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Congested Network Models 

 

Introduction 

This lecture provides a general mathematical formulation of transportation supply models, based 

on congested network flow models. The bases for these models are graph models. Next, network 

models, including link performances and costs, and network flow models, including link flows, 

are introduced. Finally, congested network (flow) models are developed, modeling relationships 

among performances, costs, and flows. 

 

Network Structure 

The network structure is represented by a graph. The latter is defined by a set N of elements called 

nodes and by a set of pairs of nodes belonging to N, L ⊆ N × N, called links. The graphs used to 

represent transportation services are generally oriented; that is, the links have a direction and the 

node pairs defining them are ordered pairs. A link connecting the node pair (i, j) can also be 

denoted by a single index, say a. 

The links in a graph modeling a transportation system represent phases and/or activities of possible 

trips between different traffic zones. Thus, a link can represent an activity connected to a physical 

movement (e.g., covering a road) or an activity not connected to a physical movement (such as 

waiting for a train at a station). Links are chosen in such a way that physical and functional 

characteristics can be assumed to be homogeneous for the whole link (e.g., the same average 

speed). In this sense, links can be seen as the partition of trips into segments, each of which has 

certain characteristics; the level of detail of such a partition can clearly be very different for the 

same physical system according to the objectives of the analysis. 

Nodes correspond to significant events delimiting the trip phases (links), that is, to the space and/or 

time coordinates in which events occur that they represent. In synchronic networks, nodes are not 

identified by a specific time coordinate, and the same node represents events occurring at different 

moments (instants) of time. For example, the different entry or exit times in a road segment, an 

intersection, or a station, may be associated with a single node, representing all the entry/exit 

events. 

Centroid nodes represent the beginning or end of individual trips. In diachronic networks, on the 

other hand, nodes may have an explicit time coordinate and therefore represent an event occurring 

at a given instant. The graphs considered in this lecture are synchronic because diachronic 

networks assume a within-period system representation; diachronic graphs for scheduled services. 

A trip is a sequence of several phases and, in a graph that represents transportation supply, it 

consists of a path k, defined as a succession of consecutive links connecting an initial node (path 

origin) to a final node (path destination). Usually, only paths connecting centroid nodes are 

considered in transportation graphs. On this basis, each path is unambiguously associated with 
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one, and only one, O-D pair, whereas several paths can connect the same O-D pair. An example 

of a graph with different paths connecting the centroid nodes is depicted in Fig. 1. 

A binary matrix called the link–path incidence matrix ∆ can represent the relationship between 

links and paths. This matrix has a number of rows equal to the number of links nL and a number 

of columns equal to the number of paths nP. The generic element δak of the binary matrix ∆ is equal 

to one if link a belongs to path k, a ∈ k, and zero, otherwise, a ∉ k (see Fig.1). The row of the link–

path incidence matrix corresponding to the generic link identifies all the paths including that link 

(columns k for which δak = 1). Moreover, the elements of a column corresponding to the generic 

path k identify all the links that make it up (rows a for which δak = 1). 

 

 

Fig. 1 Example of a graph and link–path incidence matrix. 
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Flows 

A link flow fa can be associated with each link a. Link flow is the average number of homogeneous 

units using link a (i.e., carrying out the trip phase represented by the link) in a time unit. In other 

words, the link flow is a random variable of mean fa. Several link flows can be associated with a 

given link depending on the homogeneous unit considered. User flows relate to users, such as 

travelers or goods, possibly of different classes. Vehicle flows relate to the number of vehicles, 

perhaps of different types such as automobiles, buses, trains, and so on.  

For individual modes, such as automobiles or trucks, user flows can be transformed quite 

straightforwardly into vehicle flows through average occupancy coefficients. For scheduled 

modes, such as trains, vehicle flows derive from the service schedule and are often treated as an 

input to the supply model. 

