Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

3.1 Data-Addressing Modes:

Program 1s a sequence of commands used to tell a microcomputer what to
do. Each command in a program 1s an instruction. Programs must always
be coded in machine language before they can be executed by the
microprocessor. A program written in machine language is often referred
to as machine code. Machine code i1s encoded using Os and 1s. A single
machine language instruction can take up one or more bytes of code. In
assembly language, each instruction 1s described with alphanumeric
symbols 1instead of with Os and 1s. Instruction can be divided into two
parts: its opcodeand operands. Op-code identifies the operation that 1s to
be performed. Each opcode 1s assigned a umque letter combination
called a mnemonic. Operands describe the data that are to be processed
as the microprocessor carried out, the operation specified by the opcode.
For example, the move instruction 1s one of the instructions in the data
transter group of the 8086 instruction set. Execution of this instruction
transfers a byte or a word of data from a source location to a destination
location.

Because the MOV instruction 1s a very common and flexible instruction,
it provides a basis for the explanation of the data-addressing modes.
Figure 3-1 1illustrates the MOV instruction and defines the direction of
data flow. The source is to the night and the destination is to the left,
next to the opcode MOV. (An opcode, or operation code, ftells the
microprocessor which operation to perform.) This direction of flow,
which 1s applied to all instructions, 1s awkward at first. We naturally
assume that things move from left to right, whereas here they move from
right to left. Notice that a comma always separates the destination from
the source 1n an instruction. Also, note that memory-to-memory transfers
are not allowed by any instruction except for the MOVS instruction.

N
MOV AX , BX

fo ot A

Opcode Pestination Snurcva‘I

~
Operands

Fig. (3-1): The MOY instruction showing the source, destination, and direction of data flow.

In Figure 3-1, the MOV AX, BX instruction transfers the word contents
of the source register (BX) into the destination register (AX). The source
never changes., but the destination always changes. It 1s crucial to
remember that a MOV instruction always copies the source data into the
destination. The MOV never actually picks up the data and moves it

Addressing Modes 21

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

Also, note the flag register remains unaffected by most data transfer
instructions. The source and destination are often called operands.

Figure 3-2 shows all possible variations of the data-addressing modes
using the MOV instruction. This illustration helps to show how each
data-addressing mode is formulated with the MOV instruction and also

serves as a reference on data-addressing modes. The data-addressing
modes are as follows:

Register addressing transters a copy of a byte (8bitt AH, AL, BH, BL,
CH, CL, DH or CL) or word (l6-hit: AX, BX, CX, DX, SI, DI, SP or BP)
trom the source register or contents of a memory location to the
destination register or memory location. Also, segment registers (Sreg):
CS, DS, ES, or SS. There 1s an exception. CS cannot be a destination.
(Example: The MOV CX., DX instruction copies the word-sized contents
of register DX 1nto register CX).

Example: Register Operands
MOV AX, BX ; MOV reglb, reglb
ADD AX, Sl ; ADD reglh, reglé
MOV DS, AX ; MOV Sreg, reglé
Some rules in register addressing modes:

1. You may not specify CS as the destination operand.
Example: MOV CS, 02H —> wrong

2. Only one of the operands can be a segment register. You cannot
move data from one segment register to another with a single MOV
instruction. To copy the value of CS to DS, you would have to use
some sequence like:
MOV DS,CS -> wrong
MOV AX, CS
MOV DS, AX ->the way we do it

3. You should never use the segment registers as data registers to hold
arbitrary values. They should only contain segment addresses.

Immediate addressing transfers the source, an i1mmediate byte, or word
of data, into the destination register or memory location. (Example: The
MOV AL, 22H instruction copies a byte-sized 22H into register AL).

Example: Immediate Operands

MOV AL, 20 ; Copies a 20 decimal into register AL

MOV BX, 55H ; Copies a 0055H into register BX

MOV 51, 0 ; Copies a 0000H into register Sl

MOV DX, 'Ahmed' ; Copies an ASCIl Ahmed into register DX
MOV CL, 10101001B ; Copies a 10101001 binary into register CL

Addressing Modes 22

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

Direct addressing moves a byte or word between a memory location and
a register. The instruction set does not support a memory-to-memory
transfer, except with the MOVS instruction. (Example: The MOV CX,
LIST instruction copies the word-sized contents of memory location
LIST into register CX).

Type Instruction Source Address Generation Destination
F Register Register
Register MOV AXBX Y EE\X
: Data Register
Immediate MOV CH,3AH 3AH o
i Mia
Direct MOV [1234H],AX Register | . DSx10H+DISP | addwest
10000H + 1234H 11234H
Register indirect MOV [BX],CL Pagisar . DSx10H+BX .| Homory
10000H + 0300H 10300H
Base-plus-index MOV [BX+SI),BP g DS x 10H + BX + SI .
10000H + 0300H + D200H 10500H
. . Meamory
Register relative MOV CL [BX+4] addess DEx10H+BX + 4 Ragistar
10304H 10000H + 0300H + 4 CL
: Maitid
Base relative-plus-index MOV ARRAY[BX+SI),DX ""‘gﬁ”’ | . DS x10H + ARRAY + BX + S it
T0UDUH + TUODUH + US00H + U200H 11500H

Notes: EBX = 00000300H, ESI = 00000200H, ARRAY = 1000H, and DS = 1000H

Fig. (3-2): 8086—micrprocessor data-addressing modes.

