):- This is an input signal from a peripheral that must output a low when the
peripheral receives the data from the 8255A ports.

99

INTR (Interrupt Request):- This is an output signal, and it is set by the rising edge of the
acknowledge signal. This signal can be used to interrupt the MPU to request the next data byte
for output. The INTR is set when OBF, ACK and INTE are all one and reset by the falling edge of
WR.

INTE (Interrupt Enable):- This is an internal flip flop to a port and needs to be set to generate the
INTR signal. The two flip flops INTEx and INTEg are controlled by bits PCs and PC, respectively,
through the BSR mode.

PC,45:- These two lines can be set up either as input or output.

Mode 2: Bidirectional Data Transfer

This is also called strobe bi-directional I/O mode. This mode is used primarily in
applications such as data transfer between two computers of floppy disk controller interface. In
this mode,

e Port Ais programmed to be bi-directional port
e Port Cis for handshaking
e Port B can be either input or output in mode 0 or mode 1

<> PA[7:0]
PC7 [— ODI}
PC6 j#—— ACk,
PC4 f=—— STB,
g255 PC5 — IBF,
PC3 — INTR,

PCOL o In Out STBy OBFy

PCO — In Out IBFp, ACKy

PCO — In Out INTRp INTRy

<——> PB[7:0] — ——
Mode 0 Model

Fig. (6): Mode 2 operation of 8255: Bidirectional Data Transfer.

100

Direct Memory Access (DMA):

Definition: A direct memory access (DMA) is an operation in which data is copied
(transported) from one resource to another resource in a computer system without
the involvement of the CPU.

The task of a DMA-controller (DMAC) is to execute the copy operation of

data from one resource location to another. The copy of data can be performed
from:

» 1/O-device to memory
» memory to |/O-device
» memory to memory

» 1/0-device to I/O-device

CPU CPU DMA controller

1

Memory I/O Memory I/0

~]
—

(a) Programmed I/O transfer (b) DMA transfer
Fig.1: Computer System with DMA

A DMA is an independent (from CPU) resource of a computer system added
for the concurrent execution of DMA-operations. The first two operation modes
are 'read from’ and ’write to’ transfers of an |I/O-device to the main memory,
which are the common operation of a DMA-controller. The other two operations

are slightly more difficult to implement and most DMA-controllers do not
implement device to device transfers.

101

BASIC DMA OPERATION:

Two control signals are used to request and acknowledge a direct memory
access (DMA) transfer in the microprocessor-based system.
» The HOLD pin is an input used to request a DMA action.
» The HLDA pin is an output that acknowledges the DMA action.
Figure 2 shows the timing that is typically found on these two DMA control pins.

T, o0rT,

CLK s_\ [\
HOLD / o \
HLDA \g_

Figure 2: HOLD and HLDA timing for the microprocessor.

= HOLD is sampled in any clocking cycle

= when the processor recognizes the hold, it stops executing software and
enters hold cycles

= HOLD input has higher priority than INTR or NMI

= the only microprocessor pin that has a higher priority than a HOLD is the
RESET pin

= HLDA becomes active to indicate the processor has placed its buses at high-
impedance state.

= 3s <can be seen in the timing diagram, there are
a few clock cycles between the time that HOLD changes and until HLDA
changes

DMA Controller
* A DMA read causes the MRDC and [OWC signals to activate simultaneously.

e A DMA write causes the MWTC and [ORC signals to both activate.
* 8086 require a controller or circuit such as shown in Figure 3 for control bus
signal generation.

102

* The DMA controller provides memory with its address, and controller signal
(DACK) selects the 1/0 device during the transfer.

VCG

10K

1A 1y —4— IORC

U‘I[C.Q N
—
o

W/R 1 2 . oA ov|_7__ IOWG
3A sy~ MRDC
2 e

74F04

L | O — O
(]
oy

4A 4Y

__ HLDA 15d G
M/IO i

74F257

Fig. 3: A circuit that generates system control signals in a DMA environment.

* Data transfer speed is determined by speed of the memory device or a DMA
controller.

— if memory speed is 50 ns, DMA transfers occur at rates up to 1/50 ns
or 20 M bytes per second

— if the DMA controller functions at a maximum rate of 15 MHz with 50
ns memory, maximum transfer rate is 15 MHz because the DMA
controller is slower than the memory

— In many cases, the DMA controller slows the speed of the system
when transfers occur.

103

Internal Configuration of DMA

The DMA controller includes several registers:-

= The DMA Address Register contains the memory address to be used in the

Fig. 4: DMA Controller

Interrupt TREQ
controller
INTR DREQ
DACK
HOLD
DMA IORD /O
HLDA
controller IOWR controller
CPU -
EOP
MEMRD
MEMWR Memory
Data bus
Address bus

data transfer. The CPU treats this signal as one or more output ports.

= The DMA Count Register, also called Word Count Register, contains the no.
of bytes of data to be transferred. Like the DMA address register, it too is
treated as an O/P port (with a diff. Address) by the CPU.

= The DMA Control Register accepts commands from the CPU. It is also

treated as an O/P port by the CPU.

= Although not shown in figure (5), most DMA controllers also have a Status
Register. This register supplies information to the CPU, which accesses it as

an |/P port.

104

Address bus Data bus

LA, DMA DA, DIMA,
address count data cantrol
register register register] register B
LD INC pEC LD | LD
'
t | L] =
v L
HLDA ———] DMA
/0
|
ERre device
HOLD ~—— unit -
1 /O control

Fig. (5): Internal Configuration of DMA Controller

Process of DMA Transfer

= To initiate a DMA transfer, the CPU loads the address of the first memory
location of the memory block (to be read or written from) into the DMA
address register. It does his via an I/O output instruction, such as the OTPT
instruction for the relatively simple CPU.