The link flow of the generic user class or vehicle type i is denoted by 𝑓𝑎
𝑖. In accordance with the 

results of traffic flow theory, link performance and cost variables are affected by the user or vehicle 

flow. To allow for this dependence it is often worth homogenizing the various classes of users or 

various types of vehicles by defining equivalent flows associated with links. In this case, the flows 

of different user classes or vehicle types are homogenized to a reference class or type: 

 

𝑓𝑎 = ∑ 𝑤𝑖𝑓𝑎
𝑖

𝑖                                                        

 

Where wi is the homogenization coefficient of the users of class i with respect to their influence 

on link performances. For example, for road flows, automobiles are usually the reference vehicle 

type (wi = 1) and the other vehicle flows are transformed into equivalent auto flows with 

coefficients wi. The latter is greater than one if the contribution to congestion of these vehicles is 

greater than that of cars (buses, heavy vehicles, etc.), less than one in the opposite case 

(motorcycles, bicycles, etc.). 

 The vector of link flows f has, as a generic component, the flow on the link a,fa, for each a ∈ L 

(see Fig. 2). 

Flow variables can also be associated with paths. Under the within-day stationarity hypothesis, the 

average number of users, who in each subinterval travel along each path, is constant. The average 

number of users, who in a time unit follow path k, is called the path flow hk . If the users have 

different characteristics (i.e., they belong to different classes), path flows per class i, ℎ𝑘
𝑖 , can be 

introduced. Path flows of different user classes or vehicle types can be homogenized by means of 

coefficients wi similar to those introduced for link flows; the equivalent path flow is obtained as: 

 

ℎ𝑘 = ∑ 𝑤𝑖. ℎ𝑘
𝑖

𝑖   
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Fig. 2 Transportation network with link and path flows. 
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There is clearly a relationship between link and path flows. Indeed, the flow on each link a can be 

obtained as the sum of the flows on the various paths containing that link. This relationship can be 

expressed by using the elements δak of the link–path incidence matrix as 

 

𝑓𝑎 = ∑ 𝛿𝑎𝑘. ℎ𝑘𝑖                                                                                                                                    1 

 

 

Or in matrix terms: 

 

𝑓 = ∆ℎ                                                                                                                                               2 

 

Where h is the path flow vector. 

Equation (1) or (2) expresses the way in which path flows induce flows on individual links. For 

this reason, it is referred to as the (static) Network Flow Propagation (NFP) model (see Fig. 1). 

Note that the linear algebraic structure depends crucially on the assumption of intro period 

stationarity (within the day static model); if this assumption is removed, the model loses its 

algebraic-linear nature. 

 

Performance Variables and Transportation Costs 

Some variables perceived by users can be associated with individual trip phases. Examples of such 

variables are travel times (transversal and/or waiting), monetary cost, and discomfort. These 

variables are referred to as level-of-service or performance attributes. In general, performance 

variables correspond to disutilities or costs for the users (i.e., users would be better off if the values 

of performance variables were reduced). The average value of the nth performance variable, 

related to link a, is denoted by rna . The average generalized transportation link cost, or simply the 

transportation link cost, is a variable synthesizing (the average value of) the different performance 

variables borne and perceived by the users in travel-related choices and, more particularly, in path 

choices. Thus, the transportation link cost reflects the average user’s disutility for carrying out the 

activity represented by the link. Other performance variables and costs, which cannot be associated 

with individual links but rather with the whole trip (path), are introduced shortly. 

 

Performance variables making up the transportation cost are usually nonhomogeneous quantities. 

In order to reduce the cost to a single scalar quantity, the different components can be homogenized 

into a generalized cost by applying reciprocal substitution coefficients β, whose value can be 

estimated by calibrating the path choice model. For example, the generalized transportation cost 

𝑐𝑎 relative to the link a can be formulated as: 

 

𝑐𝑎 = 𝛽1. 𝑡𝑎 + 𝛽2. 𝑚𝑐𝑎               
 

Where: 

𝑡𝑎      : is the travel time and, 

𝑚𝑐𝑎  : is the monetary cost (e.g., the toll) connected with the crossing of the link.  

More generally, the link transportation cost can be expressed as a function of several link 

performance variables as: 



Ph.D. Course  Transportation Modeling                     Prof. Dr. Zainab Alkaissi 

Lecture 3                                                             2022-2023 

 

𝑐𝑎 = ∑ 𝛽𝑛. 𝑟𝑛𝑎𝑛   
 

Different users may experience and/or perceive transportation costs, which differ for the same link. 

