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e To understand the concept of stress and strain.

e To be familiar with the numerical equations of stress and
strain and the background theory.

e To know how to draw a free body diagram for the
structural members.

e To analyse different types and directions of loadings.

Outcomes Of e To assess the mechanical properties of materials.
e To be familiar with the behaviour of beams in bending and
Courses torsion.

e To analyse the behaviour of beams in shear and deflection.

e To understand the classifications of beams, e.g.,
determinate, indeterminate...etc. '

e To be familiar with the stress transformation by using
Mohr?’s circle. ,

e To analyse axially compressed members, i.e., columns.
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Chapter 11 Beam Deflections

11.1 Introduction

When a beam with a straight longitudinal axis is loaded by lateral

11.2 The Elastic Curve

forces, the axis 1s deformed into a curve. called the deflection curve of
the beam.

The calculation of deflections is an important part of structural
analysis and design.

Deflections are sometimes calculated in order to verify that they are
within tolerable limits. For instance. specifications for the design of
buildings usually place upper limits on the deflections. Large deflections
in buildings are unsightly (and even unnerving) and can cause cracks in
ceilings and walls. In the design of machines and aircraft. specifications
may limit deflections in order to prevent undesirable vibrations.

Before the slope or the displacement at a point on a beam (or shaft) is
determined, it is often helpful to sketch the deflected shape of the beam
when it 1s loaded, in order to “visualize™ any computed results and thereby
partially check these results. The deflection curve of the longitudinal axis
that passes through the centroid of each cross-sectional area of a beam is
called the elastic curve. For most beams the elastic curve can be sketched
without much difficulty. When doing so, however, it is necessary to know



Chapter 11 Beam Deflections

The relationship between the internal bending moment and the curvature of the elastic curve summarized
the moment—curvature relationship:

1 M

K=—=——m
p EIL

This equation relates the radius of curvature p of the neutral surface of the beam to the internal bending
moment M (about the z axis), the elastic modulus of the material E, and the moment of inertia of the
cross-sectional area, I.. Since E and |. are always positive, the sign of p is consistent with the sign of the
bending moment. As shown in Figure 11.1, a positive bending moment M creates a radius of curvature p
that extends above the beam that is, in the positive v direction. When M is negative, p extends below the
beam in a negative v direction. Figures 11.2-11.4 show the elastic curves of beams with various supports.

0

FIGURE 11.1 Radius of
curvature p related to sign of M.
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FIGURE 11.2
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Chapter 11 Beam Deflections

11.3 Evaluating Slope and Deflection Methods

Double Integration Method: In this method, for each segment, we integrate the differential equation of the bending
moment twice to obtain a slope equation, a deflection equation , and two constants of integration.

Differential Equations of the Deflection Curve: consider a cantilever beam with a concentrated load acting upward
at the free end. The axis of the beam deforms into a curve, as shown in the figure. The reference axes have their origin
at the fixed end of the beam, with the x axis directed to the right and the y axis directed upward.

N B

I do dy dx dy
- = — — =tz cos @ = — i = —
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Chapter 11 Beam Deflections

The changes in the structures are so small as to be unnoticed by a casual observer. Consequently, the deflection curves of
most beams and columns have very small angles of rotation, very small deflections, and very small curvatures. Under these
conditions we can make some mathematical approximations that greatly simplify beam analysis.

-

dy de _ dy o = 1 _ -f-"a

E Z dx? o] dx

ds = dx g = tan @ =

If the material of a beam is linearly elastic and follows Hooke’s law, the curvature is:

1 M y ’
K= E - E X Negative M Positive%
. . . . . . /’\/
Thus, the basic differential equation of the deflection curve of a beam is: A’ i C
. F}' M Negative ((11_; Positive M
dx?  EI -
r.on S L
e = ) *M( — <)M
dx-
Sign Conventions: e
. . ) ) ) Positive internal moment:
The signs of the bending moment and the second derivative must be consistent. The beam slope concave upward
changes from positive to negative in the segment from A to B; therefore, the second derivative is e —
negative. For segment BC, both d?v/dx? and M are seen to be positive. (} )
—M > NN, €_y

Negative internal moment:
concave downward
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Relationship of Derivatives:
The successive derivatives of the elastic curve deflection v with the physical quantities that they represent in beam action are
as follows:

Deflection = v

dv
Slope = — =6
P dx
Moment M = EI v
dx?
3
Shear V = ﬂ = Efﬂ (for ET constant)
dx dx’
4
Load w = ﬁ = Eld—v (for ET constant)
dx dx*

Slope and Deflection by Integration:
dv
Moment : EI — = M(x)
Slope (Rotation): EI ;Tv = [ M(x)dx

d1
dx

dx

Deflection: EI v = [ EI

10



Chapter 11 Beam Deflections

Boundary Conditions:
Boundary conditions are known slopes and deflections at the limits of the bending moment equation M(x). The term

“boundary” refers to the bounds of M(x), not necessarily the bounds of the beam. Although boundary conditions are
found at beam supports, only those supports within the bounds of the bending-moment equation should be considered.

