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Basic Static Assignment to Transportation Networks 

Demand Models 

 

 

Introduction 

As stated earlier, it is assumed here that O-D demand flows are known and independent of cost 

variations; thus path choice – the way that paths flow themselves through the network – is the only 

choice dimension explicitly simulated. It is also assumed that the demand flows for different O-D 

pairs are expressed in consistent units. For private passenger modes such as cars, for example, they 

are typically measured in vehicles or drivers per unit of time, whereas for public (scheduled) 

transport modes they are usually expressed in terms of passengers per unit of time. Let: 

dod ≥ 0 be the demand flow for O-D pair od, defined by the elements of the O-D matrix 

corresponding to the purpose, mode, and time band being analyzed  

d the demand vector, whose components are the demand values dod for each O-D pair od 

Path choice behavior is simulated with random utility models, assuming that the relevant 

component of the systematic utility is equal to the negative of the generalized path cost: 

𝑉𝑜𝑑 = −𝛽𝑔𝑜𝑑 + 𝑉𝑜𝑑
𝑜  ∀ 𝑜𝑑                                                                                                                    1 

Where: 

β is a utility parameter, which is omitted in the following because it is assumed included in the 

scale parameter within the choice function, introduced below   

Vod is a vector whose elements consist of the systematic path utilities Vk, k ∈ Kod , for users of O-

D pair od 

𝑉𝑜𝑑
𝑜  is a vector whose elements are the parts of the systematic utility that depend on attributes other 

than path costs (such as users’ socioeconomic attributes); with no loss of generality, from a 

mathematical point of view attributes in vector 𝑉𝑜𝑑
𝑜 may be considered within nonadditive path cost 

vector or vice versa, hence for simplicity this term is generally omitted in the following sections 

(clearly any change of the reference utility value does not modify the results of the model). 

Thereafter, (path or link) costs are assumed measured in units commensurate with the utility by 

using appropriate coefficients (with the same meaning as β coefficients). 

Path choice probabilities depend on the systematic utilities of the available paths through the path 

choice function. Let: 
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𝑝𝑜𝑑,𝑘 = 𝑝 [
𝑘

𝑜𝑑
] ≥ 0 be the probability that a user on a trip from origin o to destination d will use 

path k, 𝑘 ∈ 𝐾𝑜𝑑, with ∑ 𝑝𝑜𝑑,𝑘 = 1𝑘∈𝐾𝑜𝑑
 

𝑝𝑜𝑑 ≥ 0 be the vector of path choice probabilities for users of O-D path od, whose elements are 

the probabilities 𝑝𝑜𝑑,𝑘, 𝑘 ∈ 𝐾𝑜𝑑, 𝑤𝑖𝑡ℎ 1𝑇𝑝𝑜𝑑 = 1 

The random utility model used to simulate path choice is given by: 

𝑝𝑜𝑑,𝑘 = 𝑝 [
𝑘

𝑜𝑑
] = 𝑝𝑟𝑜𝑏[𝑣𝑘 − 𝑣𝑗 ≥ 𝜀𝑗 − 𝜀𝑘∀𝑗 ∈ 𝐾𝑜𝑑]  

𝑝𝑜𝑑 = 𝑝𝑜𝑑(𝑉𝑜𝑑)∀𝑜𝑑           

Where 𝜀𝑗 denotes the random residual corresponding to the perceived utility of path j. If the random 

residuals are equal to zero (𝜀𝑗 = 0), then the variance-covariance matrix of the random residuals is 

null (Σ = 0), and the resulting choice model is deterministic. On the other hand, if the variance-

covariance matrix of the random residuals is non-null and nonsingular, |Σ| ≠ 0, then the model is 

probabilistic. 

