
CHAPTER SIX

BASIC COMPUTER ORGANIZATION

AND DESIGN

6.1. Instruction Codes

The organization of a digital computer defined by:

1. The set of registers it contains and their function.
2. The set of instructions used.
3. The timing and control structure.

The user of a computer can control the process by means of a program.
A Program can be defined as a set of instructions that specify the
operations, operands, and the sequence by which processing has to
occur.

A Computer Instruction is a binary code that specifies a sequence of
microoperations for the computer.

An Instruction Code is a group of bits that leads the computer to
perform a specific operation. The instruction code usually divided into
many parts, each having its own particular interpretation. The most
basic part of an instruction code is its operation part.

The Operation Code is groups of bits that define operations such as
add, subtract, multiply, shift, and complement. The number of bits
required for the operation code of an instruction depends on the total
number of operations available in the computer. For example, a
computer with 32 distinct operations needs an operation code that
consists of five bits.

The relationship between a computer operation and a microoperation is
recognized as that, the operation code is part of instruction stored in
computer memory, which tells the computer to perform a specific
operation. The control unit receives the instruction from memory and
interprets the operation code bits. It then issues a sequence of control
signals to initiate microoperations in internal computer registers. For this
reason, an operation code sometimes called a macrooperation
because it specifies a set of microoperations.
The operation part of an instruction code specifies the operation to be
performed. It is obvious that the operation must be performed on some

data stored in processor register or in memory. Therefore, the
instruction code must specify the registers or the memory words where
the operands are to be found, as well as the register or memory word
where the result is to be stored, in addition to the type of operation to be
executed.

6.2. Stored Program Organization and Addressing

Suppose that we have a computer with one processor register named
Accumulator (abbreviated AC) and an instruction code format with two
parts, one part for the type of operation to be performed and the second
specifies an address. The memory address indicates the control where
to find the operand in memory. The operand is read from memory and
used as the data to be operated on together with the data stored in the
processor register.

Figure 6.1 illustrates this type of organization. For this example, it is
shown that the set of instructions (programs) are stored in one section
of memory and data in another section.

 For a memory unit with 4096 words, we need 12 bits to specify an
address since 212 = 4096 and 4 bits for the operation code (Opcode) to
specify one out of 16 possible operations.

To execute the program, the control reads the first 16-bit instruction
from the program portion of memory. The 12-bit address part of the
instruction is used to read a 16-bit operand from the data portion of
memory. The control then executes the operation specified by the
operation code. The operation is performed with the memory operand
and the content of AC.

In case the operation indicated by the instruction code does not need
an operand from memory, the 12-bits used to specify the address of the
operand are not used and therefore can be used for other purpose.
Examples of these operations that operate on data stored in the
Accumulator register (AC) are, clear AC, complement AC, and
increment AC.

 Figure 6.1

Direct and Indirect Addressing
When the second part of an instruction code specifies an operand, the
instruction is said to have an Immediate Operand and this type of
instructions are called Immediate Instructions.

When the second part of an instruction code specifies the address of an
operand, the instruction is said to have a Direct Address.

When the second part of an instruction code designates an address of
a memory word, in which the address of the operand is found, the
instruction is said to have an Indirect Address.
The memory word that holds the address of the operand is used as a
pointer to an array of data. The pointer could be placed in a processor
register instead of memory as done in commercial computers.

To distinguish between a direct and indirect address, the most
significant bit (bit 15) of the instruction code is used, in which 0
indicates direct address, while 1 indicates indirect address.

To illustrate these configurations, we consider the instruction code
format shown in figure 6.2(a). The instruction consists of a one bit
designated by I for addressing mode, 3-bit for operation code, and
the remaining 12 bits for an address.

A direct address instruction is shown in figure 6.2(b), where I = 0. This
instruction is placed in address 10 in memory. The Opcode specifies an
ADD instruction, and the address part is the binary equivalent of 1020.

The control finds the operand in memory at address 1020 and adds it to
the content of AC.

 An indirect address instruction is shown in figure 6.2(c), where I = 1.
This instruction is placed in address 20 in memory. The Opcode
specifies an ADD instruction, and the address part is the binary
equivalent of 90. The control goes to the word at address 90 to find the
address of the operand in memory at address 1340 and adds it to the
content of AC. It is clear that, the indirect address instruction needs two
references to memory to fetch an operand.

From the above examples, it is shown that there is what is called
Effective Address, which can be defined as the address of the
operand in a computation-type instruction or the target address in a
branch-type instruction. Thus, the effective address in the instruction of
figure 6.2(b) is 1020 and the effective address in the instruction of figure
6.2(c) is 1340.

 Figure 6.2

6.3. Computer Registers
As shown in the previous section, computer instructions are stored in
consecutive memory locations and are executed sequentially one at a
time. Therefore, in this case, a counter is needed to calculate the
address of the next instruction after execution of the current instruction
is completed. In addition, it is necessary to provide a register in the
control unit for storing the instruction code after reading it from memory.
The computer needs processor register for manipulating data and a
register for holding a memory address.

Figure 6.3 shows the memory and register configuration of the
Basic Computer.

 Figure 6.3

Table 6.1 lists the eight registers of the basic computer with a brief
description for each.

 Table 6.1

Register
Symbol

Number
of bits Register Name Register Function

DR 16 Data Register Holds the operand read from memory
TR 16 Temporary Register Holds temporary data during processing
AC 16 Accumulator General purpose processor register

IR 16 Instruction Register Holds instruction code read from
Memory

PC 12 Program Counter
Holds the address of the next Instruction
to be read from memory after the current
instruction is executed

AR 12 Address Register Holds Address for Memory

INPR 8 Input Register Receives an 8-bit character from an
Input device

OUTR 8 Output Register Holds an 8-bit character for an
output device

From table 6.1, it is indicated that the memory address register (AR)
has 12 bits since this is the width of memory address. The program
counter (PC) has also12 bits since it holds the address of the next
instruction to be read from memory after the current instruction is
executed. The PC goes through a counting sequence and causes the
computer to read sequential instructions previously stored in memory.
Instruction words are read and executed in sequence unless a branch
instruction is encountered. A branch instruction calls for a transfer to a
nonconsecutive instruction in the program. The address part of a
branch instruction is transferred to PC to become the address of the
next instruction.

The input and output register [(INPR) and (OUTR)] have 8 bits since
each holds an 8-bits character.