1 E ;—__
A=0 5
M=10 q“““*-\_\_
Roller ’::H"“xh

2 - #=10
T A=10

A=0 Fixed end
M=0 6 il ]
Pin o
3 V=0
\:g:_ M=0
Free end

A=0 T Egg
Roller -

4 M=0
Internal pin or hinge

A=10
Pin
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Chapter 11 Beam Deflections

Procedure for Double-Integration Method

Calculating the deflection of a beam by the double-integration method involves several
steps, and the following sequence is strongly recommended:

1. Sketch: Sketch the beam, including supports, loads, and the x—v coordinate system.
Sketch the approximate shape of the elastic curve. Pay particular attention to the slope
and deflection of the beam at the supports.

2. Support reactions: For some beam configurations, it may be necessary to deter-
mine support reactions before proceeding to analyze specific beam segments. For these
configurations, determine the beam reactions by considering the equilibrium of the en-
tire beam. Show these reactions in their proper direction on the beam sketch.

3. Equilibrium: Select the segment or segments of the beam to be considered. For each
segment, draw a free-body diagram (FBD) that cuts through the beam segment at some
distance x from the origin. On the FBD, show all loads acting on the beam. If distributed
loads act on the beam, then that portion of the distributed load which acts on the
FBD must be shown at the outset. Include the internal bending moment M acting at
the cut surface of the beam, and always show M acting in the positive direction.

The latter ensures that the bending-moment equation will have the correct
sign. From the FBD, derive the bending-moment equation, taking care to note the
interval to which it is applicable (e.g., x; < x < x;,).

4. Integration: For each segment, set the bending-moment equation equal to EI d*v/dx.
Integrate this differential equation twice, obtaining a slope equation dv/dx, a deflection
equation v, and two constants of integration.

12



Chapter 11 Beam Deflections

. Boundary and continuity conditions: List the boundary conditions that are
applicable to the bending-moment equation. If the analysis involves two or more
beam segments, list the continuity conditions also. Remember that two conditions
are required in order to evaluate the two constants of integration produced in each
beam segment.

. Evaluate constants: Use the boundary and continuity conditions to evaluate all
constants of integration.

. Elastic curve and slope equations: Replace the constants of integration arrived
at in step 4 with the values obtained from the boundary and continuity conditions found
in step 6. Check the resulting equations for dimensional homogeneity.

. Deflections and slopes at specific points: Calculate the deflection at specific
points when required.

13



Chapter 11 Beam Deflections

In simply supported beam subjected to concentrated load at x=L/2, the yr

max. deflection occurs at x = L/2 where dv/dx =0. ‘

Load [
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FIGURE 11.5 Relationship among beam diagrams.
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Chapter 11 Beam Deflections

Example 11.1: The beam is loaded and supported as shown in Fig. Assume EI constant of the beam, determine:

a- the equation of the elastic curve in term of x, E and 1.

b- the rotation (slope) at points A, B and C. 600 kN
c- the deflection at point B. l
d- the max deflection.

Solution: i . o
Find the support reactions:

(VIM@A=0 r ‘ J
600%4-C,*6=0,C,=400kN | | 4m —2im
teF,=0

400 - 600 + A, = 0, A, = 200 kN

Equilibrium:
(VEM@0=0 l

Integration:

2?
EI 2= M(x) = 200x - 600 (x —4)............ 1

dx?

200 * X — 600 * (X - 4) — M(x) = 0
M (X) = 200 x — 600 (X - 4) i
|
|

-2

EI ngomtionz 100x2-300(x —4)2+C1......oooeinnn..,

100
El v = deflection = — x¥-100(x—4)3*+Clx+C2............3

15



Chapter 11 Beam Deflections

Boundary Conditions:

Atx=0,v=0,subinEqg.3

EI* 0 = (100/3) * (0%) — 100 * (0~ 4)*+ C, * 0 + C,, C, = 0 Al S 13 Jags Ol Y1 Jl Al AR
Atx=6m,v=0,subinEqg. 3

El *0=(100/3) * (6%) —100 * (6 —4)*+ C, * 6, C, = -1066.66

a- equation of the elastic curve:

El v = deflection = == x® — 100 (x — 4)° — 1066.66x

b- the rotation (slope) at points A, B and C.