For example, the travel time of a certain road section generally differs for each vehicle that covers 

it, even under similar external conditions. Furthermore, two users experiencing the same travel 

time may have different perceptions of its disutility. If we then add the fact that the analyst cannot 

have perfect knowledge of such costs, we realize that the perceived link cost is well represented 

by a random variable distributed among users, whose average value is linked to transportation cost 

𝑐𝑎. There may be other “costs” both for users (e.g., accident risks or tire consumption) and for 

society (e.g., noise and air pollution) associated with a link. It is usually assumed that these costs 

are not taken into account by users in their travel-related choices and are not included in the 

perceived transportation cost. The transportation cost is, therefore, an internal cost, used to 

simulate the transportation system and, in particular, travelers’ choices. The other cost items are 

external costs, used for project design and assessment. External costs are sometimes referred to as 

impacts. 

 

Different groups (or classes) of users may have different average transportation costs. This may 

be due to different performance variables (e.g., their speeds and travel times are different or they 

pay different fares) or to differences in the homogenization coefficients βn (e.g., different 

time/money substitution rates corresponding to different incomes). In this case, a link cost 𝑐𝑙
𝑖can 

be associated with each user class i. In what follows, for simplicity of notation, the class index i is 

taken as understood unless otherwise stated. 

Link performance variables and transportation costs can be arranged in vectors. The performance 

vector ra is made up of the nth performance variable for each link, its components being rna. 

Analogously, vector c, whose generic component ca is the generalized transport cost on a link a, 

is known as the link cost vector. 

 

The concepts of performance variables and generalized transportation cost can be extended from 

links to paths. The average performance variable of a path k, znk, is the average value of that 

variable associated with a whole origin-destination trip, represented by a path in the graph. Some 

path performance variables are linkwise additive; that is, their path value can be obtained as the 

sum of link values for all links making up the path. 

 

Examples of additive path variables are travel times (the total travel time of a path is the sum of 

travel times over individual links) or some monetary costs, which can be associated with some or 

all individual links. An additive path performance variable can be expressed as the sum of link 

performance variables as: 

 

𝑧𝑛𝑘
𝐴𝐷𝐷 = ∑ 𝑟𝑛𝑎 = ∑ 𝛿𝑎𝑘𝑟𝑛𝑎𝑎𝑎∈𝑘            

 

or in vector notation 

 

𝑧𝑛
𝐴𝐷𝐷 = ∆𝑇𝑟𝑛  
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Other path performance variables are nonadditive; that is, they cannot be obtained as the sum of 

link-specific values. These variables are denoted by 𝑧𝑛𝑘
𝑁𝐴. Examples of nonadditive performance 

variables are monetary cost in the case of tolls that are nonlinearly proportional to the distance 

covered or the waiting time at stops for high-frequency transit systems, as shown below. 

 

The average generalized transportation cost of a path k, gk , is defined as a scalar quantity 

homogenizing in disutility units the different performance variables perceived by the users (of a 

given category) in making trip-related choices and, in particular, path choices. 

 

The path cost in the most general case is made up of two parts: likewise additive cost 𝑔𝑘
𝐴𝐷𝐷and 

nonadditive cos, 𝑔𝑘
𝑁𝐴, assuming that they are homogeneous: 

 

𝑔𝑘 = 𝑔𝑘
𝐴𝐷𝐷 + 𝑔𝑘

𝑁𝐴                                                                                                                              3 

 

 

The additive path cost is defined as the sum of the linkwise additive path performance variables: 

 

𝑔𝑘
𝐴𝐷𝐷 = ∑ 𝛽𝑛. 𝑧𝑛𝑘

𝐴𝐷𝐷
𝑛                                                                                                                             

 

Under the assumption that the generalized cost depends linearly on performance variables, the 

additive path cost can be expressed as the sum of generalized link costs. The relationship between 

additive path cost and link costs can be expressed by combining all the equations previously 

presented: 

 

𝑔𝑘
𝐴𝐷𝐷 = ∑ 𝛽𝑛. 𝑧𝑛𝑘

𝐴𝐷𝐷 = ∑ 𝛽𝑛 ∑ 𝛿𝑎𝑘𝑟𝑛𝑎 = ∑ 𝛿𝑙𝑘 ∑ 𝛽𝑛𝑟𝑛𝑎 = ∑ 𝛿𝑎𝑘𝑐𝑎𝑎𝑛𝑎𝑎𝑛𝑛                                             

 

or 

 