Common Bus System
Figure 6.4 shows the basic computer in which it has eight registers, a
memory unit, and a control unit. Paths must be provided to transfer
information from one register to another and between memory and
registers via a common bus.

The outputs of six registers and memory are connected to the common
bus. The selection variables S2, S1, and S0 are used to select the output
of one of the six registers or memory at a given time.
The number shown along each output indicates the decimal equivalent
of the required binary selection. For example, the number along the
output of memory unit is 7, and that along the output of register PC is 2.
The 12-bit outputs of PC are placed on the bus lines when
S2S1S0 = 010.

The lines from the common bus are connected to the inputs of each
register and the data inputs of the memory. The particular register
whose LD (Loud) input is enabled receives the data from the bus during
the next clock pulse transition.

The memory receives the contents of the bus when its write input is
activated and S2S1S0 = 111. The memory places its 16-bit output onto
the bus when the read input is activated.

Two registers, AR & PC, have 12 bits each since as mentioned before
they hold a memory address. When their contents are applied to the 16-
bit common bus, the four most significant bits are set to 0's. When AR &
PC receive information from the common bus, only the 12 least
significant bits of the bus are transferred into these registers.

Four registers, DR, AC, IR, and TR, each have 16 bits. They receive
and transfer 16 bits from and to the common bus.

The input and output registers (INPR & OUTR) have 8 bits each and
communicate with the eight least significant bits in the bus. The input
register (INPR) receives a character from an input device and it is
connected in such a case to provide information to the bus via the
accumulator. The output register (OUTR) can only receive information
from the accumulator via the bus and delivers it to an output device.

The common bus receives information from six registers (AR, PC, DR,
AC, IR, and TR) and the memory, in other hand the common bus is
connected to the inputs of six registers (AR, PC, DR, IR, TR, and
OUTR) and the memory.

Registers (AR, PC, DR, AC, and TR) have three control inputs, LD (load
register), INR (increment register), and CLR (clear or reset register),
while registers (IR, and OUTR) have only one control input (LD).

The input and output data of the memory are connected to the common
bus, while the memory address is connected to address register (AR).
The content of any register except INPR & OUTR can be specified for
the memory during a write operation. Similarly, any register can receive
the data from memory after a read operation except AC & INPR.

The output of adder and logic circuit goes to the input of the 16-bit AC.
There are three sets of inputs to the adder and logic circuit:

1. A set of 16-bit comes from the outputs of the accumulator AC. They
are used to implement register microoperations such as
complement AC, and shift AC.

2. A set of 16-bit comes from the data register DR. the inputs from DR

and AC are used for arithmetic and logic microoperations, such as
add DR to AC or AND DR to AC. The result of an addition is
transferred to AC and the end carry out of the addition is
transferred to flip-flop E (extended AC bit).

3. A set of 8-bit comes from the input register INPR.

From the diagram, it is clear that the content of any register can be
applied onto the bus and an operation can be performed in the adder
and logic circuit during the same clock cycle. The clock transition at
the end of the cycle transfers the content of the bus into the

designated destination register and the output of the adder and logic
circuit into AC. For example, the following two microoperations can be
executed at the same time.
 DR ← AC and AC ← DR
This can be done by placing the content of AC on the bus
(with S2S1S0 = 100) enabling the LD (load) input of DR, transferring
the content of DR through the adder and logic circuit into AC , and
enabling the LD (load) input of AC, all during the same clock cycle.
The two transfers occur upon the arrival of the clock pulse transition at
the end of the clock cycle.

 Figure 6.4

6.4. Computer Instructions
The basic computer has three instruction code formats. The type of
instruction is recognized by the computer control from the four bits in
positions 12 through 15 of the instruction as follows:

1. Memory-Reference Instruction

For this type of instructions, the three Opcode bits in position 12
through 14 may be any combination except 111, and bit 15 is
designate the addressing mode I. when I = 0 indicates direct
address and when I = 1 indicates indirect address. The 12 bits in
position 0 through 11 are used to specify an address. See figure
6.5(a).

2. Register-Reference Instruction
For this type of instructions, the three Opcode bits in position 12
through 14 is equal to 111 and the bit in position 15 equals to 0. This
type of instructions specifies an operation on or a test of the AC
register. An operand from memory is not needed; therefore, the
other 12 bits are used to specify the operation or test to be executed.
See figure 6.5(b).

3. Input-Output Instruction
For this type of instructions, the three Opcode bits in position 12
through 14 is equal to 111 and the bit in position 15 equals to 1. This
type of instructions does not need a reference to memory. The
remaining 12 bits are used to specify the type of input-output
operation or test performed. See figure 6.5(c).

 Figure 6.5

Table 6.2 shows the instructions used by the computer. Three letters
are used to represent each instruction. The hexadecimal code is equal

to the equivalent hexadecimal number of the binary code used for the
instruction.

 Table 6.2

In
st

ru
ct

io
n

ty
pe

Symbol

Instruction
Hexadecimal Code

 I = 0 I = 1

Description

M
em

or
y-

R
ef

er
en

ce

In
st

ru
ct

io
ns

AND 0xxx 8xxx AND memory word to AC
ADD 1xxx 9xxx Add memory word to AC
LDA 2xxx Axxx Load memory word to AC
STA 3xxx Bxxx Store content of AC in memory
BUN 4xxx Cxxx Branch unconditionally
BSA 5xxx Dxxx Branch and save return address
ISZ 6xxx Exxx Increment and skip if zero

R
eg

is
te

r
- R

ef
er

en
ce

In

st
ru

ct
io

ns

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instruction if AC is positive
SNA 7008 Skip next instruction if AC is negative
SZA 7004 Skip next instruction if AC is zero
SZE 7002 Skip next instruction if E is zero
HLT 7001 Halt computer

In
pu

t –
 O

ut
pu

t
In

st
ru

ct
io

ns
 INP F000 Input character to AC

OUT F400 Output character from AC
SKI F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

A computer should have a set of instructions so that the user can
construct machine language programs to evaluate any function that is
known to be computable.

This set of instructions is distributed on the following categories:

1. Arithmetic, logical, and shift instructions.
2. Moving information to and from memory and processor

registers Instructions.
3. Program control instructions together with instructions that

check status conditions.
4. Input and output instructions.

Although the set of instruction for the basic computer listed in table 6.2
is complete, it is not efficient because some operations are not
performed rapidly. An efficient set of instructions will include such
instructions as subtract, multiply, OR, and exclusive-OR. These
operations must be programmed in the basic computer.

