
CHAPTER SIX 

BASIC COMPUTER ORGANIZATION 

AND DESIGN 

 
6.1. Instruction Codes 

The organization of a digital computer defined by: 
 

1. The set of registers it contains and their function. 
2. The set of instructions used.  
3. The timing and control structure. 

 
The user of a computer can control the process by means of a program.  
A Program can be defined as a set of instructions that specify the 
operations, operands, and the sequence by which processing has to 
occur. 
 
A Computer Instruction is a binary code that specifies a sequence of 
microoperations for the computer. 
 
An Instruction Code is a group of bits that leads the computer to 
perform a specific operation. The instruction code usually divided into 
many parts, each having its own particular interpretation. The most 
basic part of an instruction code is its operation part. 
 
The Operation Code is groups of bits that define operations such as 
add, subtract, multiply, shift, and complement. The number of bits 
required for the operation code of an instruction depends on the total 
number of operations available in the computer. For example, a 
computer with 32 distinct operations needs an operation code that 
consists of five bits.  
 
The relationship between a computer operation and a microoperation is 
recognized as that, the operation code is part of instruction stored in 
computer memory, which tells the computer to perform a specific 
operation. The control unit receives the instruction from memory and 
interprets the operation code bits. It then issues a sequence of control 
signals to initiate microoperations in internal computer registers. For this 
reason, an operation code sometimes called a macrooperation 
because it specifies a set of microoperations. 
The operation part of an instruction code specifies the operation to be 
performed. It is obvious that the operation must be performed on some 



data stored in processor register or in memory. Therefore, the 
instruction code must specify the registers or the memory words where 
the operands are to be found, as well as the register or memory word 
where the result is to be stored, in addition to the type of operation to be 
executed.   

 
6.2. Stored Program Organization and Addressing  

Suppose that we have a computer with one processor register named 
Accumulator (abbreviated AC) and an instruction code format with two 
parts, one part for the type of operation to be performed and the second 
specifies an address. The memory address indicates the control where 
to find the operand in memory. The operand is read from memory and 
used as the data to be operated on together with the data stored in the 
processor register. 
 
Figure 6.1 illustrates this type of organization. For this example, it is 
shown that the set of instructions (programs) are stored in one section 
of memory and data in another section. 
 
 For a memory unit with 4096 words, we need 12 bits to specify an 
address since 212 = 4096 and 4 bits for the operation code (Opcode) to 
specify one out of 16 possible operations. 
 
To execute the program, the control reads the first 16-bit instruction 
from the program portion of memory. The 12-bit address part of the 
instruction is used to read a 16-bit operand from the data portion of 
memory. The control then executes the operation specified by the 
operation code. The operation is performed with the memory operand 
and the content of AC. 
 
In case the operation indicated by the instruction code does not need 
an operand from memory, the 12-bits used to specify the address of the 
operand are not used and therefore can be used for other purpose. 
Examples of these operations that operate on data stored in the 
Accumulator register (AC) are, clear AC, complement AC, and 
increment AC. 
 



 

 
                      Figure 6.1 
 

Direct and Indirect Addressing 
When the second part of an instruction code specifies an operand, the 
instruction is said to have an Immediate Operand and this type of 
instructions are called Immediate Instructions. 
 
When the second part of an instruction code specifies the address of an 
operand, the instruction is said to have a Direct Address. 
 
When the second part of an instruction code designates an address of 
a memory word, in which the address of the operand is found, the 
instruction is said to have an Indirect Address.  
The memory word that holds the address of the operand is used as a 
pointer to an array of data. The pointer could be placed in a processor 
register instead of memory as done in commercial computers.  
 
To distinguish between a direct and indirect address, the most 
significant bit (bit 15) of the instruction code is used, in which 0 
indicates direct address, while 1 indicates indirect address. 
 
To illustrate these configurations, we consider the instruction code 
format shown in figure 6.2(a). The instruction consists of a one bit 
designated by I for addressing mode, 3-bit for operation code, and 
the remaining 12 bits for an address. 
 
A direct address instruction is shown in figure 6.2(b), where I = 0. This 
instruction is placed in address 10 in memory. The Opcode specifies an 
ADD instruction, and the address part is the binary equivalent of 1020. 



The control finds the operand in memory at address 1020 and adds it to 
the content of AC. 
 
 An indirect address instruction is shown in figure 6.2(c), where I = 1. 
This instruction is placed in address 20 in memory. The Opcode 
specifies an ADD instruction, and the address part is the binary 
equivalent of 90. The control goes to the word at address 90 to find the 
address of the operand in memory at address 1340 and adds it to the 
content of AC. It is clear that, the indirect address instruction needs two 
references to memory to fetch an operand. 
  
From the above examples, it is shown that there is what is called 
Effective Address, which can be defined as the address of the 
operand in a computation-type instruction or the target address in a 
branch-type instruction. Thus, the effective address in the instruction of 
figure 6.2(b) is 1020 and the effective address in the instruction of figure 
6.2(c) is 1340. 
 
 

 
                                     Figure 6.2 

 
 
 



6.3. Computer Registers 
As shown in the previous section, computer instructions are stored in 
consecutive memory locations and are executed sequentially one at a 
time. Therefore, in this case, a counter is needed to calculate the 
address of the next instruction after execution of the current instruction 
is completed. In addition, it is necessary to provide a register in the 
control unit for storing the instruction code after reading it from memory. 
The computer needs processor register for manipulating data and a 
register for holding a memory address. 
 
Figure 6.3 shows the memory and register configuration of the 
Basic Computer. 

                                                     Figure 6.3 
 
Table 6.1 lists the eight registers of the basic computer with a brief 
description for each. 
 
                                                   Table 6.1 

Register 
Symbol 

Number 
of bits Register Name Register Function 

DR 16 Data Register Holds the operand read from memory 
TR 16 Temporary Register Holds temporary data during processing 
AC 16 Accumulator General purpose processor register 

IR 16 Instruction Register Holds instruction code read from 
Memory 

PC 12 Program Counter 
Holds the address of the next Instruction 
to be read from memory after the current  
instruction is executed 

AR 12 Address Register Holds Address for Memory 

INPR 8 Input Register Receives an 8-bit character from an  
Input device  

OUTR 8 Output Register Holds an 8-bit character for an  
output device 



From table 6.1, it is indicated that the memory address register (AR) 
has 12 bits since this is the width of memory address. The program 
counter (PC) has also12 bits since it holds the address of the next 
instruction to be read from memory after the current instruction is 
executed. The PC goes through a counting sequence and causes the 
computer to read sequential instructions previously stored in memory. 
Instruction words are read and executed in sequence unless a branch 
instruction is encountered. A branch instruction calls for a transfer to a 
nonconsecutive instruction in the program. The address part of a 
branch instruction is transferred to PC to become the address of the 
next instruction. 
 
The input and output register [(INPR) and (OUTR)] have 8 bits since 
each holds an 8-bits character. 
 