Example: Immediate Operands

MOV AL, DS:[2000H] ; Move the contents of the memory location with offset 2000 or
MOV AL, [2000H] into register AL

MOV AL, DS:[8088H] ; Move the contents of the memory location with offset 8088 or
MOV AL, [8088H] into register AL

MOV DS:[1234H], DL ; Store the value in the DL register to memory location with or MOV
[1234H], DL offset 1234H

Register indirect addressing transfers a byte or word between a register
and a memory location addressed by an index or base register. The index
and base registers are BP, BX, DI and S1. (Example: The MOV AX,
[BX] instruction copies the word-sized data from the data segment offset
address indexed by BX into register AX).

MOV AL, [BX]
Addressing Modes 23

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

MOV AL, [BP]
MOV AL, [SI]
MOV AL, [DI]

The [BX], [SI], and [DI] modes use the DS segment by default. The [BP] addressing mode
uses the stack segment (SS) by default. You can use the segment overnide prefix symbols 1f
vou wish to access data in different segments. The following instructions demonstrate the
use of these overrides:

MOV AL, CS:[BX]

MOV AL, DS:[BP]

MOV AL, $S:[Sl]

MOV AL, ES:[DI]
For example:

MOV SI, 1234H

MOV AL, [SI]

If SI contains 1234Hand DS contains 0200H the result produced by executing the
instruction 1s that the contents of the memory location at address:

PA = 02000H + 1234H = 03234 are moved to the AX register.

Base-plus-index addressing transfers a byte or word between a register
and the memory location addressed by a base register (BP or BX) plus an
index register (DI or SI). (Example: The MOV [BX+DI|, CL instruction
copies the Dbyte-sized contents of register CL into the data segment
memory location addressed by BX plus DI).

Register relative addressing moves a byte or word between a register
and the memory location addressed by an index or base register plus a
displacement. (Example: MOV AX][BX+4] or MOV AXARRAY[BX].
The first instruction loads AX from the data segment address formed by
BX plus 4. The second instruction loads AX from the data segment
memory location in ARRAY plus the contents of BX).

Base relative-plus-index addressing transfers a byte or word between a
register and the memory location addressed by a base and an index
register plus a displacement. (Example:. MOV AX, ARRAY[BX+DI] or
MOV AX, [BX+DI+4]. These instructions load AX from a data segment
memory location. The first instruction wuses an address formed by adding
ARRAY, BX, and DI and the second by adding BX, DI, and 4).

Addressing Modes 24

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

3.2 Register Addressing:

Register addressing 1s the most common form of data addressing and,
once the register names are learned, 1s the easiest to apply. The
microprocessor contains the following 8-bit register names used with
register addressing: AH, AL, BH, BL, CH, CL, DH, and DL. With
register addressing, some MOV instructions and the PUSH and POP
instructions also wuse the 16-bit segment register names (CS, ES, DS, S8,
FS, and GS). It is important for instructions to use registers that are the
same size. Never mix an 8-bit register with a 16-bit register, because this
1s not allowed by the microprocessor and results 1n an error when
assembled. This 1s even true when a MOV AX, AL instrucion may seem
to make sense. Of course, the MOV AX, AL mstructions are not allowed
because the registers are of different sizes. It i1s also important to note that
none of the MOV instructions affect the flag bits. The flag bits are
normally moditied by arithmetic or logic instructions.

Table (3—1) Examples of register-addressed instructions.

Assembly Language Size Operation

MOV ALBL 8 bit Copies BL into AL

MOV CH,CL 8 bit Copies CLinto CH

MOV AX,CX 16 bit Copies CX into AX

MOV 5P,BP 16 bit Copies BP into SP

MOV DS,AX 16 bit Copies AX into DS

MOV S1,DI 16 bit Copies Dlinto Sl

MOV BX,ES 16 bit Copies ES into BX

MOV DS,CX 16 bit Copies CX into DS

MOV ES,DS i Not allowed {segment-to-segment)
MOV BL,DX = Not allowed (mixed sizes)

MOV CS,AX = Not allowed (the code segment register may

not be the destination register)

Table 3-1 shows many vamnations of register move instructions. It 1s
impossible to show all combinations because there are too many. For
example, just the 8-bit subset of the MOV instruction has 64 different
variations. A segment-to-segment register MOV instruction i1s about the
only type of register MOV instruction not allowed. Note that the code
segment register 1s not normally changed by a MOV instruction because
the address of the next instruction i1s found by both IP and CS. If only CS
were changed, the address of the next instruction would be unpredictable.
Therefore, changing the CS register with a MOV instruction 1s not
allowed.

Addressing Modes 25

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

Figure 3-3 shows the operation of the MOV BX, CX instruction. Note
that the source register’s contents do not change, but the destination
register’s contents do change. This instruction moves (copies) a 1234H
from register CX into register BX. This erases the old contents (76AFH)
of register BX, but the contents of CX remain unchanged.

Regilster array

AX
BX 7 6 & F
CX 1 2 3 4 1 234

Fig. (3-3): The effect of executing the MOV BX, CX instruction at the point just before the BX register
changes.

Example 3-1 shows a sequence of assembled instructions that copy
various data between 8- and 16-bit registers. As mentioned, the act of
moving data from one register to another changes only the destination
register, never the source. The last instruction in this example (MOV
CS,AX) assembles without error, but causes problems if executed. If only
the contents of CS change without changing IP, the next step 1n the
program 1s unknown and therefore causes the program to go awry.