6.5. Timing and Control
A master clock generator controls the timing of all registers in the basic
computer. However, the clock pulses do not change the state of a
register unless the register is enabled by a control signal.
The control signals are generated in the control unit and provide control
inputs for the multiplexers in the common bus, control inputs in
processor registers, and microoperations for the accumulator.

There are two major types of control organization:

1. Hardware Organization Control
In this type of organization, the control logic is implemented with
gates, flip-flops, decoders, and other digital circuits. It has the
advantage that it can be optimized to produce a fast mode of
operation. It has the disadvantage that it requires changes in the
wiring among the various components if the design has to be
modified or changed.

2. Microprogrammed Organization Control
In this type of organization, the control information is stored in a
sequence of microoperations. It has the advantage that any
required changes or modifications could be done by updating the
microprogram in control memory.

In this section, we present the hardware control for the basic

computer, while the microprogrammed control the same computer

will be studied later.

Figure 6.6 presents the block diagram of the control unit. The

control unit consists of two decoders, a sequence counter, and a

number of control logic gates. The instruction register (IR) is shown

in the diagram is divided into three parts:

1. Bit 15 is transferred to a flip-flop designated by the symbol I,

and its function is as mentioned before.

2. Bits 12 through 14 presents the operation code are decoded

by a 3 × 8 decoder. The eight outputs of the decoder are

designated by the symbols D0 through D7. Note that the

subscripted decimal number is equivalent to the binary value of

the corresponding operation code.

3. Bits 0 through 11 are applied to the control logic gates.

The 4-bit sequence counter can count in binary from 0 through 15.

The outputs of the counter are decoded into 16 timing signals T0
through T15.

The sequence counter (SC) can be incremented and cleared

synchronously. Most of the time, the counter is incremented to

provide the sequence of timing signals out of the 4 ×16 decoder.

 Figure 6.6

The timing diagram of figure 6.7 shows the time relationship of the
control signals. The sequence counter SC responds to the positive
transition of the clock. Initially, the CLR input of SC is active. The
first positive transition of the clock clears SC to 0, which in turn
activates the timing signal T0 out of the decoder. T0 is active during
one clock cycle. SC is incremented with every positive clock
transition, unless its clear (CLR) input is active. This produces the
sequence of timing signals T0, T1, T2, T3, T4, and so on. If SC is not
cleared, the timing signals will continue with T5, T6, up to T15 and
back to T0. For example, suppose that SC is incremented so that it
provides timing signals T0, T1, T2, T3, and T4 in sequence. At time
T4, SC is cleared to 0 if the decoder output D3 is active. This is
expressed symbolically by the statement D3T4: SC ← 0.

 Figure 6.7

A memory read or write cycle will be initiated with the rising edge
of a timing signal. It will be assumed that a memory cycle time is
less than the clock cycle time. According to this assumption, a
memory read or write cycle initiated by a timing signal will be
completed by the time the next clock goes through its positive
transition. The clock transition will then be used to load the
memory word into a register.

To understand the operation of the computer, it's necessary to
understands the timing relationship between the clock transition
and the timing signals. For example, the register transfer
statement T0: AR ← PC specifies a transfer of the content of
PC into AR if timing signal T0 is active. T0 is active during an entire
clock cycle interval. During this time the content of PC is placed
onto the bus (with S2S1S0 = 010) and the LD (load) input of AR is
enabled. The actual transfer does not occur until the end of the
clock cycle when the clock goes through a positive transition. This
same positive clock transition increments the sequence counter
SC from 0000 to 0001. The next clock cycle has T1 active and T0
inactive.

6.6. Instruction Cycle
As mention before a program consists of a sequence of instructions, and
this program is residing in the computer memory. The program is
executed instruction by instruction through a cycle for each instruction.

In the basic computer, each instruction cycle consists of the
following phases:

Phase 1. Fetch an instruction from memory.
Phase 2. Decode the instruction.
Phase 3, Read the effective address from memory if the instruction has

an indirect address.
Phase 4. Execute the instruction.

After the completion of phase 4, the control goes back to phase 1.
This process continuous indefinitely unless a HALT instruction is
detected.

Fetch and Decode Phases
Initially, the program counter PC is loaded with the address of the first
instruction in the program.
SC is cleared to 0, providing a decoded timing signal T0. As mentioned
before, after each clock pulse, SC is incremented by one, so that the
timing signals go through a sequence T0, T1, T2, and so on, see the
timing diagram shown in figure 6.7.

The microoperations for the fetch and decode phases can be
specified by the following register transfer statements:

T0: AR ← PC

T1: IR ← M [AR], PC ← PC+1

T2: D0, … , D7 ← Decode IR(12-14), AR ← IR(0-11), I ← IR(15)

During the clock transition associated with timing signal T0, the
address transfer from PC to AR.
During the clock transition associated with timing signal T1, the
instruction read from memory is placed in the instruction register IR the
register PC is incremented by one to prepare the address of the next
instruction in the program.
During the clock transition associated with timing signal T2, the
operation code in IR is decoded, the indirect bit is transferred to the flip-
flop I, and the address part of the instruction is transferred to AR.

Figure 6.8 illustrates how the first two register transfer statements
are implemented in the bus system.

Figure 6.8

1. In order to implement the first statement

 T0: AR ← PC

It is necessary to use the timing signal T0 to provide the following
connections in the bus system.

a. Place the content of PC onto the bus by making the bus selection
inputs S2S1S0 = 010.

b. Transfer the content of the bus to AR by enabling the LD input of
AR.

The next clock transition initiates the transfer from PC to AR since
T0 = 1

2. In order to implement the second statement
 T1: IR ← M [AR], PC ← PC+1

It is necessary to use the timing signal T1 to provide the following
connections in the bus system.
a. Enable the read input of memory.
b. Place the content of memory onto the bus by making the bus

selection inputs S2S1S0 = 111.
c. Transfer the content of the bus to IR by enabling the LD input of

IR.
d. Increment PC by enabling the INR input of PC.

The next clock transition initiates the read and increment operations
since T1 = 1.

The flowchart shown in figure 6.9 presents an initial
configuration for the instruction cycle and shows how the control
determines the instruction type after the decoding.