𝑔𝑘
𝐴𝐷𝐷 = ∑ 𝛿𝑎𝑘𝑐𝑎𝑎                                                                                                                               4 

 

 

The expression (4) can also be formulated in vector format by introducing the vector of additive 

path costs g ADD (see Fig. 3):  

 

𝑔𝐴𝐷𝐷 = ∆𝑇𝑐                                                                                                                                        5 

 

 

The nonadditive path cost 𝑔𝑘
𝐴𝐷𝐷 includes nonadditive path performance variables:         

 

 

𝑔𝑘
𝑁𝐴 = ∑ 𝛽𝑛𝑧𝑛𝑘

𝑁𝐴
𝑛                                                                                                                                  

 

Finally, the path cost vector g, of dimensions (n p × 1), can be expressed as: 

 

𝑔 = ∆𝑇𝑐 + 𝑔𝑁𝐴                                                                                                                                 6 
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Where 𝑔𝑁𝐴 is the nonadditive path cost vector. In many applications, the nonadditive path cost 

vector is or is assumed to be, null.   

 

 

Fig. 3 Transportation network with link and path costs. 

 

 

Link Performance and Cost Functions 

Link performance attributes generally depend on the physical and functional characteristics of the 

facility and/or the service involved in the trip phase represented by the link itself. Typical examples 

are the travel time on a road section depending on its length, alignment, allowed speed, or the 

waiting time at a bus stop depending on the headway between successive bus arrivals. When 

several travelers or vehicles use the same facility, they may interact with each other, thereby 

influencing link performance. 

Typically, the effects of congestion on link performance increase as the flow increases. For 

instance, the larger the flow of vehicles traveling along a road section, the more likely faster 

vehicles will be slowed by slower ones, thus increasing the average travel time. Moreover, the 
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larger the flow arriving at an intersection, the longer the average waiting time; the larger the 

number of users on the same train, and the lower the riding comfort. 

 

In general, congestion effects are such that the performance attributes of a given link may be 

influenced by the flow on the link itself and by flows on other links. Link performance functions 

relate the generic link performance attribute 𝑟𝑛𝑎 to the physical and functional characteristics of 

the link, arranged in a vector 𝑏𝑛𝑎, and to the equivalent flow on the same link and, possibly, on 

other links, arranged in the vector f : 

 

𝑟𝑛𝑎 = 𝑟𝑛𝑎(𝑓; 𝑏𝑛𝑎, 𝑦𝑛𝑎)        

 

Where 𝑦𝑛𝑎 is a vector of parameters used in the function. 

 

Because the generalized transportation cost of a link 𝑐𝑎 is a linear combination of link performance 

attributes, link cost functions can be expressed as functions of the same parameters: 

 

𝑐𝑛𝑎 = 𝑐𝑛𝑎(𝑓; 𝑏𝑛𝑎, 𝑦𝑛𝑎)                                                                                                                        7 

 

Where vectors𝑏𝑛𝑎 and 𝑦𝑛𝑎  have the same meaning as above. 

 

 

Link performance and cost functions may have some mathematical properties, which are used to 

study the properties of supply-demand interaction models and to analyze the convergence of their 

solution algorithms. Performance and cost functions can be classified as separable and 

nonseparable across a link. In the former case, the performances and cost variables of a link depend 

exclusively on the (equivalent) flow of the link itself: 

 

𝑐𝑎(𝑓) = 𝑐𝑎(𝑓𝑎)  

 

In the latter case, they also depend on the flow of other links. Examples of both types of functions 

are given in the following sections. 