Common Bus System 
Figure 6.4 shows the basic computer in which it has eight registers, a 
memory unit, and a control unit. Paths must be provided to transfer 
information from one register to another and between memory and 
registers via a common bus. 
 
The outputs of six registers and memory are connected to the common 
bus. The selection variables S2, S1, and S0 are used to select the output 
of one of the six registers or memory at a given time.  
The number shown along each output indicates the decimal equivalent 
of the required binary selection. For example, the number along the 
output of memory unit is 7, and that along the output of register PC is 2. 
The 12-bit outputs of PC are placed on the bus lines when            
S2S1S0 = 010. 
  
The lines from the common bus are connected to the inputs of each 
register and the data inputs of the memory. The particular register 
whose LD (Loud) input is enabled receives the data from the bus during 
the next clock pulse transition. 
 
The memory receives the contents of the bus when its write input is 
activated and S2S1S0 = 111. The memory places its 16-bit output onto 
the bus when the read input is activated. 
 
Two registers, AR & PC, have 12 bits each since as mentioned before 
they hold a memory address. When their contents are applied to the 16-
bit common bus, the four most significant bits are set to 0's. When AR & 
PC receive information from the common bus, only the 12 least 
significant bits of the bus are transferred into these registers. 



 
Four registers, DR, AC, IR, and TR, each have 16 bits. They receive 
and transfer 16 bits from and to the common bus. 
 
The input and output registers (INPR & OUTR) have 8 bits each and 
communicate with the eight least significant bits in the bus. The input 
register (INPR) receives a character from an input device and it is 
connected in such a case to provide information to the bus via the 
accumulator. The output register (OUTR) can only receive information 
from the accumulator via the bus and delivers it to an output device. 
 
The common bus receives information from six registers (AR, PC, DR, 
AC, IR, and TR) and the memory, in other hand the common bus is 
connected to the inputs of six registers (AR, PC, DR, IR, TR, and 
OUTR) and the memory.  
 
Registers (AR, PC, DR, AC, and TR) have three control inputs, LD (load 
register), INR (increment register), and CLR (clear or reset register), 
while registers (IR, and OUTR) have only one control input (LD). 
 
The input and output data of the memory are connected to the common 
bus, while the memory address is connected to address register (AR).  
The content of any register except INPR & OUTR can be specified for 
the memory during a write operation. Similarly, any register can receive 
the data from memory after a read operation except AC & INPR. 
 
The output of adder and logic circuit goes to the input of the 16-bit AC. 
There are three sets of inputs to the adder and logic circuit: 
  

1. A set of 16-bit comes from the outputs of the accumulator AC. They 
are used to implement register microoperations such as 
complement AC, and shift AC. 

  
2. A set of 16-bit comes from the data register DR. the inputs from DR 

and AC are used for arithmetic and logic microoperations, such as 
add DR to AC or AND DR to AC. The result of an addition is 
transferred to AC and the end carry out of the addition is 
transferred to flip-flop E (extended AC bit). 

 
3. A set of 8-bit comes from the input register INPR. 
 
From the diagram, it is clear that the content of any register can be 
applied onto the bus and an operation can be performed in the adder 
and logic circuit during the same clock cycle. The clock transition at 
the end of the cycle transfers the content of the bus into the 



designated destination register and the output of the adder and logic 
circuit into AC. For example, the following two microoperations can be 
executed at the same time. 
                                DR ← AC   and   AC ← DR 
This can be done by placing the content of AC on the bus              
(with S2S1S0 = 100) enabling the LD (load) input of DR, transferring 
the content of DR through the adder and logic circuit into AC , and 
enabling the LD (load) input of AC, all during the same clock cycle. 
The two transfers occur upon the arrival of the clock pulse transition at 
the end of the clock cycle.  

           

 
                                         Figure 6.4 

 



6.4. Computer Instructions 
The basic computer has three instruction code formats. The type of 
instruction is recognized by the computer control from the four bits in 
positions 12 through 15 of the instruction as follows: 
 
1. Memory-Reference Instruction 

For this type of instructions, the three Opcode bits in position 12 
through 14 may be any combination except 111, and bit 15 is 
designate the addressing mode I. when I = 0 indicates direct 
address and when     I = 1 indicates indirect address. The 12 bits in 
position 0 through 11 are used to specify an address. See figure 
6.5(a). 
 

2. Register-Reference Instruction 
For this type of instructions, the three Opcode bits in position 12 
through 14 is equal to 111 and the bit in position 15 equals to 0. This 
type of instructions specifies an operation on or a test of the AC 
register. An operand from memory is not needed; therefore, the 
other 12 bits are used to specify the operation or test to be executed. 
See figure 6.5(b). 
 

3. Input-Output Instruction 
For this type of instructions, the three Opcode bits in position 12 
through 14 is equal to 111 and the bit in position 15 equals to 1. This 
type of instructions does not need a reference to memory. The 
remaining 12 bits are used to specify the type of input-output 
operation or test performed. See figure 6.5(c). 
 

 
                                                 Figure 6.5 
 

Table 6.2 shows the instructions used by the computer. Three letters 
are used to represent each instruction. The hexadecimal code is equal 



to the equivalent hexadecimal number of the binary code used for the 
instruction. 
 
 
                                                Table 6.2 
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Hexadecimal Code 

 
   I = 0         I = 1 

Description 

M
em

or
y-

R
ef

er
en

ce
 

In
st

ru
ct

io
ns

 

AND    0xxx         8xxx AND memory word to AC 
ADD    1xxx         9xxx Add memory word to AC 
LDA    2xxx         Axxx Load memory word to AC 
STA    3xxx         Bxxx Store content of AC in memory 
BUN    4xxx         Cxxx Branch unconditionally 
BSA    5xxx         Dxxx Branch and save return address 
ISZ    6xxx         Exxx Increment and skip if zero 
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CLA    7800 Clear AC 
CLE    7400 Clear E 
CMA    7200 Complement AC 
CME    7100 Complement E 
CIR    7080 Circulate right AC and E 
CIL    7040 Circulate left AC and E 
INC    7020 Increment AC 
SPA    7010 Skip next instruction if AC is positive 
SNA    7008 Skip next instruction if AC is negative 
SZA    7004 Skip next instruction if AC is zero 
SZE    7002 Skip next instruction if E is zero 
HLT    7001 Halt computer 
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 INP                    F000 Input character to AC 

OUT                    F400 Output character from AC 
SKI                    F200 Skip on input flag 
SKO                    F100 Skip on output flag 
ION                    F080       Interrupt on 
IOF                    F040   Interrupt off 

  
A computer should have a set of instructions so that the user can 
construct machine language programs to evaluate any function that is 
known to be computable.  
 
 
 
 



This set of instructions is distributed on the following categories: 
 

1. Arithmetic, logical, and shift instructions. 
2. Moving information to and from memory and processor 

registers Instructions. 
3. Program control instructions together with instructions that 

check status conditions. 
4. Input and output instructions. 