MOV AX,BX ;copy contents of BX into AX
MOV CL,DH ;copy contents of DH into CL
MOV CL,CH ;copy contents of CH into CL
MOV AX,CS ;copy CS into DS (two steps)
MOV DS,AX

MOV CS,AX ;copy AX into CS (causes problems)

3.3 Immediate Addressing:

Another data-addressing mode is 1mmediate addressing. The term
immediate implies that the data immedately follow the hexadecimal
opcode in the memory. Also note that immediate data are constant data,
whereas the data transferred from a register or memory location are
variable data. Immediate addressing operates upon a byte or word of data.
The MOV immediate instruction transfers a copy of the immediate data
into a register or a memory location. Figure 3-4 shows the operation of a
MOV AX3456H instruction. This instruction copies the 3456H from the

Addressing Modes 26

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

instruction, located in the memory immediately following the
hexadecimal opcode, into register AX. As with the MOV instruction
illustrated in Figure 3-3, the source data overwrites the destination data.

Register aray Program
AX 6 2 9 1 ‘L MOV AX,3456H
BX 3456H -—)
e e e

Fig. (3-4): The operation of the MOV AX 3456H instruction. This instruction copies the immediate
data (3456H) into AX.

The symbolic assembler portrays immediate data in many ways. The
letter H appends hexadecimal data. If hexadecimal data begin with a
letter, the assembler requires that the data start with a 0. For example, to
represent a hexadecimal F2, OF2H 1s wused 1n assembly language. Decimal
data are represented as 1s and require no special codes or adjustments.
(An example 1s the 100 decimal in the MOV AL.100 instruction). An
ASCII-coded character or characters may be depicted 1n the i1mmediate
form 1if the ASCII data are enclosed in apostrophes. (An example is the
MOV BH, ‘A’ instruction, which moves an ASCIl-coded letter A [41H]
into register BH). Be careful to use the apostrophe () for ASCII data and
not the single quotation mark (°). Binary data are represented if the binary
number 1s followed by the letter B, or, in some assemblers, the letter Y.
Table 3-2 shows many different vanations of MOV instructions that
apply immediate data.

Table 3—-2 Examples of immediate addressing using the MOV instruction.

Assembly Language Size Operation

MOV BL,44 8 bit Copies 44 decimal (2CH) into BL
MOV AX,44H 16 bit Copies 0044H into AX

MOV §1,0 16 bit Copies 0000H into SI

MOV CH,100 8 bit Copies 100 decimal {64H) into CH
MOV AL'A 8 bit Copies ASCII of A into AL

MOV AH,1 8 hit Copies 1 decimal (01H) into AH
MOV AX,'AB' 16 bit Copies ASCIl of AB into AX

MOV CL,11001110B 8 bit Copies 11001110 binary into CL

Example 3-2 shows various immediate instructions in a short assembly
language program that places O000H into the 16-bit registers AX, BX,
and CX. This 1s followed by instructions that use register addressing to
copy the contents of AX into registers SI, DI, and BP.

MOV AX,0 ;place 0000H into AX

MOV BX,0 ;place 0000H into BX

Addressing Modes 27

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

MOV CX,0 ;place 0000H into CX
MOV SI,AX ;copy AX into SI
MOV DI,AX ;copy AX into DI
MOV BP,AX ;copy AX into BP

Note: A comment always begins with a semicolon (;).
EXAMPLE 3-3

DATA1=23H, and DATA2=1000H

MOV AL,BL ;copy BL into AL

MOV BH,AL ;copy AL into BH

MOV CX,200 ;copy 200 into C

3.4 Direct Data Addressing:

Most instructions can use the direct data-addressing mode. In fact, direct
data addressing 1s applied to many instructions 1n a typical program.
There are two basic forms of direct data addressing: (1) direct addressing,
which applies to a MOV between a memory location and AL, AX, and
(2) displacement addressing, which applies to almost any instruction 1n
the instruction set. In either case, the address i1s formed by adding the
displacement to the default data segment address or an alternate segment
address.

Direct Addressing: Direct addressing with a MOV instruction transfers
data between a memory location, located within the data segment, and the
AL (8-bit), or AX (l6-bit) register. A MOV instruction using this type of
addressing 1s usually a 3-byte long instruction.

The MOV AL DATA instruction, as represented by most assemblers,
loads AL from the data segment memory location DATA (1234H).
Memory location DATA is a symbolic memory location, while the
1234H 1s the actual hexadecimal location. With many assemblers, this
instruction is represented as a MOV AL.|1234H]7 instruction. The
[1234H] 1s an absolute memory location that i1s not allowed by all
assembler programs. Note that this may need to be formed as MOV AL,
DS:[1234H] with some assemblers, to show that the address 1s in the data
segment. Figure 3-5 shows how this instruction transfers a copy of the
byte-sized contents of memory location 11234H 1nto AL. The effective
address 1s formed by adding 1234H (the offset address) and 10000H (the
data segment address of 1000H times 10H) in a system operating in the
real mode.

Addressing Modes 28

Mustansiriyah University - College of Engineering - Electrical Engineering Department

Third Year Class

Memory

11235H
ax [AA AL

8AH e 8 A |411234H
BX 11233H
2 11232H

— -—\‘-\M

Fig. (3-5): The operation of the MOV AL,[1234H] instruction when . DS = 1000.

Table 3-3 lists the direct-addressed instructions. These instructions often
appear 1n programs, so Intel decided to make them special 3-byte-long
instructions to reduce the length of programs. All other instructions that
move data from a memory location to a register, called displacement
addressed 1instructions, require 4 or more bytes of memory for storage in a
program

Table 3—3 Direct addressed instructions using AX, and AL.