A relation between path choice probabilities and path costs for O-D pair od, known as the path 

choice map, is obtained by combining the path choice function with the systematic utility function: 

𝑝𝑜𝑑,𝑘 = 𝑝𝑜𝑑,𝑘(𝑉𝑜𝑑) = 𝑝𝑜𝑑(−𝑔𝑜𝑑)∀𝑜𝑑, 𝑘                

𝑝𝑜𝑑 = 𝑝𝑜𝑑(𝑉𝑜𝑑) = 𝑝𝑜𝑑(−𝑔𝑜𝑑)∀𝑜𝑑        

 

The flow ℎ𝑘 on path k connecting O-D pair od, k ∈ Kod, is simply given by the product of the 

demand flow 𝑑𝑜𝑑and the probability of choosing path k: 

ℎ𝑘 = 𝑑𝑜𝑑𝑝𝑜𝑑,𝑘     

and is measured in demand units. Thus, for each O-D pair, the relationship between path flows, 

path choice probabilities and demand flows is given by: 

ℎ𝑜𝑑 = 𝑑𝑜𝑑𝑝𝑜𝑑(𝑉𝑜𝑑)      ∀𝑜𝑑                                                                                                                    2 

The whole demand model is defined by the relations (1) and (2) which, combined, describe the 

relationship between path flows and path costs: 

ℎ𝑜𝑑 = 𝑑𝑜𝑑𝑝𝑜𝑑(−𝑔𝑜𝑑)    ∀𝑜𝑑                                                                                                                 3 

The above equation (3) is a particular specification consistent with the assumptions introduced at 

the beginning of this section. It should be noted that the choice function 𝑝𝑜𝑑 () may vary with the 

O-D pair.            

All the above relations can be expressed using matrix notation (Fig1). Let:   
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P    be the path choice probability matrix, with a column for each O-D pair od, a row for each path 

k, and element (k, od) given by p[k/od] if path k connects the O-D pair, otherwise zero (P is a 

block diagonal matrix with blocks given by the vectors pod). 

The previous equations become:  

P = P(V ) = P(−g)  

h = P(V )d  

h = P(−g)d 

Different probabilistic path choice models (|Σ| ≠ 0) can be specified according to different 

assumptions on the joint probability density function of perceived utilities or random residuals. In 

any case a (one-to-one) function pod ( ) is obtained. An example is provided in Fig. 1. Some useful 

general requirements for the stochastic assignment are discussed below. 

Continuity of the path choice model, pi = pi(gi ), assures that small changes in path costs induce 

small changes in choice probabilities. If it is also continuously differentiable it has a continuous 

Jacobian, Jac[pi (gi )]. This feature, assured by commonly used joint probability density functions, 

 

Fig. 1 Example of demand model with probabilistic path choice. 
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guarantees the continuity of the resulting SNL function. Thus it is useful to state the existence of 

stochastic user equilibrium. 

The monotonicity of the path choice model, pi = pi (gi), ensures that an increase in the cost of a 

path k induces a decrease in the corresponding choice probability. More generally, the path choice 

model, pi = pi (gi), should be no increasing monotone with respect to path costs. This feature 

guarantees the monotonicity of the resulting SNL function. Hence it is useful to state the 

uniqueness of solutions of stochastic user equilibrium. It is ensured if no other parameter of the 

perceived utility joint probability density functions depends on the mean say the systematic utility. 

The resulting choice function is called invariant. 

Independence of linear transformations of utility ensures that no change in the scale of the utility 

affects the model results (as guaranteed by commonly used random residual joint probability 

density functions, such as Gumbel, or Normal distributions). For instance, it is not relevant whether 

travel time is measured in hours or minutes. 

In addition to the above mathematical requirements, some modeling requirements presented below 

are useful to effectively simulate path choice behavior. 

The similarity of perception of partially overlapping paths rules out counterintuitive results. Indeed 

two partially overlapping paths are likely not perceived as two totally separate paths. Introducing 

a positive covariance between any two overlapping paths can simulate similarity, as in the probit 

choice model, or a commonality factor as in the C-logit choice model.  

The independence of link segmentation (within the network model) ensures that if a link is further 

divided into sub-links and link costs are redefined such that path costs are not affected, path 

perceived utility distribution is not affected either, nor are choice probabilities. This feature is 

clearly guaranteed for path-explicit formulations of the distribution of perceived utility (e.g., logit 

model). If the distribution of perceived utility is formulated from link distributions (e.g., some 

probit specifications). This feature is only guaranteed for distributions stable w.r.t. summation 

(e.g., Normal distribution). 