Figure 6.9

For the operation code (bits 12-14) 111 (i.e. D7 = 1), the instruction
must be a register or input / output type. Depending on the most
significant bit (flip-flop I), when I = 0, then the instruction is register-
reference instruction, while for I = 1, then the instruction is
input / output instruction.
It is clear from the flowchart that these types of instructions are
executed with the clock associated with timing signal T3. After the
instruction is executed, SC is cleared to 0 and control returns to the
fetch phase with T0.

For the operation code (bits 12-14) ≠ 111 (i.e. D7 = 0), one of the other
seven values 000 through 110, specifying a memory-reference
instruction. Depending on the most significant bit (flip-flop I), when I =
1, then the instruction is a memory- reference instruction with an

indirect address. While for I = 0, then the instruction is a memory-
reference instruction with a direct address.
For a memory-reference instruction with an indirect address, it is
necessary to read the effective address from memory. The register
transfer microoperation for the indirect address can be symbolized as

 AR ← M [AR]

The word at the address given by AR is read from memory and placed
on the common bus. The LD input of AR is then enabled to receive the
indirect address that resided in the 12 least significant bits of the
memory word.
For a memory-reference instruction with a direct address, it is not
necessary to do anything since the effective address is already in AR.
It is clear from the flowchart, for these types of instructions, the
sequence counter SC must be incremented when 137 =TD , so that the
execution of the memory-reference instruction can be continued with
timing variable T4.. After the instruction is executed, SC is cleared to 0
and control returns to the fetch phase with T0.

Generally, the three instruction types are subdivided into four separate
paths. This can be symbolized as follows: -

ninstructiooutputinputanExecuteTID
ninstructioreferenceregisteraExecuteTID

NothingTID
ARMARTID

−
−

←

:
:
:

][:

37

37

37

37

6.6.1. Register Reference Instructions
The control functions and microoperations for the register-reference
instructions are listed in table 6.3. As shown in the flowchart of figure
6.9, these instructions are executed with the clock transition
associated with timing variable T3. Each control function needs the
Boolean relation 37 TID , which we designate for convenience by the
symbol r.
The control function is distinguished by one of the bits in IR (0 -11). By
assigning the symbol Bi to bit i of IR, all control functions can be
simply denoted by rBi.

Example

The instruction CMA has the hexadecimal code 7200 (see table 6.2),
which gives the binary equivalent 0111 0010 0000 0000.

1. The first bit is zero, which indicates I .
2. The next three bits constitute the operation code and

are recognized from decoder output D7.
3. Bit 9 in IR is 1 and is recognized from B9.

Therefore, the control function that initiates the microoperation
for this instruction is

 D7 I T3 B9 = r B9

The execution of a register-reference instruction is completed at time
T3. The sequence counter SC is cleared to zero and the control goes
back to fetch the next instruction with timing signal T0.

 Table 6.3

Symbol Microoperation Description
 r: SC ←0 Clear SC
CLA rB11: AC ←0 Clear AC
CME rB10: E ←0 Clear E
CMA rB9: AC ← AC Complement AC
CME rB8: E ← E Complement E
CIR rB7: AC ← shr AC, AC(15) ←E, E ← AC(0) Circulate right
CIL rB6: AC ← shl AC, AC(0) ←E, E ← AC(15) Circulate left
INC rB5: AC ← AC + 1 Increment AC
SPA rB4: If (AC(15) = 0) then (PC← PC + 1) Skip if positive
SNA rB3: If (AC(15) = 1) then (PC← PC + 1) Skip if negative
SZA rB2: If (AC = 0) then (PC← PC + 1) Skip if AC zero
SZE rB1: If (E = 0) then (PC← PC + 1) Skip if E zero
HLT rB0: S←0 (S is a start-stop flip-flop) Halt computer

6.6.2. Memory-Reference Instructions

Table 6.4 shows the seven memory-reference instructions. The first
column in the table shows the symbol of the instruction. The second
column shows the operation decoder output Di that belongs to each
instruction. The effective address of the instruction is in the address
register AR and was placed there during timing signal T2 when I = 0,
or during timing signal T3 when I = 1.
The execution of the memory-reference instructions starts with timing
signal T4.
The third column shows the symbolic description of each instruction
which is specified in the table in terms of register transfer notation.
Actually, the execution of the memory-reference instruction in the bus
system will require a sequence of microoperations since data stored in
memory cannot be processed directly.

T0

 Table 6.4

Symbol Operation
Decoder Symbolic Description

AND D0 AC ← AC ∩ M [AR]
ADD D1 AC ← AC + M [AR] , E← Cout
LDA D2 AC ← M [AR]
STA D3 M [AR] ← AC
BUN D4 PC ← AR
BSA D5 M [AR] ← PC, PC ← AR + 1

ISZ D6 M [AR] ← M [AR] + 1,
if M [AR] + 1 = 0 then PC← PC + 1

We now explain the operation of the seven instructions and list the
control functions and microoperations needed for their execution.

AND (AND with accumulator) Instruction
This instruction performs the AND logic operation between the
contents of the AC and the memory word specified by the effective
address then transferring the result in AC.

The microoperations needed to execute the AND instruction are:

D0T4: DR ← M [AR]

D0T5: AC ← AC ∩ DR, SC ← 0

The operation decoder D0 is active when the instruction has an
AND operation whose binary code value is 000.

To execute the AND instruction, two timing signals are needed: -
1. The clock transition associated with timing signal T4 transfers the

operand from memory into DR.

2. The clock transition associated with timing signal T5 transfers the

result of the AND logic operation between the contents of DR and
AC into AC. In the same clock transition, SC is cleared to 0 which
transfers the control to timing signal T0 to start a new instruction
cycle.

ADD (ADD to accumulator) Instruction
This instruction adds the content of the memory word specified by the
effective address to the contents of the AC then transferring the result
into AC and the output carry Cout is transferred to the E flip-flop
(extended accumulator).

The microoperations needed to execute the ADD instruction are:

D1T4: DR ← M [AR]

D1T5: AC ← AC + DR, E ← Cout , SC ← 0

The operation decoder D1 is active when the instruction has an
ADD operation whose binary code value is 001.

To execute the ADD instruction, two timing signals are needed: -
1. The clock transition associated with timing signal T4 transfers the

operand from memory into DR.

2. The clock transition associated with timing signal T5 transfers the

result of the addition of the contents of DR and AC into AC, in
addition, Cout is transferred into the flip-flop E. In the same clock
transition, SC is cleared to 0 which transfers the control to timing
signal T0 to start a new instruction cycle.