Assembly Language Size Operation

MOV AL NUMBER 8 bits Copies the byte contents of data segment
memory location NUMBER into AL

MOV AX,COW 16 bits Copies the word contents of data segment
memory location COW into AX

MOV NEWS, AL 8 bits Copies AL into byte memory location NEWS

MOV THERE AX 16 bits Copies AX into word memory location THERE

MOV ES:[2000H], AL 8 bits Copies AL into extra segment memory at
offset address 2000H

MOV AL MOUSE 8 bits Copies the contents of location MOUSE into AL;

in 64-bit mode MOUSE can be any address

Displacement = Addressing: Displacement addressing 1s almost identical
to direct addressing, except that the instruction i1s 4 bytes wide instead of
3. This type of direct data addressing 1s much more flexible because most
instructions use it.

If the operation of the MOV CL.DS:[1234H] instruction 1s compared to
that of the MOV AL,DS:[1234H| instruction of Figure 3-5, we see that
both basically perform the same operation except for the destination
register (CL wversus AL). Another difference only becomes apparent upon
examining the assembled versions of these two instructions. The MOV
AL,DS:[1234H] instruction 1s 3 bytes long and the MOV CL,DS:[1234H]
instruction 1s 4 bytes long, as illustrated 1n Example 3-4. This example
shows how the assembler converts these two instructions into
hexadecimal machine language. You must include the segment register
DS: in this example, before the J[offset] part of the instruction. You may
use any segment register, but in most cases, data are stored in the data
segment, so this example uses DS:[1234H].

Addressing Modes 29

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

EXAMPLE 34
MOV AL,DS:[1234H]
MOV CL,DS:[1234H]

Table 34 lists some MOV instructions using the displacement form of
direct addressing. Not all variations are listed because there are many
MOV instructions of this type. The segment registers can be stored or
loaded from memory.

Table 3—4 Examples of direct data addressing using a displacement.

Assembly Language Size Operation

MOV CH,DOG 8 bits Copies the byte contents of data segment memory
location DOG into CH

MOV CH,DS:[1000H]* 8 bits Copies the byte contents of data segment memory offset
address 1000H into CH

MOV ES,DATAS 16 bits Copies the word contents of data segment memory
location DATAG into ES

MOV DATA7,BP 16 bits Copies BP into data segment memory location DATA7

MOV NUMBER,SP 16 bits Copies SP into data segment memory location NUMBER

EXAMPLE 3-5

DATA1=10H, DATA2=00H, DATA3=0000H, and DATA4=AAAAH
MOV AL,DATA1 ;copy DATAL into AL

MOV AH,DATA2 ;copy DATA2 into AH

MOV DATA3,AX ;copy AX into DATA3

MOV BX,DATAA4 ;copy DATA4 into BX

3.5 Register Indirect Addressing:

Register indirect addressing allows data to be addressed at any memory
location through an offset address held in any of the tollowing registers:
BP, BX, DI, and SI. For example, if register BX contains 1000H and the
MOV AX,[BX] instruction executes, the word contents of data segment
offset address 1000H are copied into register AX. If the microprocessor 1is
operated in the real mode and DS=0100H, this instruction addresses a
word stored at memory bytes 2000H and 2001H, and transfers it into
register AX (see Figure 3-6). Note that the contents of 2000H are moved
into AL and the contents of 2001H are moved into AH. The [] symbols
denote indirect addressing in assembly language. In addition to wusing the
BP, BX, DI, and SI registers to indirectly address memory. Some typical
mnstructions using indirect addressing appear in Table 3-35.

Addressing Modes 30

Mustansiriyah University - College of Engineering - Electrical Engineering Department

Third Year Class
o —]
00002002
AN s M2 Mﬁ"i\h 3 4 00002001
BX| 1 0 00 T tzmo 12 00002000
CX
‘_'/_.r-—--
,,-.--“—"‘
00001002
cS 00001001
*1000 -
DS o100 00001000

*After DS is appended with a 0.

Fig. (3-6): The operation of the MOV AX,[|BX] instruction when BX = 1000H and DS = 0100H. Note
that this instruction is shown after the contents of memory are transferred to AX.

The data segment 1s used by default with register indirect addressing or
any other addressing mode that uses BX, DI, or SI to address memory. If
the BP register addresses memory, the stack segment is used by default.
These settings are considered the default for these four index and base
registers. For example, the MOV AL,[DI] instruction 1s clearly a byte-
sized move instruction, but the MOV [DI.1I0H instruction i1s ambiguous.
Does the MOV [DI.IOH instruction address a byte-, or word-sized
memory location? The assembler ~can’t determine the size of the 10H. The
instruction MOV [DI]|,10H clearly = designates the location addressed by
DI as a byte-sized memory location.

Table 3—5 Examples of register indirect addressing.

Assembly Language Size Operation

MOV CX,[BX] 16 bits Copies the word contents of the data segment memory
location addressed by BX into CX

MOV [BP)],DL* 8 bits Copies DL into the stack segment memory location
addressed by BP

MOV [DI],BH 8 bits Copies BH into the data segment memory location
addressed by DI

MOV [DI],[BX] — Memory-to-memory transfers are not allowed except with
string instructions

MOV AL,[DX] 8 bits Copies the byte contents of the data segment memory

location addressed by DX into AL

“Mote: Data addressed by BP are by default in the stack segment, while other indirect addressed
instructions use the data segment by default.