 
Although the set of instruction for the basic computer listed in table 6.2 
is complete, it is not efficient because some operations are not 
performed rapidly. An efficient set of instructions will include such 
instructions as subtract, multiply, OR, and exclusive-OR. These 
operations must be programmed in the basic computer. 
   

6.5. Timing and Control 
A master clock generator controls the timing of all registers in the basic 
computer. However, the clock pulses do not change the state of a 
register unless the register is enabled by a control signal. 
The control signals are generated in the control unit and provide control 
inputs for the multiplexers in the common bus, control inputs in 
processor registers, and microoperations for the accumulator. 
 
There are two major types of control organization: 

1. Hardware Organization Control  
In this type of organization, the control logic is implemented with 
gates, flip-flops, decoders, and other digital circuits. It has the 
advantage that it can be optimized to produce a fast mode of 
operation. It has the disadvantage that it requires changes in the 
wiring among the various components if the design has to be 
modified or changed. 
 

2. Microprogrammed Organization Control  
In this type of organization, the control information is stored in a 
sequence of microoperations. It has the advantage that any 
required changes or modifications could be done by updating the 
microprogram in control memory. 

  
In this section, we present the hardware control for the basic 

computer, while the microprogrammed control the same computer 

will be studied later. 



Figure 6.6 presents the block diagram of the control unit. The 

control unit consists of two decoders, a sequence counter, and a 

number of control logic gates. The instruction register (IR) is shown 

in the diagram is divided into three parts: 

 

1. Bit 15 is transferred to a flip-flop designated by the symbol I, 

and its function is as mentioned before. 

2. Bits 12 through 14 presents the operation code are decoded   

by a 3 × 8 decoder. The eight outputs of the decoder are 

designated by the symbols D0 through D7. Note that the 

subscripted decimal number is equivalent to the binary value of 

the corresponding operation code. 

3. Bits 0 through 11 are applied to the control logic gates. 

 

The 4-bit sequence counter can count in binary from 0 through 15. 

The outputs of the counter are decoded into 16 timing signals T0 
through T15. 
 
The sequence counter (SC) can be incremented and cleared 

synchronously. Most of the time, the counter is incremented to 

provide the sequence of timing signals out of the 4 ×16 decoder.   

  



 
 
 

                                                     Figure 6.6 
 

 
The timing diagram of figure 6.7 shows the time relationship of the 
control signals. The sequence counter SC responds to the positive 
transition of the clock. Initially, the CLR input of SC is active. The 
first positive transition of the clock clears SC to 0, which in turn 
activates the timing signal T0 out of the decoder. T0 is active during 
one clock cycle. SC is incremented with every positive clock 
transition, unless its clear (CLR) input is active. This produces the 
sequence of timing signals T0, T1, T2, T3, T4, and so on. If SC is not 
cleared, the timing signals will continue with T5, T6, up to T15 and 
back to T0. For example, suppose that SC is incremented so that it 
provides timing signals T0, T1, T2, T3, and T4 in sequence. At time 
T4, SC is cleared to 0 if the decoder output D3 is active. This is 
expressed symbolically by the statement    D3T4:  SC ← 0. 
 
 
 



 
                                          Figure 6.7 
 
 
A memory read or write cycle will be initiated with the rising edge 
of a timing signal. It will be assumed that a memory cycle time is 
less than the clock cycle time. According to this assumption, a 
memory read or write cycle initiated by a timing signal will be 
completed by the time the next clock goes through its positive 
transition. The clock transition will then be used to load the 
memory word into a register.  
 
To understand the operation of the computer, it's necessary to 
understands the timing relationship between the clock transition 
and the timing signals. For example, the register transfer 
statement   T0:   AR ← PC  specifies a transfer of the content of 
PC into AR if timing signal T0 is active. T0 is active during an entire 
clock cycle interval. During this time the content of PC is placed 
onto the bus (with S2S1S0 = 010) and the LD (load) input of AR is 
enabled. The actual transfer does not occur until the end of the 
clock cycle when the clock goes through a positive transition. This 
same positive clock transition increments the sequence counter 
SC from 0000 to 0001. The next clock cycle has T1 active and T0 
inactive. 
 
 
 
 



6.6. Instruction Cycle 
As mention before a program consists of a sequence of instructions, and 
this program is residing in the computer memory. The program is 
executed instruction by instruction through a cycle for each instruction. 
 
In the basic computer, each instruction cycle consists of the 
following phases: 
 

Phase 1. Fetch an instruction from memory. 
Phase 2. Decode the instruction. 
Phase 3, Read the effective address from memory if the instruction has 

an indirect address. 
Phase 4. Execute the instruction. 
 

After the completion of phase 4, the control goes back to phase 1. 
This process continuous indefinitely unless a HALT instruction is 
detected. 
 
Fetch and Decode Phases 
Initially, the program counter PC is loaded with the address of the first 
instruction in the program. 
SC is cleared to 0, providing a decoded timing signal T0. As mentioned 
before, after each clock pulse, SC is incremented by one, so that the 
timing signals go through a sequence T0, T1, T2, and so on, see the 
timing diagram shown in figure 6.7. 
 
The microoperations for the fetch and decode phases can be 
specified by the following register transfer statements: 
 

T0:  AR ← PC 

T1:  IR ← M [AR],  PC ← PC+1 

T2:  D0, … , D7 ← Decode  IR(12-14),  AR ← IR(0-11),  I ← IR(15) 

During the clock transition associated with timing signal T0, the 
address transfer from PC to AR.  
During the clock transition associated with timing signal T1, the 
instruction read from memory is placed in the instruction register IR the 
register PC is incremented by one to prepare the address of the next 
instruction in the program.  
During the clock transition associated with timing signal T2, the 
operation code in IR is decoded, the indirect bit is transferred to the flip-
flop I, and the address part of the instruction is transferred to AR. 



Figure 6.8 illustrates how the first two register transfer statements 
are implemented in the bus system. 
 

 
 

Figure 6.8 
 
 
1. In order to implement the first statement 
 

     T0:  AR ← PC 

It is necessary to use the timing signal T0 to provide the following 
connections in the bus system. 

a. Place the content of PC onto the bus by making the bus selection 
inputs S2S1S0 = 010. 

b. Transfer the content of the bus to AR by enabling the LD input of 
AR. 

The next clock transition initiates the transfer from PC to AR since    
T0 = 1 

 
 



2. In order to implement the second statement 
        T1:  IR ← M [AR],  PC ← PC+1 

It is necessary to use the timing signal T1 to provide the following 
connections in the bus system. 
a. Enable the read input of memory. 
b. Place the content of memory onto the bus by making the bus 

selection inputs S2S1S0 = 111. 
c. Transfer the content of the bus to IR by enabling the LD input of 

IR. 
d. Increment PC by enabling the INR input of PC. 

The next clock transition initiates the read and increment operations 
since T1 = 1. 
 
The flowchart shown in figure 6.9 presents an initial 
configuration for the instruction cycle and shows how the control 
determines the instruction type after the decoding.  
 