= |t then writes the no. of bytes to be transferred into the DMA count register
in the same manner.

= Finally, it writes one or more commands to the DMA control register

* These commands may specify transfer options such as the DMA transfer
mode, but should always specify the direction of the transfer, either from
I/O to memory or from memory to I/0.

= The last command causes the DMA controller to initiate the transfer. The
controller then sets HOLD to 1 and, once HLDA becomes 1, seizes control of
the system buses

105

DMA Transfer Modes
1. BURST mode
B Sometimes called Block Transfer Mode.
B An entire block of data is transferred in one contiguous sequence.
Once the DMA controller is granted access to the system buses by the
CPU, it transfers all bytes of data in the data block before releasing
control of the system buses back to the CPU.
2. CYCLE STEALING Mode
B Viable alternative for systems in which the CPU should not be disabled
for the length of time needed for Burst transfer modes.
3. TRANSPARENT Mode
B This requires the most time to transfer a block of data, yet it is also
the most efficient in terms of overall system performance

Advantages of DMA
B Computer system performance is improved by direct transfer of data
between memory and I/O devices, bypassing the CPU.
B CPU is free to perform operations that do not use system buses.
Disadvantages of DMA
B |n case of Burst Mode data transfer, the CPU is rendered inactive for
relatively long periods of time.

THE 8237 DMA CONTROLLER
e The 8237 supplies memory & I/O with control signals and memory address
information during the DMA transfer.
e Actually a special-purpose microprocessor whose job is high-speed data
transfer between memory and 1I/O
e Figure 6 shows the pin-out and block diagram of the 8237 programmable
DMA controller.

106

(a) (e)
(9) 153034
ox) ¥
T;segw wsuns | | 300 .
£XOVO
31160 0v3g | uwond >
I
5 —VYOH
oMOva(jse 91 €030 AHv ¥3440801 S8 YIVO WNELN \ 6 owmoo 4> mmoowﬁ -S040
¥8Q (9 S EMOVQ VZGaRa T < Y / 00340
£8Q (L vl 2XOVQ 1500 L.Cr
28Q [|ee eif] 13S34 H344NAOYaH | |H344n8 LM
18Q (62 HI N0
(ASH) A 1€ 1629 04]) OHH ONVIVNOD De>HOI
ovile spNav . w 1y _%U —L D—> MN3N
by [lee 8[) g1sav z ‘ (o1) ‘ (91) O—> HNIN
INOD | IN0D |
Al L LI YO 2 HOM | mm%ﬁ QKON | &w% Jouney [BLsav
d03 (|9 P (11 3LON), T ¥34419 2L IEWOY3Y 434408 OV3H ONIWL fe—H001
0 13 7[] MN3W ¢ [

— 104100 T T —AQV3Y
wiee chuman T ' g0
ov flec 2}) MOI mm.% |

¥ v —13534
LY [|or A 'l 40l 03
(91) 934 (01) 934 INNOD D¢>403
$53600Y dNEL HOM 8L
— Y
o HOLNBNBH30ON HOINAN3H030

107

e 8237 is not a discrete component in modern microprocessor-based systems
(it appears within many system controller chip sets).

e 8237 is a four-channel device compatible with 8086/8088, adequate for
small systems (expandable to any number of DMA channel inputs).

e 8237 is capable of DMA transfers at rates up to 1.6M bytes per second. Each
channel is capable of addressing a full 64K-byte section of memory and
transfer up to 64K bytes with a single programming

8237 Internal Registers

CAR: The current address register holds a 16-bit memory address used for the
DMA transfer.

CWCR: The current word count register programs a channel for the number of
bytes (up to 64K) transferred during a DMA action. The number loaded into this
register is one less than the number of bytes transferred.

BA and BWC : The base address (BA) and base word count (BWC) registers are
used when auto-initialization is selected for a channel. In auto-initialization mode,
these registers are used to reload the CAR and CWCR after the DMA action is
completed.

CR: The command register programs the operation of the 8237 DMA controller.

MR: The mode register programs the mode of operation for a channel. Each
channel has its own mode register as selected by bit positions 1 and 0.

BR: The bus request register is used to request a DMA transfer via software
MRSR: The mask register set/reset sets or clears the channel mask.

MSR: The mask register clears or sets all of the masks with one command instead
of individual channels, as with the MRSR.

SR: The status register shows status of each DMA channel. The TC bits indicate if
the channel has reached its terminal count (transferred all its bytes). 34

108

Terminology

analog: continuously valued signal, such as temperature or speed, with infinite
possible values in between

digital: discretely valued signal, such as integers, encoded in binary
analog-to-digital: converter: ADC, A/D, A2D; converts an analog signal to a digital
signal

digital-to-analog: converter: DAC, D/A, D2A

109

Q1: Write a program to exchange two memory locations without using “xchg'
instruction in assembly language.

DATA SEGMENT
A DB 50H
B DB 60H
DATA ENDS

CODE SEGMENT

ASSUME DS:DATA,CS:CODE
START:
MOV AX,DATA
MOV DS,AX

MOV AL,A
MOV AH,B
MOV BL,AL
MOV AL,AH
MOV AH,BL
MOV A,AL
MOV B,AH

MOV AX,4COO0H
INT 21H

CODE ENDS

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	tutorial