The sequence shown 1n Example 3-7 loads register BX with the starting
address of the table and 1t inmitializes the count, located in register CX, to
50. The OFFSET directive tells the assembler to load BX with the offset

Addressing Modes 31

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

address of memory location TABLE, not the contents of TABLE. For
example, the MOV BXDATAS instructon copies the contents of
memory location DATAS mto BX, while the MOV BXOFFSET
DATAS instruction copies the offset address DATAS into BX. When the
OFFSET directive 1s used with the MOV instruction, the assembler
calculates the offset address and then uses a MOV immediate instruction
to load the address in the specified 16-bit register.

EXAMPLE 3-7

MOV AX,0

MOV ES,AX ;address segment 0000 with ES
MOV BX,OFFSET DATAS ;address DATAS array with BX
MOV CX,50 ;load counter with 50

AGAIN:

MOV AX,ES:[046CH] ;get clock value

MOV [BX],AX ;save clock value in DATAS
INC BX ;increment BX to next element

INC BX

LOOP AGAIN ;repeat 50 times

Once the counter and pointer are 1mtalized, a repeat-until CX = 0 loop
executes. Here data are read from extra segment memory location 46CH
with the MOV AXES:[046CH] instruction and stored in memory that 1s
indirectly addressed by the offset address located in register BX. Next,
BX 1s incremented (1 1s added to BX) twice to address the next word in
the table. Finally, the LOOP instruction repeats the LOOP 50 times. The
LOOP instruction decrements (subtracts 1 from) the counter (CX); 1if CX
is not zero, LOOP causes a jump to memory location AGAIN. If CX
becomes =zero, no jump occurs and this sequence of instructions ends.
This example copies the most recent 50 wvalues from the clock into the
memory array DATAS. This program will often show the same data in
each location because the contents of the clock are changed only 182
times per second.

3.6 Base-Plus-Index Addressing:

Base-plus-index addressing 1s similar to indirect addressing because it
indirectly addresses memory data. In the 8086, this type of addressing
uses one base register (BP or BX) and one index register (DI or SI) to
indirectly address memory. The base register often holds the beginning

Addressing Modes 32

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

location of a memory array, whereas the index register holds the relative
position of an element 1n the array. Remember that whenever BP
addresses memory data, both the stack segment register and BP generate
the effective address.

Locating Data with Base-Plus-Index Addressing: Figure 3-7 shows
how data are addressed by the MOV DX,[BX+DI] instruction when the
microprocessor operates in the real mode. In this example, BX=1000H,
DI=0010H, and DS=0100H, which translate into memory address
02010H. This instruction transfers a copy of the word from location
02010H into the DX register.

Memory
-\-P‘___’
02015H
AX
02014H
Bx| 10 00 02013H
X 02012H
—-—'.-——-.-_-_
sl am |08 o A B 02011H
0 3 02010H <+—
0200FH
BP
1000H
Sl
0010H 3 . 2010H
DI o -
gaxae ~o010H
{ 100011
DS x 10H

Fig. (3-7): An example showing how the base-plus-index addressing mode functions for the MOV
DX, [BX+DI] instruction. Notice that memory address 02010H is accessed because . DS = 0100H, BX =
100H, and DI=0010H.

Table 3-6 lists some instructions used for base-plus-index addressing.
Note that the Intel assembler requires that this addressing mode appear as
[BX][DI] instead of [BX+DI|. The MOV DX |[BX+DI] instruction 1is
MOV DX [BX][DI] for a program written for the Intel ASM assembler.
This text uses the first form in all example programs, but the second form
can be used in many assemblers.

Table 3—6 Examples of base-plus-index addressing.

Assembly Language Size Operation

MOV CX,[BX+DI] 16 bits Copies the word contents of the data segment memory
location addressed by BX plus Dl into CX

MOV CH,[BP+SI] 8 bits Copies the byte contents of the stack segment memory
location addressed by BP plus Sl into CH

MOV [BX+SI),SP 16 bits Copies SP into the data segment memory location
addressed by BX plus Si

MOV [BP+DI),AH 8 bits Copies AH into the stack segment memory location

addressed by BP plus DI

Addressing Modes 33

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

Locating Array Data Using Base-Plus-Index Addressing. A major use of
the base-plus-index addressing mode 1s to address elements in a memory
array. Suppose that the elements in an array located in the data segment at
memory location ARRAY must be accessed. To accomplish this, load the
BX register (base) with the beginning address of the array and the DI
register (index) with the element number to be accessed. Figure 3-8
shows the use of BX and DI to access an element in an array of data.

Mamaory
T ——
= ARRAY + 5
Dt ARRAY + 4
R— ARRAY + 3
BX ARRAY + 2
ARRAY +1
i ARRAY
—

Fig. (3-8): An example of the base-plus-index addressing mode. Here an element (DI) of an ARRAY
(BX) is addressed.

A short program, listed in Example 3-8, moves array element 10H into
array eclement 20H. Notice that the array element number, loaded into the
DI register, addresses the array element. Also notice how the contents of
the ARRAY have been initialized so that element 10H contains 29H.

EXAMPLE 3-8

ARRAY=16 ;setup ARRAY element 10H
MOV BX,ARRAY ;address ARRAY
MOV DI,10H ;address element

MOV AL,[BX+DI] ;get element 10H
MOV DI,20H ;address element 20H

MOV [BX+DI],AL ;save in element 20H

3.7 Register Relative Addressing:

Register relative addressing 1s similar to base-plus-index addressing and
displacement addressing. In register relative addressing, the data in a
segment of memory are addressed by adding the displacement to the

Addressing Modes 34

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

contents of a base or an index register (BP, BX, DL or SI). Figure 3-9
shows the operation of the MOV AX|[BX+1000H] instruction. In this
example, BX = 0100H and DS = 0200H, so the address generated 1is the
sum of DSx0H, BX, and the displacement of 1000H, which addresses
location 03100H. Remember that BX, DI, or SI addresses the data
segment and BP addresses the stack segment. Table 3-7 lists a few
instructions that use register relative addressing.