 
 
 
 
 
 



 
 
 

Figure 6.9 
 

 
For the operation code (bits 12-14) 111 (i.e. D7 = 1), the instruction 
must be a register or input / output type. Depending on the most 
significant bit (flip-flop I), when I = 0, then the instruction is register- 
reference instruction, while for I = 1, then the instruction is           
input / output instruction. 
It is clear from the flowchart that these types of instructions are 
executed with the clock associated with timing signal T3. After the 
instruction is executed, SC is cleared to 0 and control returns to the 
fetch phase with T0. 
 
For the operation code (bits 12-14)  ≠ 111 (i.e. D7 = 0),  one of the other 
seven values 000 through 110, specifying a memory-reference 
instruction. Depending on the most significant bit (flip-flop I), when I = 
1, then the instruction is a memory- reference instruction with an 



indirect address. While for I = 0, then the instruction is a memory- 
reference instruction with a direct address. 
For a memory-reference instruction with an indirect address, it is 
necessary to read the effective address from memory. The register 
transfer microoperation for the indirect address can be symbolized as 
 
             AR ← M [AR] 

The word at the address given by AR is read from memory and placed 
on the common bus. The LD input of AR is then enabled to receive the 
indirect address that resided in the 12 least significant bits of the 
memory word. 
For a memory-reference instruction with a direct address, it is not 
necessary to do anything since the effective address is already in AR. 
It is clear from the flowchart, for these types of instructions, the 
sequence counter SC must be incremented when 137 =TD , so that the 
execution of the memory-reference instruction can be continued with 
timing variable T4.. After the instruction is executed, SC is cleared to 0 
and control returns to the fetch phase with T0. 
 
Generally, the three instruction types are subdivided into four separate 
paths. This can be symbolized as follows: - 
 

ninstructiooutputinputanExecuteTID
ninstructioreferenceregisteraExecuteTID

NothingTID
ARMARTID

−
−

←

:
:
:
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37

37

37
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6.6.1. Register Reference Instructions 
The control functions and microoperations for the register-reference 
instructions are listed in table 6.3. As shown in the flowchart of figure 
6.9, these instructions are executed with the clock transition 
associated with timing variable T3. Each control function needs the 
Boolean relation 37 TID  , which we designate for convenience by the 
symbol r. 
The control function is distinguished by one of the bits in IR (0 -11). By 
assigning the symbol Bi to bit i of IR, all control functions can be 
simply denoted by rBi.  

 
Example 

The instruction CMA has the hexadecimal code 7200 (see table 6.2), 
which gives the binary equivalent   0111 0010 0000 0000. 



1. The first bit is zero, which indicates I .  
2. The next three bits constitute the operation code and 

are recognized from decoder output D7. 
3. Bit 9 in IR is 1 and is recognized from B9. 

Therefore, the control function that initiates the microoperation 
for this   instruction is  

                            D7 I  T3 B9 = r B9 
 
The execution of a register-reference instruction is completed at time 
T3. The sequence counter SC is cleared to zero and the control goes 
back to fetch the next instruction with timing signal T0. 

 
                                                 Table 6.3 

Symbol Microoperation   Description 
 r:        SC ←0 Clear SC 
CLA rB11:  AC ←0 Clear AC 
CME rB10:  E ←0 Clear E 
CMA rB9:   AC ← AC  Complement AC 
CME rB8:   E ← E  Complement E 
CIR rB7:   AC ← shr AC,  AC(15) ←E,  E ← AC(0) Circulate right 
CIL rB6:   AC ← shl AC,  AC(0) ←E,  E ← AC(15) Circulate left 
INC rB5:   AC ← AC + 1 Increment AC 
SPA rB4:   If (AC(15) = 0) then (PC← PC + 1) Skip if positive 
SNA rB3:   If (AC(15) = 1) then (PC← PC + 1) Skip if negative 
SZA rB2:   If (AC = 0) then (PC← PC + 1) Skip if AC zero 
SZE rB1:   If (E = 0) then (PC← PC + 1) Skip if E zero 
HLT rB0:   S←0 (S is a start-stop flip-flop) Halt computer 

 
6.6.2. Memory-Reference Instructions 

Table 6.4 shows the seven memory-reference instructions. The first 
column in the table shows the symbol of the instruction. The second 
column shows the operation decoder output Di that belongs to each 
instruction. The effective address of the instruction is in the address 
register AR and was placed there during timing signal T2 when I = 0, 
or during timing signal T3 when I = 1. 
The execution of the memory-reference instructions starts with timing 
signal T4. 
The third column shows the symbolic description of each instruction 
which is specified in the table in terms of register transfer notation. 
Actually, the execution of the memory-reference instruction in the bus 
system will require a sequence of microoperations since data stored in 
memory cannot be processed directly. 

T0 



     
                                                   Table 6.4 

Symbol Operation 
Decoder  Symbolic Description  

AND D0 AC ← AC ∩ M [AR] 
ADD D1 AC ← AC + M [AR] ,  E← Cout 
LDA D2 AC ← M [AR] 
STA D3 M [AR] ← AC 
BUN D4 PC ← AR 
BSA D5 M [AR] ← PC,  PC ← AR + 1 

ISZ D6 M [AR] ← M [AR] + 1,  
if M [AR] + 1 = 0 then PC← PC + 1  

 
We now explain the operation of the seven instructions and list the 
control functions and microoperations needed for their execution. 
 
AND ( AND with accumulator ) Instruction 
This instruction performs the AND logic operation between the 
contents of the AC and the memory word specified by the effective 
address then transferring the result in AC. 
 
 
The microoperations needed to execute the AND instruction are: 
 

D0T4:   DR ← M [AR] 

D0T5:   AC ← AC ∩ DR,    SC ← 0 

The operation decoder D0 is active when the instruction has an 
AND operation whose binary code value is 000. 
 
To execute the AND instruction, two timing signals are needed: - 
1. The clock transition associated with timing signal T4 transfers the 

operand from memory into DR. 
 
2. The clock transition associated with timing signal T5 transfers the 

result of the AND logic operation between the contents of DR and 
AC into AC. In the same clock transition, SC is cleared to 0 which 
transfers the control to timing signal T0 to start a new instruction 
cycle. 

 
 



ADD ( ADD to accumulator ) Instruction 
This instruction adds the content of the memory word specified by the 
effective address to the contents of the AC then transferring the result 
into AC and the output carry Cout is transferred to the E flip-flop 
(extended accumulator). 
 
The microoperations needed to execute the ADD instruction are: 
 

D1T4:   DR ← M [AR] 

D1T5:   AC ← AC + DR,    E ←  Cout ,   SC ← 0 

The operation decoder D1 is active when the instruction has an 
ADD operation whose binary code value is 001. 
 
To execute the ADD instruction, two timing signals are needed: - 
1. The clock transition associated with timing signal T4 transfers the 

operand from memory into DR. 
 