LDA (LoaD Accumulator) Instruction
This instruction transfers the content of the memory word specified by
the effective address to AC.

The microoperations needed to execute the LDA instruction are:

D2T4: DR ← M [AR]

D2T5: AC ← DR, SC ← 0

The operation decoder D2 is active when the instruction has an
ADD operation whose binary code value is 010.

To execute the LDA instruction, two timing signals are needed: -

1. The clock transition associated with timing signal T4 transfers the

operand from memory into DR.

2. The clock transition associated with timing signal T5 transfers the
contents of DR into AC via the Adder and Logic Circuit. In the
same clock transition, SC is cleared to 0 which transfers the
control to timing signal T0 to start a new instruction cycle.

STA (STore Accumulator) Instruction
This instruction stores the content of AC into the memory word
specified by the effective address.

One microoperation needed to execute the STA instruction:

D3T4: M [AR] ← AC, SC ← 0

The operation decoder D3 is active when the instruction has an
STA operation whose binary code value is 011.

To execute the STA instruction, one timing signal T4 is needed since,
the output of AC is applied to the bus and the data input of memory is
connected to the same bus. In the same clock transition, SC is cleared
to 0 which transfers the control to timing signal T0 to start a new
instruction cycle.

BUN (Branch UNconditionally) Instruction
This instruction allows the programmer to specify an instruction out of
the program instructions sequence (i.e. the program branches or
jumps unconditionally).

One microoperation needed to execute the BUN instruction:

D4T4: PC ← AR, SC ← 0

The operation decoder D4 is active when the instruction has a BUN
operation whose binary code value is 100.

To execute the BUN instruction, one timing signal T4 is needed since,
the effective address from AR is transferred through the common bus
to PC. In the same clock transition, SC is cleared to 0 which transfers
the control to timing signal T0 to start a new instruction cycle.

BSA (Branch and Save return Address) Instruction
This instruction allows the programmer to branch to a portion of the
program called a subroutine or procedure.

The microoperations needed to execute the BSA instruction are:
D5T4: M [AR] ← PC, AR ← AR + 1

D5T5: PC ← AR, SC ← 0

The operation decoder D5 is active when the instruction has an
BSA operation whose binary code value is 101.

To execute the BSA instruction, two timing signals are needed: -

1. The clock transition associated with timing signal T4 initiates a

memory write operation, places the content of PC onto the bus,
and enables the Wright control signal of memory and INR input of
AR. The memory write operation is completed and AR is
incremented by the time the next clock transition occurs.

2. The clock transition associated with timing signal T5 transfers the

contents of AR into PC. In the same clock transition, SC is cleared
to 0 which transfers the control to timing signal T0 to start a new
instruction cycle.

EXAMPLE
Assume the BSA instruction is stored in a memory word at address
30. The bit (I = 0) and the address part of the instruction is the binary
equivalent 170.

Execution of the instruction

After the fetch and decode phase, PC contains 31, which is the
address of the next instruction in the program (the return address).
The register AR holds the effective address 170 [see figure 6.10(a)].
The BSA instruction performs the following numerical operation:

M[170] ← 31, PC ← 170 + 1 =171

The result of this operation is shown in figure 6.10(b). The return
address (31) is stored in memory location 170 and control continues
with the subroutine program starting from address 171.

To return to the original program (at address 31), this is
accomplished by means of an indirect BUN instruction placed at the
end of the subroutine.

When BUN is executed, control goes to the indirect phase to read
the effective address at location 170, where it finds the previously
saved address 31. Then the effective address 31 is transferred to
PC. The next instruction cycle finds PC with the value 31, so control
continues to execute the instruction at the return address.

ISZ (Increment and Skip if Zero) Instruction
This instruction increments the word specified by the effective
address, and if the result is zero, PC is incremented by one. When PC
is incremented by one, the next instruction in the sequence is skipped.

The microoperations needed to execute the ISZ instruction are:

D6T4: DR ← M [AR]

D6T5: DR ← DR + 1
D6T6: M [AR] ← DR, if (DR = 0) then (PC ← PC + 1), SC

← 0

The operation decoder D6 is active when the instruction has an ISZ
operation whose binary code value is 110.

To execute the ISZ instruction, three timing signals are needed: -

1. The clock transition associated with timing signal T4 read the

memory into DR.

T1

2. The clock transition associated with timing signal T5 increments
DR.

3. The clock transition associated with timing signal T6 store the

word back into memory. In the same clock transition, SC is
cleared to 0 which transfers the control to timing signal T0 to start
a new instruction cycle.

6.7. Input-Output and Interrupt
Computer systems include many types of input and output devices. To
demonstrate the most basic requirements for input and output
communication, a terminal unit with a keyboard and printer used for
this illustration.

6.7.1. Input-Output Configuration
We mentioned before that the terminals send and receive serial
information. Each type of this information has eight bits of an
alphanumeric code. The serial information from the keyboard shifted
into the input register INPR. The serial information for the printer is
stored in the output register OUTR.

The two registers INPR & OUTR communicate with an interface
serially, and with an accumulator AC in parallel.

Figure 6.11 shows the input-output configuration. Where the
transmitter interface receives serial information from the keyboard and
transmits it to INPR, while the receiver interface receives information
from OUTR and sends it serially to the printer.
The input and output registers INPR & OUTR respectively are 8-bits.
They hold alphanumeric information. The input and output flags FGI &
FGO are 1-bit control flip-flops. The flag FGI is set to 1 when new
information is available in the input device and is cleared to 0 when
the information is accepted by the computer.

 Figure 6.11

Transfer of information from the keyboard to the computer

Initially the input flag FGI is cleared to 0. When a key is struck in
the keyboard, an 8-bit alphanumeric code is shifted into INPR
and the input flag FGI is set to 1. As long as the flag is set, the
information in INPR cannot be changed by striking another key.
The computer checks the flag bit; if it is 1, the information from
INPR is transferred in parallel into AC and FGI is cleared to 0.
Once the flag cleared, new information shifted into INPR by
striking another key.

Transfer of information from the computer to the printer

The output register OUTR works similar to INPR, but the direction of
information flow reversed.

Initially the output flag FGO is set to 1. The computer checks the
output flag; if it is 1, the information from AC is transferred in
parallel to OUTR and FGO is cleared to 0. The output device
accepts the coded information, prints the corresponding
character, and when the operation is completed, it sets FGO to 1.
The computer does not load a new character into OUTR when
FGO is 0 because this condition indicates that the output device
is in the process of printing the character.