Memory
"]
Register array
1 ——
AX [A0| 76 \% B
Bx 01 00 76 03100H -
0100H
1000H
1100H

DS x 10H +
2000H 3100H

Fig. (3-9): The operation of the MOV AX, [BX+1000H] instruction, when BX = 0100H and DS =
0200H.

The displacement i1s a number added to the register within the [], as in the
MOV AL.[DI+2] instruction, or 1t can be a displacement 1s subtracted
from the register, as in MOV _AL,[SI-l]. A displacement also can be an
offset address appended to the front of the |], as in MOV AL DATA[DI].
Both forms of displacements also can appear simultaneously, as 1n the
MOV AL,DATA[DI+3] instruction.

Table 3—7 Examples of register relative addressing.

Assembly Language Size Operation

MOV AX,[DI+100H] 16 bits Copies the word contents of the data segment memory location
addressed by DI plus 100H into AX

MOV ARRAYI[SI],BL 8 bits Copies BL into the data segment memory location addressed by
ARRAY plus SI

MOV LIST[SI+2],CL 8 bits Copies CL into the data segment memory location addressed by the
sum of LIST, SI, and 2

MOV DI,SET_IT[BX] 16 bits Copies the word contents of the data segment memory location
addressed by SET_IT plus BX into DI

MOV DI,[EAX+10H] 16 bits Copies the word contents of the data segment location addressed by

EAX plus 10H into DI

Addressing Array Data with Register Relative. It 1s possible to address
array data with register relative addressing, such as one does with base-
plus-index addressing. In Figure 3-10, register relative addressing 1s
illustrated with the same example as for base-plus-index addressing. This

Addressing Modes 35

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

shows how the displacement ARRAY adds to index register DI to
generate a reference to an array element.

Memory

= ARRAY + 6
ARRAY +5
ARRAY + 4
Element ARRAY + 3

Displacement ARRAY + 2
ARRAY + 1

ARRAY

ARRAY -

M

Fig. (3-10): Register relative addressing used to address an element of ARRAY. The displacement
addresses the start of ARRAY, and DI accesses an element.

Example 39 shows how this new addressing mode can transter the
contents of array eclement 10H 1into array element 20H. Notice the
similarity between this example and Example 3-8. The main difference 1is
that, in Example 3-9, register BX is not wused to address memory
ARRAY: instead, ARRAY 1s wused as a displacement to accomplish the
same task.

EXAMPLE 3-9

ARRAY=16 ;setup ARRAY element 10H
MOV DI,10H ;address element

MOV AL,ARRAY [DI] ;get array element 10H
MOV DI,20H ;address element 20H

MOV ARRAY [DI],AL ;save in element 20H

3.8 Base Relative-Plus-Index Addressing:

The base relative-plus-index addressing mode 1s similar to base-plus-
index addressing, but it adds a displacement, besides using a base register
and an index vregister, to form the memory address. This type of
addressing mode often addresses a two-dimensional array of memory
data.

Addressing Modes 36

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

Addressing Data with Base Relative-Plus-Index. Base relative-plus-
index addressing 1s the least-used addressing mode. Figure 3-11 shows
how data are referenced 1f the instruction executed by the microprocessor
is MOV AX|[BX+SI+100H|. The displacement of 100H adds to BX and
SI to form the offset address within the data segment. Registers
BX=0020H, SI=0100H, and DS=1000H, so the effecive address for this
instruction is 10130H—the sum of these registers plus a displacement of
100H. This addressing mode 1s too complex for frequent use in
programming.

Memory
Register array
A 3 10131H
AX| A3]16 A316
16 10130H <-——
BX|oo0|20
CX
DX
0020H
SP
BP y 0030H 0130H
P
Sl 0010 + +
0010H 10130H
— | 10000H

0100H ps x 10H

Fig. (3-11): An example of base relative-plus-index addressing using a MOV AX,[BX+SI+100H]
instruction. Note: DS = 1000H.

Addressing Arrays with Base Relative-Plus-Index. Suppose that a file
of many records exists 1n memory and each record contains many
clements. The displacement addresses the file, the base register addresses
a record, and the index register addresses an element of a record. Figure
3-12 illustrates this very complex form of addressing.

Addressing Modes 37

Mustansiriyah University - College of Engineering - Electrical Engineering Department

Third Year Class
Memory
|
DI| Element
T REC C
REC B
BX RECC
4 REC A
Displacement
FILE >
~——

Fig. (3-12): Base relative- plus-index addressing used to access a FILE that contains multiple records

(REC).

Example 3-10 provides a program that copies element 0 of record A into
element 2 of record C by wusing the base relative-plus-index mode of
addressing. ~ This example FILE contains four records and each record
contains 10 elements. Notice how the THIS BYTE statement is used to
define the label FILE and RECA as the same memory location.

EXAMPLE 3-10

RECA=10; 10 bytes for record A
RECB=10 ; 10 bytes for record B
RECC=10 ; 10 bytes for record C
RECD=10 ; 10 bytes for record D

MOV BX,OFFSET RECA ;address record A
MOV DI,0 ;address element 0

MOV AL,FILE[BX+DI] ;get data

MOV BX,OFFSET RECC ;address record C
MOV DI,2 ;address element 2

MOV FILE[BX+DI],AL ;save data

Addressing Modes 38

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

3.9 Program Memory-Addressing Modes:

Program memory-addressing modes, used with the IJMP (ump) and
CALL instructions, consist of three distinct forms: direct, relative, and
indirect. This section introduces these three addressing forms, wusing the
JMP 1nstruction to illustrate their operation.