2. The clock transition associated with timing signal T5 transfers the 

result of the addition of the contents of DR and AC into AC, in 
addition, Cout is transferred into the flip-flop E. In the same clock 
transition, SC is cleared to 0 which transfers the control to timing 
signal T0 to start a new instruction cycle. 

 

LDA ( LoaD Accumulator ) Instruction 
This instruction transfers the content of the memory word specified by 
the effective address to AC. 
 
The microoperations needed to execute the LDA instruction are: 

D2T4:   DR ← M [AR] 

D2T5:   AC ← DR,    SC ← 0 

The operation decoder D2 is active when the instruction has an 
ADD operation whose binary code value is 010. 
 
To execute the LDA instruction, two timing signals are needed: - 
 
1. The clock transition associated with timing signal T4 transfers the 

operand from memory into DR. 
 



2. The clock transition associated with timing signal T5 transfers the 
contents of DR into AC via the Adder and Logic Circuit. In the 
same clock transition, SC is cleared to 0 which transfers the 
control to timing signal T0 to start a new instruction cycle. 

 
STA ( STore Accumulator ) Instruction 
This instruction stores the content of AC into the memory word 
specified by the effective address. 
 
One microoperation needed to execute the STA instruction: 

D3T4:   M [AR] ← AC,    SC ← 0 

The operation decoder D3 is active when the instruction has an 
STA operation whose binary code value is 011. 
 
To execute the STA instruction, one timing signal T4 is needed since, 
the output of AC is applied to the bus and the data input of memory is 
connected to the same bus. In the same clock transition, SC is cleared 
to 0 which transfers the control to timing signal T0 to start a new 
instruction cycle.   

 
 

BUN ( Branch UNconditionally ) Instruction 
This instruction allows the programmer to specify an instruction out of 
the program instructions sequence (i.e. the program branches or 
jumps unconditionally). 
 
One microoperation needed to execute the BUN instruction: 

D4T4:   PC ← AR,    SC ← 0 

The operation decoder D4 is active when the instruction has a BUN 
operation whose binary code value is 100. 
 
To execute the BUN instruction, one timing signal T4 is needed since, 
the effective address from AR is transferred through the common bus 
to PC. In the same clock transition, SC is cleared to 0 which transfers 
the control to timing signal T0 to start a new instruction cycle. 
 
BSA ( Branch and Save return Address ) Instruction 
This instruction allows the programmer to branch to a portion of the 
program called a subroutine or procedure. 
  



The microoperations needed to execute the BSA instruction are: 
D5T4:   M [AR] ← PC,   AR ← AR + 1 

D5T5:   PC ← AR,    SC ← 0 

The operation decoder D5 is active when the instruction has an 
BSA operation whose binary code value is 101. 
 
To execute the BSA instruction, two timing signals are needed: - 
 
1. The clock transition associated with timing signal T4 initiates a 

memory write operation, places the content of PC onto the bus, 
and enables the Wright control signal of memory and INR input of 
AR. The memory write operation is completed and AR is 
incremented by the time the next clock transition occurs.  

 
2. The clock transition associated with timing signal T5 transfers the 

contents of AR into PC. In the same clock transition, SC is cleared 
to 0 which transfers the control to timing signal T0 to start a new 
instruction cycle. 

 
 
EXAMPLE 
Assume the BSA instruction is stored in a memory word at address 
30. The bit (I = 0) and the address part of the instruction is the binary 
equivalent 170. 
 
Execution of the instruction 

After the fetch and decode phase, PC contains 31, which is the 
address of the next instruction in the program (the return address). 
The register AR holds the effective address 170 [see figure 6.10(a)]. 
The BSA instruction performs the following numerical operation: 
 
M[170] ← 31,  PC ← 170 + 1 =171   

The result of this operation is shown in figure 6.10(b). The return 
address (31) is stored in memory location 170 and control continues 
with the subroutine program starting from address 171. 
 
To return to the original program (at address 31), this is 
accomplished by means of an indirect BUN instruction placed at the 
end of the subroutine.  
 



When BUN is executed, control goes to the indirect phase to read 
the effective address at location 170, where it finds the previously 
saved address 31. Then the effective address 31 is transferred to 
PC. The next instruction cycle finds PC with the value 31, so control 
continues to execute the instruction at the return address. 
 

 
 

ISZ ( Increment and Skip if Zero ) Instruction 
This instruction increments the word specified by the effective 
address, and if the result is zero, PC is incremented by one. When PC 
is incremented by one, the next instruction in the sequence is skipped.  

 
The microoperations needed to execute the ISZ instruction are: 

D6T4:   DR ← M [AR] 

D6T5:   DR ← DR + 1 
D6T6:   M [AR] ← DR,  if (DR = 0) then (PC ← PC + 1),  SC 

← 0 

The operation decoder D6 is active when the instruction has an ISZ 
operation whose binary code value is 110. 
 
To execute the ISZ instruction, three timing signals are needed: - 
 
1. The clock transition associated with timing signal T4 read the 

memory into DR.  
 

T1 



2. The clock transition associated with timing signal T5 increments 
DR.  

 
3. The clock transition associated with timing signal T6 store the 

word back into memory. In the same clock transition, SC is 
cleared to 0 which transfers the control to timing signal T0 to start 
a new instruction cycle. 

 

6.7. Input-Output and Interrupt 
Computer systems include many types of input and output devices. To         
demonstrate the most basic requirements for input and output 
communication, a terminal unit with a keyboard and printer used for 
this illustration. 
 

6.7.1. Input-Output Configuration 
We mentioned before that the terminals send and receive serial 
information. Each type of this information has eight bits of an 
alphanumeric code. The serial information from the keyboard shifted 
into the input register INPR. The serial information for the printer is 
stored in the output register OUTR. 
 
The two registers INPR & OUTR communicate with an interface 
serially, and with an accumulator AC in parallel. 
 
Figure 6.11 shows the input-output configuration. Where the 
transmitter interface receives serial information from the keyboard and 
transmits it to INPR, while the receiver interface receives information 
from OUTR and sends it serially to the printer. 
The input and output registers INPR & OUTR respectively are 8-bits. 
They hold alphanumeric information. The input and output flags FGI & 
FGO are 1-bit control flip-flops. The flag FGI is set to 1 when new 
information is available in the input device and is cleared to 0 when 
the information is accepted by the computer. 
 
 



 
                                          Figure 6.11 
 
 
 
Transfer of information from the keyboard to the computer 
 
Initially the input flag FGI is cleared to 0. When a key is struck in 
the keyboard, an 8-bit alphanumeric code is shifted into INPR 
and the input flag FGI is set to 1.  As long as the flag is set, the 
information in INPR cannot be changed by striking another key. 
The computer checks the flag bit; if it is 1, the information from 
INPR is transferred in parallel into AC and FGI is cleared to 0. 
Once the flag cleared, new information shifted into INPR by 
striking another key. 
 
 
Transfer of information from the computer to the printer  
      
The output register OUTR works similar to INPR,   but the direction of 
information flow reversed. 
 