The negativity of perceived utility ensures that no user perceives a positive utility to travel along 

any path. This feature is ensured by assuming lower bounded distributions (for instance, log-

normal, or Gamma). According to this feature, a nonelementary path is always a worse choice than 

the elementary path within it, thus supporting the assumption of considering elementary paths 

alone. On the other hand, if this feature is not presented, a nonelementary path may be a better 

choice than the elementary path within it; hence, nonelementary paths should be included within 

the path choice set (which may no longer be finite), possibly leading to unrealistic situations (some 

algorithmic drawbacks may also arise). Several adopted distributions (Gumbel, MVN) fail to 

satisfy this requirement, even though this condition is not relevant in practice. 

Deterministic path choice models (Σ = 0) usually result in a one-to-many map because, if there are 

several minimum cost paths between an O-D pair od, the choice probability vector pDET,od , and 

therefore the path flow vector hDET,od, are not uniquely defined. An example is given in Fig. 2.  
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General requirements discussed above can be quite easily extended to a deterministic choice 

model. 

It can be useful to reformulate the deterministic demand model (2) as a system of inequalities. This 

system is obtained by applying to each O-D pair condition on deterministic choice probabilities 

pDET,od; it is repeated here for the convenience of the reader: 

(𝑉𝑜𝑑)𝑇(𝑝𝑜𝑑 − 𝑝𝐷𝐸𝑇,𝑜𝑑) ≤ 0 ∀𝑝𝑜𝑑: 𝑝𝑜𝑑 ≥ 0 , 1𝑇𝑝𝑜𝑑 = 1 ∀𝑜𝑑                      

Noting that 𝑉𝑜𝑑 = 𝑔𝑜𝑑 and multiplying the above inequality by 𝑑𝑜𝑑 ≥ 0 ∀od yields: 

𝑔𝑜𝑑
𝑇 (ℎ𝑜𝑑 − ℎ𝐷𝐸𝑇,𝑜𝑑) ≥ 0  ∀ℎ𝑜𝑑: ℎ𝑜𝑑 ≥ 0, 1𝑇ℎ𝑜𝑑 = 𝑑𝑜𝑑  ∀𝑜𝑑                                                                    3b 

Condition (3b) underlies the deterministic assignment models described below. The deterministic 

demand model corresponds to a condition where, for each O-D pair, the cost of each path actually 

used is equal, and is less than or equal to the cost of any path not used: 

ℎ𝐷𝐸𝑇,𝑘 > 0 ⇒ 𝑔𝑘 = min(𝑔𝑜𝑑) 𝑘 ∈ 𝑘𝑜𝑑  

 

Fig. 2 Example of a demand model with deterministic path choice. 
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𝑔𝑘 > min(𝑔𝑜𝑑) ⇒ ℎ𝐷𝐸𝑇,𝑘 = 0 𝑘 ∈ 𝑘𝑜𝑑                                   

In the literature, this condition is known as Wardrop’s first principle. 

The above inequalities are equivalent to the definition of the deterministic path choice model. Thus 

the probability 𝑝𝑜𝑑,𝑘 that a user of O-D pair od chooses path k is strictly positive only if the cost 

of path k is less than or equal to the cost of any other path that connects the O-D pair. 

 

Feasible Path and Link Flow Sets 

Vectors of path flow h are said to be feasible if they are compatible with the network topology and 

the O-D demand flows d. The set Sh of feasible path flows contains nonnegative vectors h ≥ 0 such 

that, for each O-D pair od, the sum of the elements of (sub)vector hod is equal to the corresponding 

demand flow: 

 

∑ ℎ𝑜𝑑,𝑘 = 𝑑𝑜𝑑𝑘∈𝐾𝑜𝑑
                       

Or 

1𝑇ℎ𝑜𝑑 = 𝑑𝑜𝑑                               

 

The above condition is definitely verified by any path flow vector hod given by (3), due to features 

of the choice probability vector 𝑝𝑜𝑑, as well as it is no negativity. 