6.7.2. Input-Output Instructions
As mentioned before, input-output instructions have an operation code
1111 are recognized by the control (D7 = 1 & I = 1). Bits (0 – 11) of
the instruction specify the particular operation.

The control functions and microoperations for the input-output
instructions are listed in table 6.5. As shown in the flowchart of
figure 6.9, these instructions are executed with the clock transition
associated with timing variable T3. Each control function needs the
Boolean relation 37 TID , which we designate for convenience by the
symbol p.
The control function is distinguished by one of the bits in IR (6 -11). By
assigning the symbol Bi to bit i of IR, all control functions can be
simply denoted by pBi for i = 6 through 11. The sequence counter SC
is cleared to 0 when p = 37 TID = 1.

 Table 6.5

Symbol Microoperation Description
 p: SC ←0 Clear SC
INP pB11: AC(0-7) ← INPR, FGI←0 Input character
OUT pB10: OUTR ← AC(0-7), FGO ←0 Output character
SKI pB9: if (FGI = 1) then (PC ← PC + 1) Skip on input flag
SKO pB8: if (FGO = 1) then (PC ← PC + 1) Skip on output flag
ION pB7: IEN ← 1 Interrupt enable on
IOF pB6: IEN ← 0 Interrupt enable off

Example

The instruction INP has the hexadecimal code F800 (see table 6.2),
which gives the binary equivalent 1111 1000 0000 0000.

1. The first bit is one, which indicates I.
2. The next three bits constitute the operation code and are

recognized from decoder output D7.
3. Bit 11 in IR is 1 and is recognized from B11.

Therefore the control function that initiates the microoperation
for the instruction INP is

 D7I T3 B11 = p B11

T2

The execution of input-output instructions completed at time T3 as in
the case of the register-reference instructions. The sequence counter
SC is cleared to 0 and the control goes back to fetch the next
instruction with timing signal T0.

The INP instruction transfers the input information from INPR into the
eight least significant bits of accumulator and clears the input flag to 0.

The OUT instruction transfers the eight least significant bits of
accumulator into the output register OUTR and clears the output flag
to 0.

The instructions SKI & SKO checks the status of the flags FGI &
FGO respectively and causes a skip of the next instructions if the flag
is 1. The instruction that is skipped will normally be a branch
instruction to return and check the flag again.

The instructions ION & IOF set and clear an interrupt enable flip-flop
IEN. The purpose of the flip-flop IEN will be explained later in
conjunction with the interrupt operation.

6.7.3. Program Interrupt
The difference of information flow rate between the computer and the
input/output device according to the programmed control transfer
procedure mentioned before makes this type of transfer inefficient.

The alternative efficient procedure is to let the external device to
inform the computer when it is ready for the transfer. This type of
transfer uses the interrupt facility.

While the program running, it does not check the input or output flags.
However, when a flag is set, the computer shortly interrupted from
proceeding with the current program and is informed of the fact that a
flag has been set. In that, time the computer deviates shortly from
what it is doing to take care of the input or output transfer. After
completing the input or output transfer, the computer returns to the
current program to continue what it was doing before the interrupt.

The interrupt flip-flop IEN can be set and cleared according to two
instructions as follows:

1. With the IOF instruction, the IEN is cleared to 0 and the input
or output flags cannot interrupt the computer.

2. With the ION instruction, the IEN is set to 1, and the

computer can be interrupted.

How the computer handles the interrupt process

The flowchart shown in figure 6.12 explains the process. The
computer contains an interrupt flip-flop designated by R.

1. When R = 0, the computer goes through instruction cycle. During
the instruction cycle, IEN is checked, if it is 0, indicates no need
for interruption, and the control continues with the next instruction
cycle. If IEN is 1, control checks the flag bits, if both flags are 0, it
indicates that neither the input nor the output registers are ready
for transfer of information. In this case, control continues with the
next instruction cycle. If either flag is set to 1 while IEN = 1,
flip-flop R is set to 1. At the end of execute phase, control checks
the value of R, and if it is equal to 1, it goes to an interrupt cycle
instead of an instruction cycle.

2. When R = 1, the computer goes through interrupt cycle, which is a

hardware implementation of a branch and save return address

operation. The return address available in PC is stored in a

specific location where it can be found later when the program

returns to the instruction at which it was interrupted. Here a

memory location at address 0 is chosen as the place for storing

the return address. Control then inserts address 1 into PC and

clears IEN and R so that no more interruptions can occur until the

interrupt request from the flag has been serviced.

 Figure 6.12

Example. (See Figure 6.13)
Suppose that an interrupt occurs and R is set to 1 while the control is
executing the instruction at address 255. At this time, the return
address 256 is in PC. The programmer has previously placed an
input/output service program in memory starting from address 1120
and BUN 1120 instruction at address 1, see figure 6.13(a).

When control reaches timing signal T0 and finds that R = 1, it proceeds
with the interrupt cycle. The content of PC (256) is stored in memory
location 0, PC is set to 1, and R is cleared to 0. At the beginning of the
next instruction cycle, the instruction that is read from memory is in
address 1 since this is the content of PC. The branch instruction at
address 1 causes the program to transfer to the input/output service
program at address 1120. This program checks the flags, determines
which flag is set, and then transfers the required input or output
information. Once this is done, the instruction ION is executed to set
IEN to 1 (to enable further interrupts), and the program returns to the
location where it was interrupted, see figure 6.13(b).

A branch indirect instruction with an address part of 0 placed at the
end of the I/O program, returns the computer to the original place in

the main program. After this instruction is read from memory during
the fetch phase, control goes to the indirect phase (because I = 1) to
read the effective address. The effective address is in location 0 and is
the return address that was stored there during the previous interrupt
cycle. The execution of the indirect BUN instruction results in placing
into PC the return address from location 0.

Figure 6.13

6.7.4. Interrupt Cycle
From the flowchart shown in figure 6.12, it is clear that the condition

for setting flip-flop R to 1 can be expressed with the following register

transfer statement:

1:))((210 ←+ RFGOFGIIENTTT

The interrupt cycle stores the return address which is available in PC

into memory location 0, branches to memory location 1, and clears

IEN, R, and SC to 0. This can be done with the following sequence of

microoperations:

0,0,0,1:
0,][:

,0:

2

1

0

←←←+←
←←

←←

SCRIENPCPCRT
PCTRARMRT
PCTRARRT

1. During timing signal T0, AR is cleared to 0, and the content of

PC is transferred to the temporary register TR.