Initially the output flag FGO is set to 1. The computer checks the 
output flag; if it is 1, the information from AC is transferred in 
parallel to OUTR and FGO is cleared to 0. The output device 
accepts the coded information, prints the corresponding 
character, and when the operation is completed, it sets FGO to 1.  
The computer does not load a new character into OUTR when 
FGO is 0 because this condition indicates that the output device 
is in the process of printing the character. 
 
 



6.7.2. Input-Output Instructions 
As mentioned before, input-output instructions have an operation code 
1111 are recognized by the control ( D7 = 1 & I = 1 ). Bits (0 – 11) of 
the instruction specify the particular operation. 
 
The control functions and microoperations for the input-output 
instructions are listed in table 6.5. As shown in the flowchart of     
figure 6.9, these instructions are executed with the clock transition 
associated with timing variable T3. Each control function needs the 
Boolean relation 37 TID  , which we designate for convenience by the 
symbol p. 
The control function is distinguished by one of the bits in IR (6 -11). By 
assigning the symbol Bi to bit i of IR, all control functions can be 
simply denoted by pBi for i = 6 through 11. The sequence counter SC 
is cleared to 0 when   p = 37 TID  = 1. 
 

                                                         Table 6.5 

Symbol Microoperation   Description 
 p:        SC ←0 Clear SC 
INP pB11:  AC(0-7) ← INPR,  FGI←0 Input character 
OUT pB10:  OUTR ← AC(0-7),  FGO ←0 Output character 
SKI pB9:   if (FGI  = 1) then (PC ← PC + 1)  Skip on input flag 
SKO pB8:   if (FGO = 1) then (PC ← PC + 1) Skip on output flag 
ION pB7:   IEN ← 1 Interrupt enable on 
IOF pB6:   IEN ← 0 Interrupt enable off 

 
 
Example 

The instruction INP has the hexadecimal code F800 (see table 6.2), 
which gives the binary equivalent   1111 1000 0000 0000. 
 

1. The first bit is one, which indicates I.  
2. The next three bits constitute the operation code and are 

recognized from decoder output D7. 
3. Bit 11 in IR is 1 and is recognized from B11. 
 
Therefore the control function that initiates the microoperation 
for the instruction INP is  
 

                            D7I T3 B11 = p B11 
 

T2 



The execution of input-output instructions completed at time T3 as in 
the case of the register-reference instructions. The sequence counter 
SC is cleared to 0 and the control goes back to fetch the next 
instruction with timing signal T0. 
 
The INP instruction transfers the input information from INPR into the 
eight least significant bits of accumulator and clears the input flag to 0. 
 
The OUT instruction transfers the eight least significant bits of 
accumulator into the output register OUTR and clears the output flag 
to 0. 
 
The instructions SKI & SKO checks the status of the flags FGI & 
FGO respectively and causes a skip of the next instructions if the flag 
is 1. The instruction that is skipped will normally be a branch 
instruction to return and check the flag again.  
 
The instructions ION & IOF set and clear an interrupt enable flip-flop 
IEN. The purpose of the flip-flop IEN will be explained later in 
conjunction with the interrupt operation.  
 
 

6.7.3. Program Interrupt 
The difference of information flow rate between the computer and the 
input/output device according to the programmed control transfer 
procedure mentioned before makes this type of transfer inefficient. 
 
The alternative efficient procedure is to let the external device to 
inform the computer when it is ready for the transfer. This type of 
transfer uses the interrupt facility. 
 
While the program running, it does not check the input or output flags. 
However, when a flag is set, the computer shortly interrupted from 
proceeding with the current program and is informed of the fact that a 
flag has been set. In that, time the computer deviates shortly from 
what it is doing to take care of the input or output transfer. After 
completing the input or output transfer, the computer returns to the 
current program to continue what it was doing before the interrupt. 
 
The interrupt flip-flop IEN can be set and cleared according to two 
instructions as follows: 
 

1. With the IOF instruction, the IEN is cleared to 0 and the input 
or output flags cannot interrupt the computer. 



 
2. With the ION instruction, the IEN is set to 1, and the 

computer can be interrupted. 
 

How the computer handles the interrupt process 

The flowchart shown in figure 6.12 explains the process. The 
computer contains an interrupt flip-flop designated by R. 
  

1. When R = 0, the computer goes through instruction cycle. During 
the instruction cycle, IEN is checked, if it is 0, indicates no need 
for interruption, and the control continues with the next instruction 
cycle. If IEN is 1, control checks the flag bits, if both flags are 0, it 
indicates that neither the input nor the output registers are ready 
for transfer of information. In this case, control continues with the 
next instruction cycle. If either flag is set to 1 while IEN = 1,      
flip-flop R is set to 1. At the end of execute phase, control checks 
the value of R, and if it is equal to 1, it goes to an interrupt cycle 
instead of an instruction cycle. 

 
 
2. When R = 1, the computer goes through interrupt cycle, which is a 

hardware implementation of a branch and save return address 

operation. The return address available in PC is stored in a 

specific location where it can be found later when the program 

returns to the instruction at which it was interrupted. Here a 

memory location at address 0 is chosen as the place for storing 

the return address. Control then inserts address 1 into PC and 

clears IEN and R so that no more interruptions can occur until the 

interrupt request from the flag has been serviced.               

    



    
                                         Figure 6.12 
 
 
Example. (See Figure 6.13) 
Suppose that an interrupt occurs and R is set to 1 while the control is 
executing the instruction at address 255. At this time, the return 
address 256 is in PC. The programmer has previously placed an 
input/output service program in memory starting from address 1120 
and BUN 1120 instruction at address 1, see figure 6.13(a). 
 
When control reaches timing signal T0 and finds that R = 1, it proceeds 
with the interrupt cycle. The content of PC (256) is stored in memory 
location 0, PC is set to 1, and R is cleared to 0. At the beginning of the 
next instruction cycle, the instruction that is read from memory is in 
address 1 since this is the content of PC. The branch instruction at 
address 1 causes the program to transfer to the input/output service 
program at address 1120. This program checks the flags, determines 
which flag is set, and then transfers the required input or output 
information. Once this is done, the instruction ION is executed to set 
IEN to 1 (to enable further interrupts), and the program returns to the 
location where it was interrupted, see figure 6.13(b). 
 
A branch indirect instruction with an address part of 0 placed at the 
end of the I/O program, returns the computer to the original place in 



the main program. After this instruction is read from memory during 
the fetch phase, control goes to the indirect phase (because I = 1) to 
read the effective address. The effective address is in location 0 and is 
the return address that was stored there during the previous interrupt 
cycle. The execution of the indirect BUN instruction results in placing 
into PC the return address from location 0. 
 

 
Figure 6.13 

 
 

6.7.4. Interrupt Cycle 
From the flowchart shown in figure 6.12, it is clear that the condition 

for setting flip-flop R to 1 can be expressed with the following register 

transfer statement: 

 

1:))((210 ←+ RFGOFGIIENTTT    

 

The interrupt cycle stores the return address which is available in PC 

into memory location 0, branches to memory location 1, and clears 

IEN, R, and SC to 0. This can be done with the following sequence of 

microoperations: 
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1. During timing signal T0, AR is cleared to 0, and the content of 

PC is transferred to the temporary register TR. 