The set 𝑆ℎ of feasible path flow vectors can therefore be expressed as: 

𝑆ℎ = {ℎ = [ℎ𝑜𝑑]𝑜𝑑}:   ℎ𝑜𝑑 ≥ 0,    1𝑇 ℎ𝑜𝑑 = 𝑑𝑜𝑑   ∀𝑜𝑑                                                                                   5 

 

The set 𝑆ℎ is bounded because the path flow vector elements for each O-D pair od belong to the 

interval [0, 𝑑𝑜𝑑]; hence it is compact because it is also closed. It is also convex because it is defined 

by a system of linear equations and inequalities. Furthermore, it is nonempty if at least one path is 

available for each O-D pair. Moreover, regardless of the path cost vector g = [god]od, the result of 

the demand (3) is by definition always a vector of feasible path flows: 

ℎ = [ℎ𝑜𝑑 = 𝑑𝑜𝑑𝑝𝑜𝑑(−𝑔𝑜𝑑)]𝑜𝑑 ∈ 𝑆ℎ     ∀𝑔 = [𝑔𝑜𝑑]𝑜𝑑                                       

In a similar way, a link flow vector is feasible if it is compatible with the network topology and 

the demand flows d. Thus, a vector of link flows f is feasible if, according to the supply model, it 

corresponds to a feasible path flow as defined in the demand model. The set 𝑆𝑓 of feasible link 

flows can be formally expressed as: 

𝑆𝑓(𝑑) = {𝑓:  𝑓 = ∑ ∆𝑜𝑑ℎ𝑜𝑑, ℎ𝑜𝑑 ≥ 0,   1𝑇 ℎ𝑜𝑑 = 𝑑𝑜𝑑    ∀𝑜𝑑𝑜𝑑 }                                                             6 
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That is, 

𝑆𝑓 = {𝑓: 𝑓 = ∆ℎ,   ∀ℎ ∈ 𝑆ℎ}                          

Formulation (6) highlights the role of the demand flow vector d in the definition of the feasible 

link flow set 𝑆𝑓. 

It should be noted that, in general, there are more paths than links in a transportation network; this 

means that the incidence matrix ∆ has more columns than rows, and is therefore noninvertible. It 

follows that multiple feasible path flow vectors may lead to the same feasible link flow vector. 

 

Network Performance Indicators 

Each pattern of path and link costs and flows can be summarized by indicators that refer either to 

an O-D pair or to the system as a whole; these indicators are used in the following sections. 

The total cost TCod associated with an O-D pair od is given by the sum of the products of the 

corresponding path costs and flows: 

𝑇𝐶𝑜𝑑 = ∑ ℎ𝑘𝑔𝑘 = (𝑔𝑜𝑑𝑘∈𝐾𝑜𝑑
)𝑇ℎ𝑜𝑑   ∀𝑜𝑑   

The corresponding (weighted) average cost ACod is obtained by dividing by the demand flow: 

𝐴𝐶𝑜𝑑 =
𝑇𝐶𝑜𝑑

𝑑𝑜𝑑
=

(𝑔𝑜𝑑)𝑇ℎ𝑜𝑑

𝑑𝑜𝑑
     ∀𝑜𝑑     

The total network cost TC is given by the sum of the total O-D costs overall O-D pairs: 

𝑇𝐶 = ∑ 𝑇𝐶𝑜𝑑 = ∑ ∑ ℎ𝑘𝑔𝑘 = ∑ ℎ𝑘𝑔𝑘 = 𝑔𝑇ℎ𝑘𝑘∈𝐾𝑜𝑑𝑜𝑑𝑜𝑑   

 

The network-level average cost AC is obtained by weighting the average costs of all the O-D pairs 

by the corresponding demand flows, that is, by weighting the path costs by the path flows: 

𝐴𝐶 =
(∑ 𝐴𝐶𝑜𝑑𝑜𝑑 𝑑𝑜𝑑)

(∑ 𝑑𝑜𝑑𝑜𝑑 )
=

(∑ ∑ ℎ𝑘𝑔𝑘𝑘∈𝐾𝑜𝑑𝑜𝑑 )

(∑ ∑ ℎ𝑘𝑘∈𝐾𝑜𝑑𝑜𝑑 )
=

(∑ 𝑇𝐶𝑜𝑑𝑜𝑑 )

(∑ 𝑑𝑜𝑑𝑜𝑑 )
=

𝑇𝐶

𝑑..
=

𝑔𝑇ℎ

1𝑇ℎ
= 𝑔𝑇ℎ/1𝑇𝑑                                 

Where d.. = ∑ 𝑑𝑜𝑑𝑜𝑑  = ∑ ∑ ℎ𝑘𝑘∈𝐾𝑜𝑑𝑜𝑑  = 1𝑇ℎ = 1𝑇𝑑 denotes the total demand flow. 