2. During timing signal T1, the return address is stored in memory

at location 0 and PC is cleared to 0.

3. During timing signal T3, the PC incremented by 1, clears IEN

and R, and control goes back to T0 by clearing SC to 0. The

beginning of the next instruction cycle has the condition 0TR and

the content of PC is equal to 1. The control then goes through an

instruction cycle that fetches and executes the BUN instruction in

location 1.

6.8. Complete Computer Description
Figure 6.14 shows the final flowchart of the instruction cycle, including
the interrupt cycle for the basic computer. As mentioned before the
control returns to timing signal, T0 after SC is cleared to 0. if R = 1, the
computer executes an interrupt cycle, while for R = 0, the computer
executes an instruction cycle.

Table 6.6 summarizes the control functions and microoperations for the
entire basic computer.

 Figure 6.14

 Table 6.6

 Description Microoperation
 Fetch R'T0: AR ← PC

R'T1: IR ← M [AR], PC ← PC+1
 Decode R'T2: D0, … , D7 ← Decode IR(12-14),

AR ← IR(0-11), I ← IR(15)
 Indirect D'7IT3: AR ← M [AR]

 Interrupt T'0T'1T'2(FGI + FGO): R ← 1
 RT0: AR ← 0, TR ← PC
 RT1: M[AR] ← TR, PC ← 0
 RT2: PC ← PC+1, IEN ← 0, R ← 0, SC ← 0

M
em

or
y

–R
ef

er
en

ce

In
st

ru
ct

io
ns

AND D0T4: DR ← M [AR]
D0T5: AC ← AC ∩ DR, SC ← 0

ADD D1T4: DR ← M [AR]
D1T5: AC ← AC + DR, E ← Cout , SC ← 0

LDA D2T4: DR ← M [AR]
D2T5: AC ← DR, SC ← 0

STA D3T4: M [AR] ← AC, SC ← 0
BUN D4T4: PC ← AR, SC ← 0
BSA D5T4: M [AR] ← PC, AR ← AR + 1

D5T5: PC ← AR, SC ← 0
ISZ D6T4: DR ← M [AR]

D6T5: DR ← DR + 1
D6T6: M [AR] ← DR, if (DR = 0) then (PC ← PC + 1), SC ← 0

R
eg

is
te

r-
R

ef
er

en
ce

In

st
ru

ct
io

ns

 r: SC ←0
CLA rB11: AC ←0
CMA rB10: E ←0
CMA rB9: AC ← AC
CME rB8: E ← E
CIR rB7: AC ← shr AC, AC(15) ←E, E ← AC(0)
CIL rB6: AC ← shl AC, AC(0) ←E, E ← AC(15)
INC rB5: AC ← AC + 1
SPA rB4: If (AC(15) = 0) then (PC← PC + 1)
SNA rB3: If (AC(15) = 1) then (PC← PC + 1)
SZA rB2: If (AC = 0) then (PC← PC + 1)
SZE rB1: If (E = 0) then (PC← PC + 1)
HLT rB0: S←0 (S is a start-stop flip-flop)

In
pu

t /
 O

ut
pu

t
In

st
ru

ct
io

ns
 p: SC ←0

INP pB11: AC(0-7) ← INPR, FGI←0
OUT pB10: OUTR ← AC(0-7), FGO ←0
SKI pB9: if (FGI = 1) then (PC ← PC + 1)
SKO pB8: if (FGO = 1) then (PC ← PC + 1)
ION pB7: IEN ← 1
IOF pB6: IEN ← 0

6.9. Design of the Basic Computer

The hardware of the basic computer consists of the following
parts:

1. A memory unit with 4096 words of 16 bits each.

2. Nine registers: AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC.

3. Seven flip-flops: S, E, R, IEN, FGI, FGO, and I.

4. Two decoders: a 3 × 8 operation decoder and a 4 ×16 timing

decoder.

5. A 16-bit common bus.

6. Control logic gates.

7. Adder and logic circuit connected to the input of AC.

The (memory, registers, flip-flops, 3 × 8 and 4 ×16 decoders, and
the16-bit common bus) have been discussed in details previously in this
chapter. These parts can be obtained from a commercial source.
Now we are going to design the remaining parts, Control logic gates,
and the adder and logic circuit associated with accumulator.

6.9.1. Design of the Control logic gates

Returning to figure 6.6, which shows some of the inputs to the control
logic gates which comes from the two decoders, I flip-flop, and bits
0-11 of IR. Other inputs to control logic gates which are not
shown in the figure are:

1. Accumulator 16 bits to check if AC = 0 and to detect the sign bit in
AC (15).

2. Data register DR 16 bits to check if DR = 0.

3. Value of the seven flip-flops S, E, R, IEN, FGI, FGO, and I.

The outputs of the Control logic circuit are:
1. Signals to control the inputs of the nine registers.

2. Signals to control the read and write inputs of memory.

3. Signals to set, clear, or complement the flip-flops.

4. Signals to S2, S1, and S0 To select a register or memory for the

bus.

5. Signals to control the AC adder and logic circuit.

6.9.1.1. Control of Memory and Registers
The control inputs of the registers connected to the common bus
(see figure 6.4) are:

1. Load the register (LD).
2. Increment the register (INR).
3. Clear the register (CLR).

Suppose that it is desired to derive the gate structure associated
with the control inputs of the data register (DR). By scanning table
6.6, it is shown that the statements that change the content of DR
are the following:

D0T4: DR ← M [AR]
D1T4: DR ← M [AR]
D2T4: DR ← M [AR]
D6T4: DR ← M [AR]
D6T5: DR ← DR + 1

The first four statements specify transfer of information from the
memory to DR. The content of memory is placed on the bus and
the content of the bus is transferred into DR by enabling its LD
control input. The fifth statement increments the data register (DR) by
1. The control functions can be combined into two Boolean
expressions as follows:

56

46210

)(
)()(

TDDRINR
TDDDDDRLD

=
+++=

Figure 6.15 shows the control gate logic associated with DR.

 Figure 6.15

In similar way, one can derive the control gates for the other
registers as well as the logic needed to control the read and write
inputs of memory.
The logic gates associated with the write input of memory is derived
by scanning table 6.6 to find the statements that specify a write
operation. Note that the write operation is recognized from the
symbol M [AR] ←.