 

2. During timing signal T1, the return address is stored in memory 

at location 0 and PC is cleared to 0. 

 

3. During timing signal T3, the PC incremented by 1, clears IEN 

and R, and control goes back to T0 by clearing SC to 0. The 

beginning of the next instruction cycle has the condition 0TR  and 

the content of PC is equal to 1. The control then goes through an 

instruction cycle that fetches and executes the BUN instruction in 

location 1. 

 

6.8. Complete Computer Description 
Figure 6.14 shows the final flowchart of the instruction cycle, including 
the interrupt cycle for the basic computer. As mentioned before the 
control returns to timing signal, T0 after SC is cleared to 0. if R = 1, the 
computer executes an interrupt cycle, while for R = 0, the computer 
executes an instruction cycle. 
 
Table 6.6 summarizes the control functions and microoperations for the 
entire basic computer.  
 
 



 
 

                                                        Figure 6.14 

 

 

 

 

 



                                           Table 6.6 

 

 

 

 Description Microoperation 
 Fetch R'T0:  AR ← PC 

R'T1:  IR ← M [AR],  PC ← PC+1 
 Decode R'T2:  D0, … , D7 ← Decode  IR(12-14),   

AR ← IR(0-11),  I ← IR(15) 
 Indirect D'7IT3:  AR ← M [AR] 

 Interrupt T'0T'1T'2(FGI + FGO):  R ← 1 
                             RT0:  AR ← 0,  TR ← PC 
                             RT1:  M[AR] ← TR,  PC ← 0 
                             RT2:  PC ← PC+1,  IEN ← 0,  R ← 0,  SC ← 0 
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AND D0T4:   DR ← M [AR] 
D0T5:   AC ← AC ∩ DR,    SC ← 0 

ADD D1T4:   DR ← M [AR] 
D1T5:   AC ← AC + DR,    E ←  Cout ,   SC ← 0 

LDA D2T4:   DR ← M [AR] 
D2T5:   AC ← DR,    SC ← 0 

STA D3T4:   M [AR] ← AC,    SC ← 0 
BUN D4T4:   PC ← AR,    SC ← 0 
BSA D5T4:   M [AR] ← PC,   AR ← AR + 1 

D5T5:   PC ← AR,    SC ← 0 
ISZ D6T4:   DR ← M [AR] 

D6T5:   DR ← DR + 1 
D6T6:   M [AR] ← DR,  if (DR = 0) then (PC ← PC + 1),  SC ← 0 
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 r:        SC ←0 
CLA rB11:  AC ←0 
CMA rB10:  E ←0 
CMA rB9:   AC ← AC  
CME rB8:   E ← E  
CIR rB7:   AC ← shr AC,  AC(15) ←E,  E ← AC(0) 
CIL rB6:   AC ← shl AC,  AC(0) ←E,  E ← AC(15) 
INC rB5:   AC ← AC + 1 
SPA rB4:   If (AC(15) = 0) then (PC← PC + 1) 
SNA rB3:   If (AC(15) = 1) then (PC← PC + 1) 
SZA rB2:   If (AC = 0) then (PC← PC + 1) 
SZE rB1:   If (E = 0) then (PC← PC + 1) 
HLT rB0:   S←0 (S is a start-stop flip-flop) 
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  p:        SC ←0 

INP pB11:  AC(0-7) ← INPR,  FGI←0 
OUT pB10:  OUTR ← AC(0-7),  FGO ←0 
SKI pB9:   if (FGI  = 1) then (PC ← PC + 1)  
SKO pB8:   if (FGO = 1) then (PC ← PC + 1) 
ION pB7:   IEN ← 1 
IOF pB6:   IEN ← 0 



6.9. Design of the Basic Computer 

The hardware of the basic computer consists of the following 
parts: 
 

1. A memory unit with 4096 words of 16 bits each. 

2. Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC. 

3. Seven flip-flops: S, E, R, IEN, FGI, FGO, and I. 

4. Two decoders: a 3 × 8 operation decoder and a 4 ×16 timing 

decoder. 

5. A 16-bit common bus. 

6. Control logic gates. 

7. Adder and logic circuit connected to the input of AC.  

 

The (memory, registers, flip-flops, 3 × 8 and 4 ×16 decoders, and 
the16-bit common bus) have been discussed in details previously in this 
chapter. These parts can be obtained from a commercial source. 
Now we are going to design the remaining parts, Control logic gates, 
and the adder and logic circuit associated with accumulator. 
 

6.9.1. Design of the Control logic gates 

Returning to figure 6.6, which shows some of the inputs to the control 
logic gates which comes from the two decoders, I flip-flop, and bits     
0-11 of IR. Other inputs to control logic gates which are not 
shown in the figure are: 
 

1. Accumulator 16 bits to check if AC = 0 and to detect the sign bit in 
AC (15). 

 
2. Data register DR 16 bits to check if DR = 0. 

3. Value of the seven flip-flops S, E, R, IEN, FGI, FGO, and I. 

 
 

 

 

 



The outputs of the Control logic circuit are:  
1. Signals to control the inputs of the nine registers. 

2. Signals to control the read and write inputs of memory. 

3. Signals to set, clear, or complement the flip-flops. 

4. Signals to S2, S1, and S0 To select a register or memory for the 

bus. 

5. Signals to control the AC adder and logic circuit.  

 

6.9.1.1. Control of Memory and Registers 
The control inputs of the registers connected to the common bus 
(see figure 6.4) are: 
  

1. Load the register (LD). 
2. Increment the register (INR). 
3. Clear the register (CLR). 
 

Suppose that it is desired to derive the gate structure associated 
with the control inputs of the data register (DR). By scanning table 
6.6, it is shown that the statements that change the content of DR 
are the following: 
 
D0T4:   DR ← M [AR] 
D1T4:   DR ← M [AR] 
D2T4:   DR ← M [AR] 
D6T4:   DR ← M [AR] 
D6T5:   DR ← DR + 1 
 
The first four statements specify transfer of information from the 
memory to DR. The content of memory is placed on the bus and 
the content of the bus is transferred into DR by enabling its LD 
control input. The fifth statement increments the data register (DR) by 
1. The control functions can be combined into two Boolean 
expressions as follows: 
 

56

46210

)(
)()(

TDDRINR
TDDDDDRLD

=
+++=

 

 
 
 
 



Figure 6.15 shows the control gate logic associated with DR.    
 
 
 

 
                                               Figure 6.15 

 

In similar way, one can derive the control gates for the other 
registers as well as the logic needed to control the read and write 
inputs of memory. 
The logic gates associated with the write input of memory is derived 
by scanning table 6.6 to find the statements that specify a write 
operation. Note that the write operation is recognized from the 
symbol M [AR] ←. 
 