 

The cost function vector c (f) is obtained by ordering the nL functions of the individual network 

links: 

 

 

𝑐 = 𝑐(𝑓)                                                                                                                                           8 

 

Under the assumption that the first partial derivative of c (f) exists and is finite, the Jacobian matrix, 

Jac [c (f)], may be defined: 

          

𝐽𝑎𝑐[𝑐(𝑓)] =

[
 
 
 
 

𝜕𝑐1

𝜕𝑓1
⋯

𝜕𝑐1

𝜕𝑓𝑛𝐿

⋮
𝜕𝑐𝑖

𝜕𝑓𝑖
⋮

𝜕𝑐𝑛𝐿

𝜕𝑓1
⋯

𝜕𝑐𝑛𝐿

𝜕𝑓𝑛𝐿]
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The cost functions generally have an asymmetric Jacobian. In some cases, they may have a 

symmetric Jacobian: 
𝜕𝑐𝑖

𝜕𝑓𝑗
 =

𝜕𝑐𝑗

𝜕𝑓𝑖
 ∀i, j; that is, the cost varies on link a, due to a flow variation on link 

j, is equal to the cost variation on link j, due to a flow variation on the link i. Separable cost 

functions are clearly a special case, the Jacobian being a diagonal matrix: ∂ci/∂fj = 0, ∀ i  

≠ j. 

In the case of uncongested networks, the cost functions are independent of the flows, so the partial 

derivatives are all equal to zero and the Jacobian is null. 

 

 

 

Impacts and Impact Functions 

 

Design and evaluation of transportation systems, in addition to performance variables perceived 

by the users, require the modeling of impacts borne by the users, but not perceived in their mobility 

choices, and of impacts on nonusers.  

Examples of the first type include indirect vehicle costs (e.g., tire or lubricant, vehicle depreciation, 

etc.) and accident risks with their consequences (death, injury, material damage). The impacts for 

nonusers include those for other subjects directly involved in the transportation system, such as 

costs and revenues for the producers of transportation services, and impacts “external” to the 

transportation system (or market).  

Examples of externalities are the impacts on the real estate market, urban structure, or the 

environment such as noise and air pollution. The mathematical functions relating these impacts to 

physical and functional parameters of the specific transportation systems and, in some cases, to 

link flows are called impact functions. Often these functions are named with respect to the specific 

impact they simulate (e.g., fuel consumption functions or pollutant emission functions). Some 

impacts can be associated with individual network links and depend on the flows, el (f). Link-based 

impact functions are usually included in transportation supply models. Some impact functions may 

be quite elementary whereas others may require complex systems of mathematical models. 

Examples of link-based impact functions are those related to air and noise pollution due to 

vehicular traffic.  

 

General Formulation 

To summarize the above points, a transportation network consists of the set of nodes N, the set of 

links L, the vector of link costs c, which depend on the vector r of link performances, the vector 

gNA of nonadditive path costs, and the vector e of relevant impact variables: (N, L, c, g NA, e). For 

congested networks, the link cost vector is substituted by the flow-dependent cost functions c(f ); 

the same holds for flow-dependent internal and external impacts e (f), whereas the nonadditive 

costs vector g NA is usually assumed to be independent of the flows. In this case, the abstract 

transportation network model can be expressed as (N, L, c (f), g NA, e(f )). Performance variables 

and functions are not explicitly mentioned, as they are included in the generalized transportation 

cost functions. The set of relationships connecting path costs to path flows is known as the supply 

model. The supply model can therefore be formally expressed by combining (2), (6), and (8) into 

a relationship connecting path flows to path costs: 

 

𝑔(ℎ) = ∆𝑇𝑐(∆ℎ) + 𝑔𝑁                                                                                                                       9 
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Where it is assumed that nonadditive path costs, if any, are not affected by congestion. Link 

characteristics can be obtained through performance, cost, and impact functions for the link flows 

corresponding to the path flow vector. Clearly, model (9) expresses the abstract congested network 

model described in the previous sections. The same type of model can be used to describe other 

systems such as electrical or hydraulic networks. 

 

The general structure of a supply model has depicted in Fig. 4. The graph defines the topology of 

the connections allowed by the transportation study and the flow propagation model defines the 

relationship between path and link flows. The link performance model expresses for each element 

(link) the relationships among performances, physical and functional characteristics, and flow of 

users. The impact model simulates the main external impacts of the supply system. Finally, the 

path performance model defines the relationship between the performances of single elements 

(links) and those of a whole trip (path) between any origin-destination pair. 
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Fig. 4 Schematic representation of supply models. 

 