3.9.1 Direct Program Memory Addressing:

Direct program memory addressing 1s what many early microprocessors
used for all jumps and calls. Direct program memory addressing 1s also
used 1n high-level languages, such as the BASIC language GOTO and
GOSUB instructions. The microprocessor uses this form of addressing,
but not as often as relative and indirect program memory addressing are
used.

The instructions for direct program memory addressing store the address
with the opcode. For example, 1if a program jumps to memory location
10000H for the next instruction, the address (10000H) 1s stored following
the opcode 1n the memory. Figure 3-13 shows the direct intersegment
JMP instruction and the 4 bytes required to store the address 10000H.
This JMP instruction loads CS with 1000H and IP with 0000H to jump to
memory location 10000H for the next instruction. (An intersegment jump
Is a jump to any memory location within the entire memory svstem.) The
direct jump 1s often called a far jump because it can jump to any memory
location for the next instruction. In the real mode, a far jump accesses any
location within the first 1M byte of memory by changing both CS and IP.
In protected mode operation, the far jump accesses a new code segment
descniptor from the descriptor table, allowing 1t to jump to any memory
location.

Opcode Offset (low) Offset (high) Segment (low) Segment (high)

E A 00 00 00 10

Fig. (3-13): The 5-byte machine language version of a JMP [10000H] instruction.

The only other instruction that wuses direct program addressing 1s the
intersegment or far CALL instruction. Usually, the name of a memory
address, called a label, refers to the location that is called or jumped to
instead of the actual numenc address. When using a label with the CALL
or JMP instruction, most assemblers select the best form of program
addressing.

Addressing Modes 39

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

3.9.2 Relative Program Memory Addressing:

Relative program memory addressing is not avalable in all early
microprocessors, but 1t 1s available to this family of microprocessors. The
term relative means “relative to the instruction pointer (IP).” For
example, 1f a JMP instrucion skips the next 2 bytes of memory, the
address in relation to the instruction pointer is a 2 that adds to the
instruction pointer. This develops the address of the next program
instruction. An example of the relative JMP instruction 1s shown in
Figure 3-14. Notice that the JMP instruction is a 1-byte instruction, with
a l-byte or a 2-byte displacement that adds to the instruction pointer. A 1-
byte displacement 1s wused in short jumps. and a 2-byte displacement 1s
used with near jumps and calls. Both types are considered to be
intrasegment jumps. (An infrasegment jump 1s a jump anywhere within
the current code segment).

10000 EEB }JMP[E]

10001 O
10002 —
10003 —
10004

Fig. (3-14): A JMP [2] instruction which skips over the 2 bytes of memory that follow the JMP instruction.

Relative JMP and CALIL instructions contain either an &-bit or a 16-bit
signed displacement that allows a forward memory reference or a reverse
memory reference. All assemblers automatically calculate the distance for
the displacement and select the proper 1-, or 2-byte form. If the distance
1s too far for a 2-byte displacement 1 an 8086 microprocessor, some
assemblers use the direct jump. An 8-bit displacement (short) has a jump
range of between and bytes ~from the next instruction, a 16-bit
displacement (near) has a range of bytes.

3.9.3 Indirect Program Memory Addressing:

The microprocessor allows several forms of program indirect memory
addressing for the JMP and CALL instructions. Table 3-8 lists some
acceptable program indirect jump instructions, which can use any 16-bit
register (AX, BX, CX, DX, SP, BP, DI or SI), any relative register ([BP],
[BX]. [DI], or [SI]); and any relative register with a displacement.

It a 16-bit register holds the address of a JMP instruction, the jump 1s
near. For example, if the BX register contains 1000H and a JMP BX
instruction executes, the microprocessor jumps to offset address 1000H in
the current code segment.

If a relative register holds the address, the jump 1is also considered to be
an 1indirect jump. For example, IMP |[BX] refers to the memory location
within the data segment at the offset address contained in BX. At this

Addressing Modes 40

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

offset address 1s a 16-bit number that 1s used as the offset address in the
intrasegment jump. This type of jump 1s sometimes called an indirect-
indirect or double-indirect jump.

Table 3—7 Examples of indirect program memeory addressing.

Assembly Language Operation

JMP AX Jumps to the current code segment location addressed by the contents of AX

JMP CX Jumps to the current code segment location addressed by the contents of CX

JMP NEAR PTR[BX] Jumps to the current code segment location addressed by the contents of the data
segment location addressed by BX

JMP NEAR PTR[DI+2] Jumps to the current code segment location addressed by the contents of the data

segment memory location addressed by DI plus 2

JMP TABLE[BX] Jumps to the current code segment location addressed by the contents of the data
segment memory location address by TABLE plus BX

Figure 3-15 shows a jump table that is stored, beginning at memory
location TABLE. This jump table 1s referenced by the short program of
Example 3-11. In this example, the BX register 1s loaded with a 4 so,
when it combines 1n the JMP TABLE[BX] instruction with TABLE, the
eftective address i1s the contents of the second entry i1n the 16-bit-wide
jump table.

TABLE DW LOCO
DW LOCA

DW LOC2
DW LOC3

Fig. (3-15): A jump table that stores addresses of various programs. The exact address chosen from the
TABLE is determined by an index stored with the jump instruction.