6645431 TDTDTDRTWrite +++=

6.9.1.2. Control of Single Flip-Flops

In similar manner, the control gates for the seven flip-flops S, E, R,

IEN, FGI, FGO, and I can be determined.

Example
Show the complete logic control of the IEN Flip-flop in the basic

computer. Use a JK flip-flop for this purpose.

Solution
By scanning table 6.6, it is shown that the statements that change

the state of the Flip-flop IEN are the following:

0:
1:

6

7

←
←

IENpB
IENpB

0:2 ←IENRT

Where 37 ITDp = and B6 and B7 are bits 6 and 7 respectively.

Using JK flip-flop for the IEN, the complete control logic will be as

shown in figure 6.16.

 Figure 6.16

6.9.1.3. Control of Common Bus
As explained before, the 16-bit common bus is controlled by the
three selection inputs S2, S1, and S0 (see figure 6.4). To select any
one of the registers or the memory, a binary number equivalent
to the decimal number shown with each bus input must be
applied to the selection inputs S2, S1, and S0 in order to select the
corresponding register or memory.

Table 6.7 is recognized as the truth table of a binary encoder,
which specifies the binary numbers for S2S1S0 that select each
register or memory. Each binary number is associated with a
Boolean variable X1 to X7, corresponding to the gate structure that
must be active in order to select the register or memory for the bus.

As an example, when X3 = 1, the corresponding value of S2S1S0
must be 011 and the output of DR will be selected for the bus.

 Table 6.7

Inputs
 X1 X2 X3 X4 X5 X6 X7

Outputs
S2 S1 S0

Selected Register
for the Bus

 0 0 0 0 0 0 0 0 0 0 None
 1 0 0 0 0 0 0 0 0 1 AR
 0 1 0 0 0 0 0 0 1 0 PC
 0 0 1 0 0 0 0 0 1 1 DR
 0 0 0 1 0 0 0 1 0 0 AC
 0 0 0 0 1 0 0 1 0 1 IR
 0 0 0 0 0 1 0 1 1 0 TR
 0 0 0 0 0 0 1 1 1 1 Memory

Figure 6.17 shows the encoder at the inputs of the bus selection
logic. The Boolean functions for the encoder are as follows:

S0 = X1 + X3 + X5 + X7
S1 = X2 + X3 + X6 + X7
S2 = X4 + X5 + X6 + X7

 Figure 6.17

How to determine the control logic for each encoder input
Suppose that it is required to find the control logic that makes
X2 = 1 and S2S1S0 = 010 (select the register PC as the source
register).
We proceed as follows:

1. Scan all register transfer statements in table 6.6 and extract

those statements that have PC as a source register.

PCARMTD
PCTRRT
PCARTR

←
←
←

][:
:
:

45

0

0

2. The Boolean function for X2 is:

45002 TDRTTRX ++=

3. Draw the control logic for X2 (Figure 6.18).

Figure 6.18

In a similar manner, one can determine the gate logic for other
registers or memory.

Homework
Find the control logic that makes X1 = 1 and S2S1S0 = 001 (select the
register AR as the source register).

6.9.2. Design of Accumulator Logic

Figure 6.19 presents the circuit block diagram associated with the
accumulator register (AC).

The adder and logic circuit has three inputs:

1. 16-bit inputs from the outputs of the accumulator register (AC) it
self.

2. 16-bit inputs from the data register DR.

3. 8-bit inputs from the input register INPR.

The output of the adder and logic circuit provides the data inputs
for the accumulator register (AC).

In addition, it is necessary to include in the design the logic gates for
controlling the LD, INR, and CLR of the register and the controlling
operation of the adder and logic circuit.

 Figure 6.19

6.9.2.1. Control of Accumulator Register

In the same manner in order to design the logic that controls the
accumulator register AC, it is necessary to scan all register transfer
statements in table 6.6 and extract those statements that change
the content of AC. These register transfer statements are:

From the control functions in the list above, the gate configuration
is derived as follows:

1. The control function for the increment microoperation (INR) is
rB5, where 37 TIDr = and)5(5 IRB = .

2. The control function for the clear microoperation (CLR) is rB11,

where 37 TIDr = and)11(11 IRB = .

3. The control function for the load microoperation (LD) is the

result of the remaining seven microoperations, which
generated in the adder and logic circuit and are loaded at the
proper time.

Figure 6.20 shows the gate structure that controls the LD, INR, and
CLR inputs of the accumulator register AC. Note that the outputs
of the gates for each control function are marked with a
symbolic name.

 Figure 6.20

6.9.2.2. Adder and Logic Circuit
Figure 6.21 shows the internal construction of the accumulator
register AC. Each stage has a JK flip-flop, two OR gates, and two
AND gates. The load (LD) is connected to the inputs of the AND
gates.

Figure 6.23 shows one stage of AC register (here the OR gates are
removed) since the other functions (i.e. Clear and Increment of the
register AC are not included). When LD input is enabled, the 16
inputs Ii for i = 0,1,2, …, 14,15 are transferred to AC (0-15).

Every stage of Adder and Logic Circuit consists of:
1. Seven AND gates, every one has one of its inputs one of the functions

comes from figure 6.20 as an enable. For example, the input named
DR in figure 6.22 connected to the output marked DR in figure 6.20.

2. One OR gate.

3. One Full-adder (FA).

How the arithmetic and logic operations are achieved?
1. ADD operation

This operation achieved using a binary full-adder having their
two inputs from the corresponding bits (i) of registers AC and
DR, the input carry from the previous stage, and the result
transfers through OR gate to register AC, and the output carry to
next stage or to the E flip-flop when this stage is the last stage.

2. AND operation

The AND operation is obtained through ANDing AC (i) with the
corresponding bit in the data register DR (i), and the result
transfers through OR gate to register AC.

 Figure 6.21

3. Transfer the content of the register DR

When DR input is active, the content of the register DR
transferred to the register AC.

4. Transfer the content of the register INPR

When INPR input is active, the 8-bits of the register INPR
transferred to Bits 0-7 of the accumulator register AC.

5. Complementation of the contents of AC register
When COM input is active, the content of register AC is
inverted and re-transferred to the register.

6. Shift-right operation
This operation transfers bit AC (i+1) into bit AC (i).

7. Shift-left operation
This operation transfers bit AC (i -1) into bit AC (i).

 Figure 6.22

	CHAPTER SIX
	BASIC COMPUTER ORGANIZATION
	AND DESIGN
	6.1. Instruction Codes