El 22 = Rotation = 100 x2 — 300 (x — 4)2 - 1066.66

X
Rotation at A, x =0
EI <2 =100 (0)2 - 300 (0 — 4)? — 1066.66
0, = -1066.66/E]

Rotation at B, X =4 m
EI <2 =100 (4)2 - 300 (4 - 4)2 - 1066.66
0, = 533.34/E]

16



Chapter 11 Beam Deflections

Rotationat C,x =6 m
2% = 100 (6)2 — 300 (6 — 4)2 — 1066.66
6 = 1333.34/El

c- deflection at B, x =4 m

Elv @ (4)3 — 100 (4 — 4)3 — 1066.66(4)

vg = -2133.31/El

d- Maximum deflection
At the max. deflection, the slope (6= 0), so El % =0

EI 22=0 =100 %2 - 300 (x - 4)2 - 1066.66
Assume Vmax at0 <x<4

0 =100 x2 — 300 (x\4)2 — 1066.66, x = 3.26 ok. Sub in Eq.3

_ 100

El Ve = 75— (3.26)% - 100 (3.26 — 4)3 — 1066.66(3.26)

ma

= -2322.45/El

max

17



Chapter 11 Beam Deflections

Basic Load Represented by Discontinuity Function:

The integration procedures used to derive the elastic curve equations are relatively straightforward if the
beam loading can be expressed as single continuous function acting over the entire length of the beam.
However, the integration procedures can become quite complicated and tedious for beams that carry
multiple concentrated loads or segmented distributed loads.

1- Concentrated moment M,
M(x) = M, (x-a)° — i}
2- Concentrated load TP
M(x) = P (x-a)! —x— |
- a - w
W ta=0 HEI o= ¥ pye Yy
3- Uniform distributed load (111111) —
M(X) = = (x—b)2—— (x —a)? N , )
e If b=x [TTTITI] M@x)= —%(x— a)?

=
- X

18



Chapter 11 Beam Deflections

Example 11.2: for the beam and loading shown in the figure compute:

a- the slope of the beam at (C). 200 kN.m 100 kN
b- the deflection of the beam at (B). SO KN/m
Assume a constant value of El =5*10% N.mm? for the beam. l l i l v c
A D
Solution: > B e
1- Find the support reactions: |<_]m »le 4m ol m )
(VEM@A=0
100 % 7+200+50*4*3-C,*5=0,C,=300kN 1
fxF =0 200 KN.m
300 -50*4-100+A,=0, A, =0kN 50 kN/m
2- Equilibrium: a=1m,b=5m il Jeall A (I ¥ l 1 y ©

M(X) = Mo (x - a)° + = (x — b)2— = (x — &)? s
? 2 | | s 300Ky _
M(x) = 200 (x — 10 + 22 (x - 5)2— 2 (x — 1)? + 300 (x— 5) " -

v

EI22=200 (x— 1) + 2 (x— 5)3~ 2 (x ~ 1)3 + 150 (x ~ 5)2 + C,

El'v =100 (x— 1) + 2 (X~ 5)} ~ = (x— 1) + 50 (x~ 5)3 + Cyx + C,

19



Chapter 11 Beam Deflections

3- Boundary conditions:

Atx,=0,v,=0

El v =100 (x—1)2 + 22 (X~ 5)* — = (x— 1) + 50 (x~ 5)3 + C;x + G,
0=22(0-12+2(0-5)~2 (0-1)*+50(0-5)+C,*0+C,, C, =0
AtXc=5m,v:.=0

0=100 (5-1)2+ = (5-5)*~ 2. (5-1)*+50(5-5)* + C,*5, C; = - 213.33

a- Slope at C:

EIZ—z:ZOO(X—l)+5?0(x—5)3—%(X—1)3+ 150 (x — 5)2 — 213.33
AtX.=5m

El 6,=200(5-1) + 2 (5-5)3 = (5-1)° + 150 (5 - 5)? - 213.33

_ 53.34
50000

6, =0.00107 rad
b- Deflection at B:
Elv =100 (x - 1)2+2 (x—5)*~ 2 (x— 1)* + 50 (x - 5)° - 213.33x

Atxg=1m, Elvy=100 (1- 12+ (1-5)%~ 2 (1-1)*+ 50 (1 - 5)3 - 213.33*1, v = -213.33/50000 = 0.0043 m = 4.3 mm

20



Chapter 11 Beam Deflections

Example 11.3: A beam is loaded and supported as shown in the Figure. Assume EI is constant for the
maximum deflection.