With reference to additive and nonadditive path costs, the following also holds: 

𝑇𝐶 = (𝑔𝐴𝐷𝐷)𝑇ℎ + (𝑔𝑁𝐴)𝑇ℎ = (∆𝑇𝑐)𝑇ℎ + (𝑔𝑁𝐴)𝑇ℎ = 𝑐𝑇𝑓 + (𝑔𝑁𝐴)𝑇ℎ  

An expression that, when nonadditive path costs are zero (𝑔𝑁𝐴 = 0), reduces to: 

𝑇𝐶 = 𝑐𝑇𝑓 = ∑ 𝑓𝑎𝑐𝑎𝑎                                                                                                                            7 

In other words, in the absence of nonadditive costs, the sum of the link costs multiplied by the 

corresponding flows coincides with the total network cost 
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An Expected Maximum Perceived Utility (or EMPU), sod, can be associated with each O-D pair 

od; it depends on the path choice model. The EMPU is a function of the systematic utilities of the 

available paths (neglecting here the other attributes 𝑉𝑜𝑑
𝑜 for the sake of simplicity): 

𝑠𝑜𝑑 = 𝑠𝑜𝑑(𝑉𝑜𝑑) = 𝑠𝑜𝑑(−𝑔𝑜𝑑) = 𝑠𝑜𝑑(−∆𝑜𝑑
𝑇 𝑐 − 𝑔𝑜𝑑

𝑁𝐴)   ∀𝑜𝑑                                                               8 

 

The EMPU is greater than or equal to the maximum systematic utility and therefore to the average 

systematic utility as well: 

𝑠𝑜𝑑 ≥ max(𝑉𝑜𝑑) ≥ (𝑉𝑜𝑑)𝑇𝑝𝑜𝑑 =
(𝑉𝑜𝑑)𝑇ℎ𝑜𝑑

𝑑𝑜𝑑
        ∀𝑜𝑑                                                

The EMPU is, therefore, greater than or equal to the negative of the minimum cost over all the 

paths, which in turn is greater than or equal to the negative of the average cost: 

 

𝑠𝑜𝑑 ≥ − min(𝑔𝑜𝑑) ≥ −(𝑔𝑜𝑑)𝑇ℎ𝑜𝑑/𝑑𝑜𝑑 = −𝐴𝐶𝑜𝑑        ∀𝑜𝑑         

  

The total EMPU, TS, is defined as the sum of each O-D pair’s EMPU multiplied by the 

corresponding demand flow: 

𝑇𝑆 = ∑ 𝑑𝑜𝑑𝑠𝑜𝑑(𝑉𝑜𝑑) = ∑ 𝑑𝑜𝑑𝑠𝑜𝑑(−𝑔𝑜𝑑) =𝑜𝑑𝑜𝑑 ∑ 𝑑𝑜𝑑𝑠𝑜𝑑(−∆𝑜𝑑
𝑇 𝑐 − 𝑔𝑜𝑑

𝑁𝐴)𝑜𝑑   

 

The corresponding average EMPU, AS, is obtained by dividing by the total demand flow: 

𝐴𝑆 = ∑ 𝑑𝑜𝑑𝑠𝑜𝑑/ ∑ 𝑑𝑜𝑑 = ∑
𝑑𝑜𝑑𝑠𝑜𝑑

𝑑
. . =

𝑇𝑆

𝑑
. .𝑜𝑑𝑜𝑑𝑜𝑑                    

         

In conclusion, the total cost is an estimate, made without considering the effect of dispersion, of 

the disutility users receive when distributing themselves among paths according to path flows h, 

whereas the EMPU is the disutility users perceive when making path choices leading to path flows 

h including the effect of dispersion. From the preceding considerations, the following relations 

hold between the total and average values of EMPU and cost: 

𝑇𝑆 ≥ −𝑇𝐶         𝐴𝑆 ≥ −𝐴𝐶                  

Numerical examples of network indicators are presented in Fig. 3. 
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Fig. 3 Performance indicators for the network. 