EXAMPLE 3-11
MOV BX,4 ;address LOC2

JMP TABLE[BX] ;jump to LOC2

3.10 Stack Memory-Addressing Modes:

The stack plays an important rtole 1n microprocessors. It holds data
temporarily and stores the return addresses used by procedures. The stack
memory 1s an LIFO (last-in, first-out) memory, which describes the way
that data are stored and removed from the stack. Data are placed onto the
stack with a PUSH instruction and removed with a POP instruction. The
CALIL instruction also uses the stack to hold the return address for
procedures and a RET (return) instruction to remove the return address
from the stack.

The stack memory i1s maintained by two registers: the stack pointer (SP)
and the stack segment register (SS). Whenever a word of data i1s pushed

Addressing Modes 41

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

onto the stack [see Figure 3-16(a)], the high-order 8 bits are placed in the
location addressed by SP-1. The low-order 8 bits are placed in the
location addressed by SP-2. The SP 1s then decremented by 2 so that the
next word of data 1s stored in the next available stack memory location.
The SP register always points to an area of memory located within the
stack segment. The SP register adds to SSx10H to form the stack memory
address in the real mode. In protected mode operation, the SS register
holds a selector that accesses a descriptor for the base address of the stack
segment.

Whenever data are popped from the stack [see Figure 3-16(b)], the low-
order 8 bits are removed from the location addressed by SP. The high-
order 8 bits are removed from the location addressed by SP+1. The SP
register 1s then incremented by 2. Table 3-11 lists some of the PUSH and
POP instructions available to the microprocessor. Note that PUSH and
POP store or retrieve words of data—mever Dbytes—in the 8086
microprocessors. Data may be pushed onto the stack from any 16-bit
register or segment register. Data may be popped off the stack into any
register or any segment register except CS. The reason that data may not
be popped from the stack into CS 1s that this only changes part of the
address of the next instruction.

Memory
Register array]
=X N 12
EBX 12134 1234)
ECX S
EDX
(a)
_,—/-M
ESP —— ()
IE——— t
SS x 10H
Register array Memory
EBX 5
| 12
ECX 12|34 1234
EDX N ks
(b)
-/_N—-

ESP 4.?
mﬁ

SS x 10H

Fig. (3-16): The PUSH and POP instructions: (a) PUSH BX places the contents of BX onto the stack; (b)
POP CX removes data from the stack and places them into CX. Both instructions are shown after execution.

Addressing Modes 42

Mustansiriyah University - College of Engineering - Electrical Engineering Department
Third Year Class

Note the examples 1 Table 3-8, which show the order of the registers
transferred by the PUSHA and POPA instructions.

Table 3—8 Example PUSH and POP instructions.

Assembly Language Operation

POPF Removes a word from the stack and places it into the flag register

POPFD Removes a doubleword from the stack and places it into the
EFLAG register

PUSHF Copies the flag register to the stack

PUSHFD Copies the EFLAG register to the stack

PUSH AX Copies the AX register to the stack

POP BX Removes a word from the stack and places it into the BX register

PUSH DS Copies the DS register to the stack

PUSH 1234H Copies a word-sized 1234H to the stack

POPCS This instruction is illegal

PUSH WORD PTR[BX] Copies the word contents of the data segment memory location
addressed by BX onto the stack

PUSHA Copies AX, CX, DX, BX, SP, BF, DI, and Sl to the stack

POPA Removes the word contents for the following registers from the

stack: S, DI, BP, SP, BX, DX, CX, and AX

Example 3-12 lists a short program that pushes the contents of AX, BX,
and CX onto the stack. The first POP retrieves the value that was pushed
onto the stack from CX and places it into AX. The second POP places the
original value of BX into CX. The last POP places the wvalue of AX into
BX.

EXAMPLE 3-12

MOV AX,1000H ;load test data
MOV BX,2000H

MOV CX,3000H

PUSH AX ;1000H to stack
PUSH BX ;2000H to stack
PUSH €X ;3000H to stack

POP AX ;3000H to AX

POP CX ;2000H to CX

POP BX ;1000H to BX

Addressing Modes 43

Mustansiriyah University - College of Engineering - Electrical Engineering Department

Third Year Class

Question: Compute the physical address for the specified operand in
each of the following instructions. The register contents and variable are
as follows: (CS)=0A00H, (DS)=0BOOH, (SS)=0DOOH, (SI)=0FFOH,
(DI)-00BOH, (BPy>00EAH and (IP)=0000H, LIST=00FOH, AX=4020H,
BX=2500H.

1) Destination operand of the instruction MOV LIST [BP+DI] . AX

2) Source operand of the instruction MOV CL , |[BX+200H]

3) Destination operand of the instruction MOV [DI+6400H] , DX

4) Source operand of the instruction MOV AL. [BP+SI-400H]

3) Destination operand of the instruction MOV [DI+SP] ., AX

6) Source operand of the instruction MOV CL . [SP+200H]

7) Destination operand of the instruction MOV [BX+DI+6400H] , CX

8) Source operand of the instruction MOV AL , [BP- 0200H]

9) Destination operand of the instruction MOV [SI], AX

10) Destination operand of the instruction MOV [BX][DI[+0400H,AL

11) Source operand of the instruction MOV AX, [BP+200H]

12) Source operand of the instruction MOV AL, [SI-0100H]

13) Destination operand of the instruction MOV DI, [SI]

14) Destination operand of the instruction MOV [DI]+-CF00H,AH

15) Source operand of the instruction MOV CL, LIST[BX+200H]
Addressing Modes 44