Solution: P
M(X) =-P *x
E1 %Y = M(x) = - Px
dxz_ - A
EIZ=-2x2+C,
* X
EIU='£X3+C1X+C2 {
6
Atx=LZ =0,v=0
1dx ) - P-
E|ﬂ=0=-£L2+C1,C1=BL2 M{X)
dx 2 2

Atx=L v=0 ( .
—
Elv=0=-213+Z13+C, C,=-Z13
6 2 3

At Xfree=0’ v =Vmax
P P P
Elv=--x3+-L?x--L3
6 2 3

P
Viax = - — L3

max — 3EI
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Example 11.4: A beam is loaded and supported as shown in the Figure. Assume EI is constant for the
maximum deflection.
Solution:

M(x) = - =%

W kN/m

L B B TR

d’v _ W
El@—M(X)— 2X x

dv w
Z=_Zx3+
El 6X Cl ¥

w
24

_y v _
Atx=L,2 =0 W KN/m

e m0m g e G L LN

Atx=L,v=0
Flv=0=-= L4+=L%+C, C,=-=L*
24 6 8

T
Atfreeend x =0, v =V, X -

w w
Elv=-—x4+Cx-=L*
24 8

Vv _ w
max — 8EI

L4



Chapter 11 Beam Deflections

Example 11.5: find the maximum deflection for the simply supported beam. Assume EI is constant.

Solution:

}I' '
&y _ - WLkx w2 w
El dx? M(X) 2 2 X A ¥ l L A l' ¥ ¥ W ¥ ¥ ¥ :K
Integrate both sides of the above equation, yields: o ;If a L ”%g:i
W
Eld—y:W—LXZ-KX:B‘l‘Cl ¥ ¥ 9 ’
dx 4 6 M,
. X A
Apply the boundary conditions (B.C.): w2

Atx=L,y; =0,Cy=-—~ L3
EI2 =Y x2.%ys. 2|3 (Rotation equation)
dx 4 6 24

w
Atx=0orlL, Vinax — QmaX:-ﬁD
Integrate both sides of the above equation, yields:
Ely=— Lx3-Zx4- =L%+C,
12 24 24
Atx,=0,y,=0,C,=0
El y == Lx3-—x*- — L3 (Deflection equation)
12 24 24

L 5w
L _ _ 4
Atx = > Yimax = Amax = 384E] L
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Example 11.6: for the beam shown in Figure, compute:

a- the slope of the beam at A.

b- the deflection of the beam at B.

Assume a constant value of EI = 125000 kN.m2 for the beam.
Solution:

1- Find the support reactions:

(VEM@A=0
60*4*2+40*6*12-D,*12=0,D,=280kN
t=F =0

-60* 440 * 6 +280 + A, =0, A, = 200 kN

2- Equilibrium:
M(X) = 200 (x) + = (x — 4)2 — 2> (x)? + 280 (x — 12) - = (x - 9)?

2 20

El Z—Z =100 (x)2+ 10 (x —4) ~ 10 (x)2 + 140 (x~ 12)2 - 2 (x - 9} + G,

Elv==2(X)°+= (x—4)* = = () + > (x - 12)° - Z (x - 9)* + Cx + C,

3- Boundary conditions:

Atx,=0,v,o=0

0= (00 + 50 (04~ (0 + 57 (0-12°- 2 (0-9)*+ C;*0 + C;, C, = 0

F| a0 EMN'm
40 kN/m

JIILILLlIId0

A B C D E
4m im im im
F|ﬁDEWm
40 kN/m
I A ,
-~ “!

A B C D

\, im 5m 3m J

= Rl = I

24



Chapter 11 Beam Deflections

Continue.
Atxp=12,v5=0
0= (12 + 22 (12— 4)*— 2 (12)* + == (12 - 12)° - 2 (12 - 9)* + C;*12, C, = - 1322.08

a- the slope of the beam at A:
Atx,=0
EI £2=100 (0)2+ 10 (0~ 4)*~ 10 (0) + 140 (0 - 12)2- 22 (0 - 9)° - 1322.08

) = - 2298 — _0,01058 rad
125000

b- the deflection of the beam at B:

Atxg=4m

140
3

_ 100

El vy =2 (43 + 2 (4—4)' -2 (4 + —2(4—-12)3- = (4- 9)* ~ 1322.08 * 4

_ 3795
B 125000

=-0.03036 m = 30.4 mm +

25



Chapter 11 Beam Deflections

H.WI1 The beam is subjected to the linearly varying
distributed load. Determine the maximum deflection of the
beam. EI is constant.

W.

 JE )
——

Wy

H. W1

- H.W3 Determine the slope and deflection of end A of the
cantilevered beam. E =200 GPa and I = 65.0(106) mm?*.

10 kN

|

H.W3

H.W2 Determine the maximum deflection of the simply
supported beam. E = 200 GPa and I = 39.9(10%) m*.

40 kN -m IO KN-m
A
(n
! 6m |’
H.W2

H.W4 Determine the slope of the simply supported beam
at A and deflection at C. E = 200 GPa and I = 39.9(107%) m*.

20 kN
T0kKN-m ic T0KN-m
)
I B
H.W4
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