6645431 TDTDTDRTWrite +++=  
 

 
6.9.1.2. Control of Single Flip-Flops 

In similar manner, the control gates for the seven flip-flops S, E, R, 

IEN, FGI, FGO, and I can be determined. 

 
Example 
Show the complete logic control of the IEN Flip-flop in the basic 

computer. Use a JK flip-flop for this purpose. 

 
Solution 
By scanning table 6.6, it is shown that the statements that change 

the state of the Flip-flop IEN are the following: 
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0:2 ←IENRT  
 
Where 37 ITDp =  and B6 and B7 are bits 6 and 7 respectively. 

Using JK flip-flop for the IEN, the complete control logic will be as 

shown in figure 6.16. 

 

 

 
                         
                  Figure 6.16 

 
 
  

6.9.1.3. Control of Common Bus 
As explained before, the 16-bit common bus is controlled by the 
three selection inputs S2, S1, and S0 (see figure 6.4). To select any 
one of the registers or the memory, a binary number equivalent     
to the decimal number shown with each bus input must be        
applied to the selection inputs S2, S1, and S0 in order to select the 
corresponding register or memory. 
 
Table 6.7 is recognized as the truth table of a binary encoder, 
which specifies the binary numbers for S2S1S0 that select each 
register or memory. Each binary number is associated with a 
Boolean variable X1 to X7, corresponding to the gate structure that 
must be active in order to select the register or memory for the bus. 
 
As an example, when X3 = 1, the corresponding value of S2S1S0 
must be 011 and the output of DR will be selected for the bus. 
     
 
 
 
 



                                                     Table 6.7 

Inputs 
 X1 X2 X3 X4 X5 X6 X7 

Outputs 
S2  S1  S0 

Selected Register 
for the Bus 

 0   0   0   0   0   0   0  0   0   0 None 
 1   0   0   0   0   0   0  0   0   1 AR 
 0   1   0   0   0   0   0  0   1   0 PC 
 0   0   1   0   0   0   0  0   1   1 DR 
 0   0   0   1   0   0   0  1   0   0 AC 
 0   0   0   0   1   0   0  1   0   1 IR 
 0   0   0   0   0   1   0  1   1   0 TR 
 0   0   0   0   0   0   1  1   1   1 Memory 

 
 
Figure 6.17 shows the encoder at the inputs of the bus selection 
logic. The Boolean functions for the encoder are as follows: 
 

S0 = X1 + X3 + X5 + X7 
S1 = X2 + X3 + X6 + X7 
S2 = X4 + X5 + X6 + X7 
 

 
 

 
                               Figure 6.17 

 
How to determine the control logic for each encoder input 
Suppose that it is required to find the control logic that makes        
X2 = 1 and S2S1S0 = 010 (select the register PC as the source 
register).  
We proceed as follows: 
 
1. Scan all register transfer statements in table 6.6 and extract 

those statements that have PC as a source register. 
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2. The Boolean function for X2 is: 

45002 TDRTTRX ++=   
 
3. Draw the control logic for X2 (Figure 6.18). 

 
Figure 6.18 

In a similar manner, one can determine the gate logic for other 
registers or memory. 
 
Homework 
Find the control logic that makes X1 = 1 and S2S1S0 = 001 (select the 
register AR as the source register). 

 
6.9.2. Design of Accumulator Logic 

Figure 6.19 presents the circuit block diagram associated with the 
accumulator register (AC). 
 
The adder and logic circuit has three inputs: 
 

1. 16-bit inputs from the outputs of the accumulator register (AC) it 
self. 

 
2. 16-bit inputs from the data register DR. 

3. 8-bit inputs from the input register INPR. 

 
The output of the adder and logic circuit provides the data inputs 
for the accumulator register (AC). 
 
In addition, it is necessary to include in the design the logic gates for 
controlling the LD, INR, and CLR of the register and the controlling 
operation of the adder and logic circuit. 



 
 
 

 
                               Figure 6.19 

 
 
6.9.2.1. Control of Accumulator Register 

In the same manner in order to design the logic that controls the 
accumulator register AC, it is necessary to scan all register transfer 
statements in table 6.6 and extract those statements that change 
the content of AC. These register transfer statements are: 
  
 

 
 

 
From the control functions in the list above, the gate configuration 
is derived as follows: 
 



1. The control function for the increment microoperation (INR) is 
rB5, where 37 TIDr =  and )5(5 IRB = . 

 
2. The control function for the clear microoperation (CLR) is rB11, 

where 37 TIDr =  and )11(11 IRB = . 
 
3. The control function for the load microoperation (LD) is the 

result of the remaining seven microoperations, which 
generated in the adder and logic circuit and are loaded at the 
proper time.  

 
Figure 6.20 shows the gate structure that controls the LD, INR, and 
CLR inputs of the accumulator register AC. Note that the outputs 
of the gates for each control function are marked with a 
symbolic name.  

 
 
 
 

 
                               Figure 6.20 
 

6.9.2.2. Adder and Logic Circuit 
Figure 6.21 shows the internal construction of the accumulator 
register AC. Each stage has a JK flip-flop, two OR gates, and two 
AND gates. The load (LD) is connected to the inputs of the AND 
gates.  



Figure 6.23 shows one stage of AC register (here the OR gates are 
removed) since the other functions (i.e. Clear and Increment of the 
register AC are not included). When LD input is enabled, the 16 
inputs Ii for i = 0,1,2, …, 14,15 are transferred to AC (0-15). 
 
Every stage of Adder and Logic Circuit consists of: 
1. Seven AND gates, every one has one of its inputs one of the functions 

comes from figure 6.20 as an enable. For example, the input named 
DR in figure 6.22 connected to the output marked DR in figure 6.20. 

  
2. One OR gate. 

3. One Full-adder (FA). 

 

 

 
How the arithmetic and logic operations are achieved? 
1. ADD operation 

This operation achieved using a binary full-adder having their 
two inputs from the corresponding bits (i) of registers AC and 
DR, the input carry from the previous stage, and the result 
transfers through OR gate to register AC, and the output carry to 
next stage or to the E flip-flop when this stage is the last stage. 
 

2. AND operation 

The AND operation is obtained through ANDing AC (i) with the 
corresponding bit in the data register DR (i), and the result 
transfers through OR gate to register AC. 

 



 
                               Figure 6.21 
 
 

3. Transfer the content of the register DR 

When DR input is active, the content of the register DR 
transferred to the register AC. 
 

4. Transfer the content of the register INPR 

When INPR input is active, the 8-bits of the register INPR 
transferred to Bits 0-7 of the accumulator register AC. 
 

5. Complementation of the contents of AC register  
When COM input is active, the content of register AC is 
inverted and re-transferred to the register. 
 
 



6. Shift-right operation 
This operation transfers bit AC ( i+1 ) into bit AC ( i ). 

7. Shift-left operation 
This operation transfers bit AC ( i -1 ) into bit AC ( i ). 

 

 
                                                         

                               Figure 6.22 
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